postgresql/src/backend/optimizer/plan/subselect.c
Tom Lane 2f35b4efdb Re-implement LIMIT/OFFSET as a plan node type, instead of a hack in
ExecutorRun.  This allows LIMIT to work in a view.  Also, LIMIT in a
cursor declaration will behave in a reasonable fashion, whereas before
it was overridden by the FETCH count.
2000-10-26 21:38:24 +00:00

700 lines
20 KiB
C

/*-------------------------------------------------------------------------
*
* subselect.c
* Planning routines for subselects and parameters.
*
* Portions Copyright (c) 1996-2000, PostgreSQL, Inc
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/plan/subselect.c,v 1.44 2000/10/26 21:36:09 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_type.h"
#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "optimizer/subselect.h"
#include "parser/parse_expr.h"
#include "parser/parse_oper.h"
#include "utils/lsyscache.h"
Index PlannerQueryLevel; /* level of current query */
List *PlannerInitPlan; /* init subplans for current query */
List *PlannerParamVar; /* to get Var from Param->paramid */
int PlannerPlanId = 0; /* to assign unique ID to subquery plans */
/*--------------------
* PlannerParamVar is a list of Var nodes, wherein the n'th entry
* (n counts from 0) corresponds to Param->paramid = n. The Var nodes
* are ordinary except for one thing: their varlevelsup field does NOT
* have the usual interpretation of "subplan levels out from current".
* Instead, it contains the absolute plan level, with the outermost
* plan being level 1 and nested plans having higher level numbers.
* This nonstandardness is useful because we don't have to run around
* and update the list elements when we enter or exit a subplan
* recursion level. But we must pay attention not to confuse this
* meaning with the normal meaning of varlevelsup.
*--------------------
*/
/*
* Create a new entry in the PlannerParamVar list, and return its index.
*
* var contains the data to be copied, except for varlevelsup which
* is set from the absolute level value given by varlevel.
*/
static int
new_param(Var *var, Index varlevel)
{
Var *paramVar = (Var *) copyObject(var);
paramVar->varlevelsup = varlevel;
PlannerParamVar = lappend(PlannerParamVar, paramVar);
return length(PlannerParamVar) - 1;
}
/*
* Generate a Param node to replace the given Var,
* which is expected to have varlevelsup > 0 (ie, it is not local).
*/
static Param *
replace_var(Var *var)
{
List *ppv;
Param *retval;
Index varlevel;
int i;
Assert(var->varlevelsup > 0 && var->varlevelsup < PlannerQueryLevel);
varlevel = PlannerQueryLevel - var->varlevelsup;
/*
* If there's already a PlannerParamVar entry for this same Var, just
* use it. NOTE: in sufficiently complex querytrees, it is
* possible for the same varno/varlevel to refer to different RTEs in
* different parts of the parsetree, so that different fields might
* end up sharing the same Param number. As long as we check the
* vartype as well, I believe that this sort of aliasing will cause no
* trouble. The correct field should get stored into the Param slot at
* execution in each part of the tree.
*/
i = 0;
foreach(ppv, PlannerParamVar)
{
Var *pvar = lfirst(ppv);
if (pvar->varno == var->varno &&
pvar->varattno == var->varattno &&
pvar->varlevelsup == varlevel &&
pvar->vartype == var->vartype)
break;
i++;
}
if (!ppv)
{
/* Nope, so make a new one */
i = new_param(var, varlevel);
}
retval = makeNode(Param);
retval->paramkind = PARAM_EXEC;
retval->paramid = (AttrNumber) i;
retval->paramtype = var->vartype;
return retval;
}
/*
* Convert a bare SubLink (as created by the parser) into a SubPlan.
*/
static Node *
make_subplan(SubLink *slink)
{
SubPlan *node = makeNode(SubPlan);
Query *subquery = (Query *) (slink->subselect);
double tuple_fraction;
Plan *plan;
List *lst;
Node *result;
/*
* Check to see if this node was already processed; if so we have
* trouble. We check to see if the linked-to Query appears to have
* been planned already, too.
*/
if (subquery == NULL)
elog(ERROR, "make_subplan: invalid expression structure (SubLink already processed?)");
if (subquery->base_rel_list != NIL)
elog(ERROR, "make_subplan: invalid expression structure (subquery already processed?)");
/*
* Copy the source Query node. This is a quick and dirty kluge to resolve
* the fact that the parser can generate trees with multiple links to the
* same sub-Query node, but the planner wants to scribble on the Query.
* Try to clean this up when we do querytree redesign...
*/
subquery = (Query *) copyObject(subquery);
/*
* For an EXISTS subplan, tell lower-level planner to expect that only
* the first tuple will be retrieved. For ALL and ANY subplans, we
* will be able to stop evaluating if the test condition fails, so
* very often not all the tuples will be retrieved; for lack of a
* better idea, specify 50% retrieval. For EXPR and MULTIEXPR
* subplans, use default behavior (we're only expecting one row out,
* anyway).
*
* NOTE: if you change these numbers, also change cost_qual_eval_walker()
* in path/costsize.c.
*
* XXX If an ALL/ANY subplan is uncorrelated, we may decide to
* materialize its result below. In that case it would've been better
* to specify full retrieval. At present, however, we can only detect
* correlation or lack of it after we've made the subplan :-(. Perhaps
* detection of correlation should be done as a separate step.
* Meanwhile, we don't want to be too optimistic about the percentage
* of tuples retrieved, for fear of selecting a plan that's bad for
* the materialization case.
*/
if (slink->subLinkType == EXISTS_SUBLINK)
tuple_fraction = 1.0; /* just like a LIMIT 1 */
else if (slink->subLinkType == ALL_SUBLINK ||
slink->subLinkType == ANY_SUBLINK)
tuple_fraction = 0.5; /* 50% */
else
tuple_fraction = -1.0; /* default behavior */
/*
* Generate the plan for the subquery.
*/
node->plan = plan = subquery_planner(subquery, tuple_fraction);
node->plan_id = PlannerPlanId++; /* Assign unique ID to this SubPlan */
node->rtable = subquery->rtable;
node->sublink = slink;
slink->subselect = NULL; /* cool ?! see error check above! */
/*
* Make parParam list of params that current query level will pass
* to this child plan.
*/
foreach(lst, plan->extParam)
{
int paramid = lfirsti(lst);
Var *var = nth(paramid, PlannerParamVar);
/* note varlevelsup is absolute level number */
if (var->varlevelsup == PlannerQueryLevel)
node->parParam = lappendi(node->parParam, paramid);
}
/*
* Un-correlated or undirect correlated plans of EXISTS, EXPR, or
* MULTIEXPR types can be used as initPlans. For EXISTS or EXPR, we
* just produce a Param referring to the result of evaluating the
* initPlan. For MULTIEXPR, we must build an AND or OR-clause of the
* individual comparison operators, using the appropriate lefthand
* side expressions and Params for the initPlan's target items.
*/
if (node->parParam == NIL && slink->subLinkType == EXISTS_SUBLINK)
{
Var *var = makeVar(0, 0, BOOLOID, -1, 0);
Param *prm = makeNode(Param);
prm->paramkind = PARAM_EXEC;
prm->paramid = (AttrNumber) new_param(var, PlannerQueryLevel);
prm->paramtype = var->vartype;
pfree(var); /* var is only needed for new_param */
node->setParam = lappendi(node->setParam, prm->paramid);
PlannerInitPlan = lappend(PlannerInitPlan, node);
result = (Node *) prm;
}
else if (node->parParam == NIL && slink->subLinkType == EXPR_SUBLINK)
{
TargetEntry *te = lfirst(plan->targetlist);
/* need a var node just to pass to new_param()... */
Var *var = makeVar(0, 0, te->resdom->restype,
te->resdom->restypmod, 0);
Param *prm = makeNode(Param);
prm->paramkind = PARAM_EXEC;
prm->paramid = (AttrNumber) new_param(var, PlannerQueryLevel);
prm->paramtype = var->vartype;
pfree(var); /* var is only needed for new_param */
node->setParam = lappendi(node->setParam, prm->paramid);
PlannerInitPlan = lappend(PlannerInitPlan, node);
result = (Node *) prm;
}
else if (node->parParam == NIL && slink->subLinkType == MULTIEXPR_SUBLINK)
{
List *newoper = NIL;
int i = 0;
/*
* Convert oper list of Opers into a list of Exprs, using lefthand
* arguments and Params representing inside results.
*/
foreach(lst, slink->oper)
{
Oper *oper = (Oper *) lfirst(lst);
Node *lefthand = nth(i, slink->lefthand);
TargetEntry *te = nth(i, plan->targetlist);
/* need a var node just to pass to new_param()... */
Var *var = makeVar(0, 0, te->resdom->restype,
te->resdom->restypmod, 0);
Param *prm = makeNode(Param);
Operator tup;
Form_pg_operator opform;
Node *left,
*right;
prm->paramkind = PARAM_EXEC;
prm->paramid = (AttrNumber) new_param(var, PlannerQueryLevel);
prm->paramtype = var->vartype;
pfree(var); /* var is only needed for new_param */
Assert(IsA(oper, Oper));
tup = get_operator_tuple(oper->opno);
Assert(HeapTupleIsValid(tup));
opform = (Form_pg_operator) GETSTRUCT(tup);
/*
* Note: we use make_operand in case runtime type conversion
* function calls must be inserted for this operator!
*/
left = make_operand("", lefthand,
exprType(lefthand), opform->oprleft);
right = make_operand("", (Node *) prm,
prm->paramtype, opform->oprright);
newoper = lappend(newoper,
make_opclause(oper,
(Var *) left,
(Var *) right));
node->setParam = lappendi(node->setParam, prm->paramid);
i++;
}
slink->oper = newoper;
slink->lefthand = NIL;
PlannerInitPlan = lappend(PlannerInitPlan, node);
if (i > 1)
result = (Node *) ((slink->useor) ? make_orclause(newoper) :
make_andclause(newoper));
else
result = (Node *) lfirst(newoper);
}
else
{
Expr *expr = makeNode(Expr);
List *args = NIL;
List *newoper = NIL;
int i = 0;
/*
* We can't convert subplans of ALL_SUBLINK or ANY_SUBLINK types
* to initPlans, even when they are uncorrelated or undirect
* correlated, because we need to scan the output of the subplan
* for each outer tuple. However, we have the option to tack a
* MATERIAL node onto the top of an uncorrelated/undirect
* correlated subplan, which lets us do the work of evaluating the
* subplan only once. We do this if the subplan's top plan node
* is anything more complicated than a plain sequential scan, and
* we do it even for seqscan if the qual appears selective enough
* to eliminate many tuples.
*/
if (node->parParam == NIL)
{
bool use_material;
switch (nodeTag(plan))
{
case T_SeqScan:
if (plan->initPlan || plan->subPlan)
use_material = true;
else
{
Selectivity qualsel;
qualsel = clauselist_selectivity(subquery,
plan->qual,
0);
/* Is 10% selectivity a good threshold?? */
use_material = qualsel < 0.10;
}
break;
case T_Material:
case T_Sort:
/*
* Don't add another Material node if there's one
* already, nor if the top node is a Sort, since Sort
* materializes its output anyway. (I doubt either
* case can happen in practice for a subplan, but...)
*/
use_material = false;
break;
default:
use_material = true;
break;
}
if (use_material)
{
plan = (Plan *) make_material(plan->targetlist, plan);
node->plan = plan;
}
}
/*
* Make expression of SUBPLAN type
*/
expr->typeOid = BOOLOID;/* bogus, but we don't really care */
expr->opType = SUBPLAN_EXPR;
expr->oper = (Node *) node;
/*
* Make expr->args from parParam.
*/
foreach(lst, node->parParam)
{
Var *var = nth(lfirsti(lst), PlannerParamVar);
var = (Var *) copyObject(var);
/*
* Must fix absolute-level varlevelsup from the
* PlannerParamVar entry. But since var is at current subplan
* level, this is easy:
*/
var->varlevelsup = 0;
args = lappend(args, var);
}
expr->args = args;
/*
* Convert oper list of Opers into a list of Exprs, using lefthand
* arguments and Consts representing inside results.
*/
foreach(lst, slink->oper)
{
Oper *oper = (Oper *) lfirst(lst);
Node *lefthand = nth(i, slink->lefthand);
TargetEntry *te = nth(i, plan->targetlist);
Const *con;
Operator tup;
Form_pg_operator opform;
Node *left,
*right;
/*
* XXX really ought to fill in constlen and constbyval
* correctly, but right now ExecEvalExpr won't look at them...
*/
con = makeConst(te->resdom->restype, 0, 0, true, 0, 0, 0);
Assert(IsA(oper, Oper));
tup = get_operator_tuple(oper->opno);
Assert(HeapTupleIsValid(tup));
opform = (Form_pg_operator) GETSTRUCT(tup);
/*
* Note: we use make_operand in case runtime type conversion
* function calls must be inserted for this operator!
*/
left = make_operand("", lefthand,
exprType(lefthand), opform->oprleft);
right = make_operand("", (Node *) con,
con->consttype, opform->oprright);
newoper = lappend(newoper,
make_opclause(oper,
(Var *) left,
(Var *) right));
i++;
}
slink->oper = newoper;
slink->lefthand = NIL;
result = (Node *) expr;
}
return result;
}
/*
* finalize_primnode: build lists of subplans and params appearing
* in the given expression tree. NOTE: items are added to lists passed in,
* so caller must initialize lists to NIL before first call!
*
* Note: the subplan list that is constructed here and assigned to the
* plan's subPlan field will be replaced with an up-to-date list in
* set_plan_references(). We could almost dispense with building this
* subplan list at all; I believe the only place that uses it is the
* check in make_subplan to see whether a subselect has any subselects.
*/
typedef struct finalize_primnode_results
{
List *subplans; /* List of subplans found in expr */
List *paramids; /* List of PARAM_EXEC paramids found */
} finalize_primnode_results;
static bool
finalize_primnode(Node *node, finalize_primnode_results *results)
{
if (node == NULL)
return false;
if (IsA(node, Param))
{
if (((Param *) node)->paramkind == PARAM_EXEC)
{
int paramid = (int) ((Param *) node)->paramid;
if (!intMember(paramid, results->paramids))
results->paramids = lconsi(paramid, results->paramids);
}
return false; /* no more to do here */
}
if (is_subplan(node))
{
SubPlan *subplan = (SubPlan *) ((Expr *) node)->oper;
List *lst;
/* Add subplan to subplans list */
results->subplans = lappend(results->subplans, subplan);
/* Check extParam list for params to add to paramids */
foreach(lst, subplan->plan->extParam)
{
int paramid = lfirsti(lst);
Var *var = nth(paramid, PlannerParamVar);
/* note varlevelsup is absolute level number */
if (var->varlevelsup < PlannerQueryLevel &&
!intMember(paramid, results->paramids))
results->paramids = lconsi(paramid, results->paramids);
}
/* fall through to recurse into subplan args */
}
return expression_tree_walker(node, finalize_primnode,
(void *) results);
}
/*
* Replace correlation vars (uplevel vars) with Params.
*/
static Node *replace_correlation_vars_mutator(Node *node, void *context);
Node *
SS_replace_correlation_vars(Node *expr)
{
/* No setup needed for tree walk, so away we go */
return replace_correlation_vars_mutator(expr, NULL);
}
static Node *
replace_correlation_vars_mutator(Node *node, void *context)
{
if (node == NULL)
return NULL;
if (IsA(node, Var))
{
if (((Var *) node)->varlevelsup > 0)
return (Node *) replace_var((Var *) node);
}
return expression_tree_mutator(node,
replace_correlation_vars_mutator,
context);
}
/*
* Expand SubLinks to SubPlans in the given expression.
*/
static Node *process_sublinks_mutator(Node *node, void *context);
Node *
SS_process_sublinks(Node *expr)
{
/* No setup needed for tree walk, so away we go */
return process_sublinks_mutator(expr, NULL);
}
static Node *
process_sublinks_mutator(Node *node, void *context)
{
if (node == NULL)
return NULL;
if (IsA(node, SubLink))
{
SubLink *sublink = (SubLink *) node;
/*
* First, scan the lefthand-side expressions, if any. This is a
* tad klugy since we modify the input SubLink node, but that
* should be OK (make_subplan does it too!)
*/
sublink->lefthand = (List *)
process_sublinks_mutator((Node *) sublink->lefthand, context);
/* Now build the SubPlan node and make the expr to return */
return make_subplan(sublink);
}
/*
* Note that we will never see a SubPlan expression in the input
* (since this is the very routine that creates 'em to begin with). So
* the code in expression_tree_mutator() that might do inappropriate
* things with SubPlans or SubLinks will not be exercised.
*/
Assert(!is_subplan(node));
return expression_tree_mutator(node,
process_sublinks_mutator,
context);
}
List *
SS_finalize_plan(Plan *plan)
{
List *extParam = NIL;
List *locParam = NIL;
finalize_primnode_results results;
List *lst;
if (plan == NULL)
return NIL;
results.subplans = NIL; /* initialize lists to NIL */
results.paramids = NIL;
/*
* When we call finalize_primnode, results.paramids lists are
* automatically merged together. But when recursing to self, we have
* to do it the hard way. We want the paramids list to include params
* in subplans as well as at this level. (We don't care about finding
* subplans of subplans, though.)
*/
/* Find params and subplans in targetlist and qual */
finalize_primnode((Node *) plan->targetlist, &results);
finalize_primnode((Node *) plan->qual, &results);
/* Check additional node-type-specific fields */
switch (nodeTag(plan))
{
case T_Result:
finalize_primnode(((Result *) plan)->resconstantqual,
&results);
break;
case T_Append:
foreach(lst, ((Append *) plan)->appendplans)
results.paramids = set_unioni(results.paramids,
SS_finalize_plan((Plan *) lfirst(lst)));
break;
case T_SubqueryScan:
results.paramids = set_unioni(results.paramids,
SS_finalize_plan(((SubqueryScan *) plan)->subplan));
break;
case T_IndexScan:
finalize_primnode((Node *) ((IndexScan *) plan)->indxqual,
&results);
/*
* we need not look at indxqualorig, since it will have the
* same param references as indxqual, and we aren't really
* concerned yet about having a complete subplan list.
*/
break;
case T_NestLoop:
finalize_primnode((Node *) ((Join *) plan)->joinqual,
&results);
break;
case T_MergeJoin:
finalize_primnode((Node *) ((Join *) plan)->joinqual,
&results);
finalize_primnode((Node *) ((MergeJoin *) plan)->mergeclauses,
&results);
break;
case T_HashJoin:
finalize_primnode((Node *) ((Join *) plan)->joinqual,
&results);
finalize_primnode((Node *) ((HashJoin *) plan)->hashclauses,
&results);
break;
case T_Hash:
finalize_primnode(((Hash *) plan)->hashkey,
&results);
break;
case T_TidScan:
finalize_primnode((Node *) ((TidScan *) plan)->tideval,
&results);
break;
case T_Agg:
case T_SeqScan:
case T_Material:
case T_Sort:
case T_Unique:
case T_SetOp:
case T_Limit:
case T_Group:
break;
default:
elog(ERROR, "SS_finalize_plan: node %d unsupported",
nodeTag(plan));
}
/* Process left and right subplans, if any */
results.paramids = set_unioni(results.paramids,
SS_finalize_plan(plan->lefttree));
results.paramids = set_unioni(results.paramids,
SS_finalize_plan(plan->righttree));
/* Now we have all the paramids and subplans */
foreach(lst, results.paramids)
{
int paramid = lfirsti(lst);
Var *var = nth(paramid, PlannerParamVar);
/* note varlevelsup is absolute level number */
if (var->varlevelsup < PlannerQueryLevel)
extParam = lappendi(extParam, paramid);
else if (var->varlevelsup > PlannerQueryLevel)
elog(ERROR, "SS_finalize_plan: plan shouldn't reference subplan's variable");
else
{
Assert(var->varno == 0 && var->varattno == 0);
locParam = lappendi(locParam, paramid);
}
}
plan->extParam = extParam;
plan->locParam = locParam;
plan->subPlan = results.subplans;
return results.paramids;
}