postgresql/src/test/regress/sql/incremental_sort.sql

224 lines
9.4 KiB
PL/PgSQL

-- When we have to sort the entire table, incremental sort will
-- be slower than plain sort, so it should not be used.
explain (costs off)
select * from (select * from tenk1 order by four) t order by four, ten;
-- When there is a LIMIT clause, incremental sort is beneficial because
-- it only has to sort some of the groups, and not the entire table.
explain (costs off)
select * from (select * from tenk1 order by four) t order by four, ten
limit 1;
-- When work_mem is not enough to sort the entire table, incremental sort
-- may be faster if individual groups still fit into work_mem.
set work_mem to '2MB';
explain (costs off)
select * from (select * from tenk1 order by four) t order by four, ten;
reset work_mem;
create table t(a integer, b integer);
create or replace function explain_analyze_without_memory(query text)
returns table (out_line text) language plpgsql
as
$$
declare
line text;
begin
for line in
execute 'explain (analyze, costs off, summary off, timing off) ' || query
loop
out_line := regexp_replace(line, '\d+kB', 'NNkB', 'g');
return next;
end loop;
end;
$$;
create or replace function explain_analyze_inc_sort_nodes(query text)
returns jsonb language plpgsql
as
$$
declare
elements jsonb;
element jsonb;
matching_nodes jsonb := '[]'::jsonb;
begin
execute 'explain (analyze, costs off, summary off, timing off, format ''json'') ' || query into strict elements;
while jsonb_array_length(elements) > 0 loop
element := elements->0;
elements := elements - 0;
case jsonb_typeof(element)
when 'array' then
if jsonb_array_length(element) > 0 then
elements := elements || element;
end if;
when 'object' then
if element ? 'Plan' then
elements := elements || jsonb_build_array(element->'Plan');
element := element - 'Plan';
else
if element ? 'Plans' then
elements := elements || jsonb_build_array(element->'Plans');
element := element - 'Plans';
end if;
if (element->>'Node Type')::text = 'Incremental Sort' then
matching_nodes := matching_nodes || element;
end if;
end if;
end case;
end loop;
return matching_nodes;
end;
$$;
create or replace function explain_analyze_inc_sort_nodes_without_memory(query text)
returns jsonb language plpgsql
as
$$
declare
nodes jsonb := '[]'::jsonb;
node jsonb;
group_key text;
space_key text;
begin
for node in select * from jsonb_array_elements(explain_analyze_inc_sort_nodes(query)) t loop
for group_key in select unnest(array['Full-sort Groups', 'Pre-sorted Groups']::text[]) t loop
for space_key in select unnest(array['Sort Space Memory', 'Sort Space Disk']::text[]) t loop
node := jsonb_set(node, array[group_key, space_key, 'Average Sort Space Used'], '"NN"', false);
node := jsonb_set(node, array[group_key, space_key, 'Peak Sort Space Used'], '"NN"', false);
end loop;
end loop;
nodes := nodes || node;
end loop;
return nodes;
end;
$$;
create or replace function explain_analyze_inc_sort_nodes_verify_invariants(query text)
returns bool language plpgsql
as
$$
declare
node jsonb;
group_stats jsonb;
group_key text;
space_key text;
begin
for node in select * from jsonb_array_elements(explain_analyze_inc_sort_nodes(query)) t loop
for group_key in select unnest(array['Full-sort Groups', 'Pre-sorted Groups']::text[]) t loop
group_stats := node->group_key;
for space_key in select unnest(array['Sort Space Memory', 'Sort Space Disk']::text[]) t loop
if (group_stats->space_key->'Peak Sort Space Used')::bigint < (group_stats->space_key->'Peak Sort Space Used')::bigint then
raise exception '% has invalid max space < average space', group_key;
end if;
end loop;
end loop;
end loop;
return true;
end;
$$;
-- A single large group tested around each mode transition point.
insert into t(a, b) select i/100 + 1, i + 1 from generate_series(0, 999) n(i);
analyze t;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 31;
select * from (select * from t order by a) s order by a, b limit 31;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 32;
select * from (select * from t order by a) s order by a, b limit 32;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 33;
select * from (select * from t order by a) s order by a, b limit 33;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 65;
select * from (select * from t order by a) s order by a, b limit 65;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 66;
select * from (select * from t order by a) s order by a, b limit 66;
delete from t;
-- An initial large group followed by a small group.
insert into t(a, b) select i/50 + 1, i + 1 from generate_series(0, 999) n(i);
analyze t;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 55;
select * from (select * from t order by a) s order by a, b limit 55;
-- Test EXPLAIN ANALYZE with only a fullsort group.
select explain_analyze_without_memory('select * from (select * from t order by a) s order by a, b limit 55');
select jsonb_pretty(explain_analyze_inc_sort_nodes_without_memory('select * from (select * from t order by a) s order by a, b limit 55'));
select explain_analyze_inc_sort_nodes_verify_invariants('select * from (select * from t order by a) s order by a, b limit 55');
delete from t;
-- An initial small group followed by a large group.
insert into t(a, b) select (case when i < 5 then i else 9 end), i from generate_series(1, 1000) n(i);
analyze t;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 70;
select * from (select * from t order by a) s order by a, b limit 70;
-- Test rescan.
begin;
-- We force the planner to choose a plan with incremental sort on the right side
-- of a nested loop join node. That way we trigger the rescan code path.
set local enable_hashjoin = off;
set local enable_mergejoin = off;
set local enable_material = off;
set local enable_sort = off;
explain (costs off) select * from t left join (select * from (select * from t order by a) v order by a, b) s on s.a = t.a where t.a in (1, 2);
select * from t left join (select * from (select * from t order by a) v order by a, b) s on s.a = t.a where t.a in (1, 2);
rollback;
-- Test EXPLAIN ANALYZE with both fullsort and presorted groups.
select explain_analyze_without_memory('select * from (select * from t order by a) s order by a, b limit 70');
select jsonb_pretty(explain_analyze_inc_sort_nodes_without_memory('select * from (select * from t order by a) s order by a, b limit 70'));
select explain_analyze_inc_sort_nodes_verify_invariants('select * from (select * from t order by a) s order by a, b limit 70');
delete from t;
-- Small groups of 10 tuples each tested around each mode transition point.
insert into t(a, b) select i / 10, i from generate_series(1, 1000) n(i);
analyze t;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 31;
select * from (select * from t order by a) s order by a, b limit 31;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 32;
select * from (select * from t order by a) s order by a, b limit 32;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 33;
select * from (select * from t order by a) s order by a, b limit 33;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 65;
select * from (select * from t order by a) s order by a, b limit 65;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 66;
select * from (select * from t order by a) s order by a, b limit 66;
delete from t;
-- Small groups of only 1 tuple each tested around each mode transition point.
insert into t(a, b) select i, i from generate_series(1, 1000) n(i);
analyze t;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 31;
select * from (select * from t order by a) s order by a, b limit 31;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 32;
select * from (select * from t order by a) s order by a, b limit 32;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 33;
select * from (select * from t order by a) s order by a, b limit 33;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 65;
select * from (select * from t order by a) s order by a, b limit 65;
explain (costs off) select * from (select * from t order by a) s order by a, b limit 66;
select * from (select * from t order by a) s order by a, b limit 66;
delete from t;
drop table t;
-- Incremental sort vs. parallel queries
set min_parallel_table_scan_size = '1kB';
set min_parallel_index_scan_size = '1kB';
set parallel_setup_cost = 0;
set parallel_tuple_cost = 0;
set max_parallel_workers_per_gather = 2;
create table t (a int, b int, c int);
insert into t select mod(i,10),mod(i,10),i from generate_series(1,10000) s(i);
create index on t (a);
analyze t;
set enable_incremental_sort = off;
explain (costs off) select a,b,sum(c) from t group by 1,2 order by 1,2,3 limit 1;
set enable_incremental_sort = on;
explain (costs off) select a,b,sum(c) from t group by 1,2 order by 1,2,3 limit 1;
-- Incremental sort vs. set operations with varno 0
set enable_hashagg to off;
explain (costs off) select * from t union select * from t order by 1,3;
drop table t;