postgresql/src/backend/access/hash/hashovfl.c

706 lines
20 KiB
C

/*-------------------------------------------------------------------------
*
* hashovfl.c
* Overflow page management code for the Postgres hash access method
*
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/hash/hashovfl.c,v 1.45 2004/12/31 21:59:13 pgsql Exp $
*
* NOTES
* Overflow pages look like ordinary relation pages.
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/hash.h"
static BlockNumber _hash_getovflpage(Relation rel, Buffer metabuf);
static uint32 _hash_firstfreebit(uint32 map);
/*
* Convert overflow page bit number (its index in the free-page bitmaps)
* to block number within the index.
*/
static BlockNumber
bitno_to_blkno(HashMetaPage metap, uint32 ovflbitnum)
{
uint32 splitnum = metap->hashm_ovflpoint;
uint32 i;
/* Convert zero-based bitnumber to 1-based page number */
ovflbitnum += 1;
/* Determine the split number for this page (must be >= 1) */
for (i = 1;
i < splitnum && ovflbitnum > metap->hashm_spares[i];
i++)
/* loop */ ;
/*
* Convert to absolute page number by adding the number of bucket
* pages that exist before this split point.
*/
return (BlockNumber) ((1 << i) + ovflbitnum);
}
/*
* Convert overflow page block number to bit number for free-page bitmap.
*/
static uint32
blkno_to_bitno(HashMetaPage metap, BlockNumber ovflblkno)
{
uint32 splitnum = metap->hashm_ovflpoint;
uint32 i;
uint32 bitnum;
/* Determine the split number containing this page */
for (i = 1; i <= splitnum; i++)
{
if (ovflblkno <= (BlockNumber) (1 << i))
break; /* oops */
bitnum = ovflblkno - (1 << i);
if (bitnum <= metap->hashm_spares[i])
return bitnum - 1; /* -1 to convert 1-based to 0-based */
}
elog(ERROR, "invalid overflow block number %u", ovflblkno);
return 0; /* keep compiler quiet */
}
/*
* _hash_addovflpage
*
* Add an overflow page to the bucket whose last page is pointed to by 'buf'.
*
* On entry, the caller must hold a pin but no lock on 'buf'. The pin is
* dropped before exiting (we assume the caller is not interested in 'buf'
* anymore). The returned overflow page will be pinned and write-locked;
* it is guaranteed to be empty.
*
* The caller must hold a pin, but no lock, on the metapage buffer.
* That buffer is returned in the same state.
*
* The caller must hold at least share lock on the bucket, to ensure that
* no one else tries to compact the bucket meanwhile. This guarantees that
* 'buf' won't stop being part of the bucket while it's unlocked.
*
* NB: since this could be executed concurrently by multiple processes,
* one should not assume that the returned overflow page will be the
* immediate successor of the originally passed 'buf'. Additional overflow
* pages might have been added to the bucket chain in between.
*/
Buffer
_hash_addovflpage(Relation rel, Buffer metabuf, Buffer buf)
{
BlockNumber ovflblkno;
Buffer ovflbuf;
Page page;
Page ovflpage;
HashPageOpaque pageopaque;
HashPageOpaque ovflopaque;
/* allocate an empty overflow page */
ovflblkno = _hash_getovflpage(rel, metabuf);
/* lock the overflow page */
ovflbuf = _hash_getbuf(rel, ovflblkno, HASH_WRITE);
ovflpage = BufferGetPage(ovflbuf);
/*
* Write-lock the tail page. It is okay to hold two buffer locks here
* since there cannot be anyone else contending for access to ovflbuf.
*/
_hash_chgbufaccess(rel, buf, HASH_NOLOCK, HASH_WRITE);
/* loop to find current tail page, in case someone else inserted too */
for (;;)
{
BlockNumber nextblkno;
page = BufferGetPage(buf);
_hash_checkpage(rel, page, LH_BUCKET_PAGE | LH_OVERFLOW_PAGE);
pageopaque = (HashPageOpaque) PageGetSpecialPointer(page);
nextblkno = pageopaque->hasho_nextblkno;
if (!BlockNumberIsValid(nextblkno))
break;
/* we assume we do not need to write the unmodified page */
_hash_relbuf(rel, buf);
buf = _hash_getbuf(rel, nextblkno, HASH_WRITE);
}
/* now that we have correct backlink, initialize new overflow page */
_hash_pageinit(ovflpage, BufferGetPageSize(ovflbuf));
ovflopaque = (HashPageOpaque) PageGetSpecialPointer(ovflpage);
ovflopaque->hasho_prevblkno = BufferGetBlockNumber(buf);
ovflopaque->hasho_nextblkno = InvalidBlockNumber;
ovflopaque->hasho_bucket = pageopaque->hasho_bucket;
ovflopaque->hasho_flag = LH_OVERFLOW_PAGE;
ovflopaque->hasho_filler = HASHO_FILL;
_hash_wrtnorelbuf(rel, ovflbuf);
/* logically chain overflow page to previous page */
pageopaque->hasho_nextblkno = ovflblkno;
_hash_wrtbuf(rel, buf);
return ovflbuf;
}
/*
* _hash_getovflpage()
*
* Find an available overflow page and return its block number.
*
* The caller must hold a pin, but no lock, on the metapage buffer.
* The buffer is returned in the same state.
*/
static BlockNumber
_hash_getovflpage(Relation rel, Buffer metabuf)
{
HashMetaPage metap;
Buffer mapbuf = 0;
BlockNumber blkno;
uint32 orig_firstfree;
uint32 splitnum;
uint32 *freep = NULL;
uint32 max_ovflpg;
uint32 bit;
uint32 first_page;
uint32 last_bit;
uint32 last_page;
uint32 i,
j;
/* Get exclusive lock on the meta page */
_hash_chgbufaccess(rel, metabuf, HASH_NOLOCK, HASH_WRITE);
metap = (HashMetaPage) BufferGetPage(metabuf);
_hash_checkpage(rel, (Page) metap, LH_META_PAGE);
/* start search at hashm_firstfree */
orig_firstfree = metap->hashm_firstfree;
first_page = orig_firstfree >> BMPG_SHIFT(metap);
bit = orig_firstfree & BMPG_MASK(metap);
i = first_page;
j = bit / BITS_PER_MAP;
bit &= ~(BITS_PER_MAP - 1);
/* outer loop iterates once per bitmap page */
for (;;)
{
BlockNumber mapblkno;
Page mappage;
uint32 last_inpage;
/* want to end search with the last existing overflow page */
splitnum = metap->hashm_ovflpoint;
max_ovflpg = metap->hashm_spares[splitnum] - 1;
last_page = max_ovflpg >> BMPG_SHIFT(metap);
last_bit = max_ovflpg & BMPG_MASK(metap);
if (i > last_page)
break;
Assert(i < metap->hashm_nmaps);
mapblkno = metap->hashm_mapp[i];
if (i == last_page)
last_inpage = last_bit;
else
last_inpage = BMPGSZ_BIT(metap) - 1;
/* Release exclusive lock on metapage while reading bitmap page */
_hash_chgbufaccess(rel, metabuf, HASH_READ, HASH_NOLOCK);
mapbuf = _hash_getbuf(rel, mapblkno, HASH_WRITE);
mappage = BufferGetPage(mapbuf);
_hash_checkpage(rel, mappage, LH_BITMAP_PAGE);
freep = HashPageGetBitmap(mappage);
for (; bit <= last_inpage; j++, bit += BITS_PER_MAP)
{
if (freep[j] != ALL_SET)
goto found;
}
/* No free space here, try to advance to next map page */
_hash_relbuf(rel, mapbuf);
i++;
j = 0; /* scan from start of next map page */
bit = 0;
/* Reacquire exclusive lock on the meta page */
_hash_chgbufaccess(rel, metabuf, HASH_NOLOCK, HASH_WRITE);
}
/* No Free Page Found - have to allocate a new page */
bit = metap->hashm_spares[splitnum];
metap->hashm_spares[splitnum]++;
/* Check if we need to allocate a new bitmap page */
if (last_bit == (uint32) (BMPGSZ_BIT(metap) - 1))
{
/*
* We create the new bitmap page with all pages marked "in use".
* Actually two pages in the new bitmap's range will exist
* immediately: the bitmap page itself, and the following page
* which is the one we return to the caller. Both of these are
* correctly marked "in use". Subsequent pages do not exist yet,
* but it is convenient to pre-mark them as "in use" too.
*/
_hash_initbitmap(rel, metap, bitno_to_blkno(metap, bit));
bit = metap->hashm_spares[splitnum];
metap->hashm_spares[splitnum]++;
}
else
{
/*
* Nothing to do here; since the page was past the last used page,
* we know its bitmap bit was preinitialized to "in use".
*/
}
/* Calculate address of the new overflow page */
blkno = bitno_to_blkno(metap, bit);
/*
* Adjust hashm_firstfree to avoid redundant searches. But don't risk
* changing it if someone moved it while we were searching bitmap
* pages.
*/
if (metap->hashm_firstfree == orig_firstfree)
metap->hashm_firstfree = bit + 1;
/* Write updated metapage and release lock, but not pin */
_hash_chgbufaccess(rel, metabuf, HASH_WRITE, HASH_NOLOCK);
return blkno;
found:
/* convert bit to bit number within page */
bit += _hash_firstfreebit(freep[j]);
/* mark page "in use" in the bitmap */
SETBIT(freep, bit);
_hash_wrtbuf(rel, mapbuf);
/* Reacquire exclusive lock on the meta page */
_hash_chgbufaccess(rel, metabuf, HASH_NOLOCK, HASH_WRITE);
/* convert bit to absolute bit number */
bit += (i << BMPG_SHIFT(metap));
/* Calculate address of the new overflow page */
blkno = bitno_to_blkno(metap, bit);
/*
* Adjust hashm_firstfree to avoid redundant searches. But don't risk
* changing it if someone moved it while we were searching bitmap
* pages.
*/
if (metap->hashm_firstfree == orig_firstfree)
{
metap->hashm_firstfree = bit + 1;
/* Write updated metapage and release lock, but not pin */
_hash_chgbufaccess(rel, metabuf, HASH_WRITE, HASH_NOLOCK);
}
else
{
/* We didn't change the metapage, so no need to write */
_hash_chgbufaccess(rel, metabuf, HASH_READ, HASH_NOLOCK);
}
return blkno;
}
/*
* _hash_firstfreebit()
*
* Return the number of the first bit that is not set in the word 'map'.
*/
static uint32
_hash_firstfreebit(uint32 map)
{
uint32 i,
mask;
mask = 0x1;
for (i = 0; i < BITS_PER_MAP; i++)
{
if (!(mask & map))
return i;
mask <<= 1;
}
elog(ERROR, "firstfreebit found no free bit");
return 0; /* keep compiler quiet */
}
/*
* _hash_freeovflpage() -
*
* Remove this overflow page from its bucket's chain, and mark the page as
* free. On entry, ovflbuf is write-locked; it is released before exiting.
*
* Returns the block number of the page that followed the given page
* in the bucket, or InvalidBlockNumber if no following page.
*
* NB: caller must not hold lock on metapage, nor on either page that's
* adjacent in the bucket chain. The caller had better hold exclusive lock
* on the bucket, too.
*/
BlockNumber
_hash_freeovflpage(Relation rel, Buffer ovflbuf)
{
HashMetaPage metap;
Buffer metabuf;
Buffer mapbuf;
BlockNumber ovflblkno;
BlockNumber prevblkno;
BlockNumber blkno;
BlockNumber nextblkno;
HashPageOpaque ovflopaque;
Page ovflpage;
Page mappage;
uint32 *freep;
uint32 ovflbitno;
int32 bitmappage,
bitmapbit;
Bucket bucket;
/* Get information from the doomed page */
ovflblkno = BufferGetBlockNumber(ovflbuf);
ovflpage = BufferGetPage(ovflbuf);
_hash_checkpage(rel, ovflpage, LH_OVERFLOW_PAGE);
ovflopaque = (HashPageOpaque) PageGetSpecialPointer(ovflpage);
nextblkno = ovflopaque->hasho_nextblkno;
prevblkno = ovflopaque->hasho_prevblkno;
bucket = ovflopaque->hasho_bucket;
/* Zero the page for debugging's sake; then write and release it */
MemSet(ovflpage, 0, BufferGetPageSize(ovflbuf));
_hash_wrtbuf(rel, ovflbuf);
/*
* Fix up the bucket chain. this is a doubly-linked list, so we must
* fix up the bucket chain members behind and ahead of the overflow
* page being deleted. No concurrency issues since we hold exclusive
* lock on the entire bucket.
*/
if (BlockNumberIsValid(prevblkno))
{
Buffer prevbuf = _hash_getbuf(rel, prevblkno, HASH_WRITE);
Page prevpage = BufferGetPage(prevbuf);
HashPageOpaque prevopaque = (HashPageOpaque) PageGetSpecialPointer(prevpage);
_hash_checkpage(rel, prevpage, LH_BUCKET_PAGE | LH_OVERFLOW_PAGE);
Assert(prevopaque->hasho_bucket == bucket);
prevopaque->hasho_nextblkno = nextblkno;
_hash_wrtbuf(rel, prevbuf);
}
if (BlockNumberIsValid(nextblkno))
{
Buffer nextbuf = _hash_getbuf(rel, nextblkno, HASH_WRITE);
Page nextpage = BufferGetPage(nextbuf);
HashPageOpaque nextopaque = (HashPageOpaque) PageGetSpecialPointer(nextpage);
_hash_checkpage(rel, nextpage, LH_OVERFLOW_PAGE);
Assert(nextopaque->hasho_bucket == bucket);
nextopaque->hasho_prevblkno = prevblkno;
_hash_wrtbuf(rel, nextbuf);
}
/* Read the metapage so we can determine which bitmap page to use */
metabuf = _hash_getbuf(rel, HASH_METAPAGE, HASH_READ);
metap = (HashMetaPage) BufferGetPage(metabuf);
_hash_checkpage(rel, (Page) metap, LH_META_PAGE);
/* Identify which bit to set */
ovflbitno = blkno_to_bitno(metap, ovflblkno);
bitmappage = ovflbitno >> BMPG_SHIFT(metap);
bitmapbit = ovflbitno & BMPG_MASK(metap);
if (bitmappage >= metap->hashm_nmaps)
elog(ERROR, "invalid overflow bit number %u", ovflbitno);
blkno = metap->hashm_mapp[bitmappage];
/* Release metapage lock while we access the bitmap page */
_hash_chgbufaccess(rel, metabuf, HASH_READ, HASH_NOLOCK);
/* Clear the bitmap bit to indicate that this overflow page is free */
mapbuf = _hash_getbuf(rel, blkno, HASH_WRITE);
mappage = BufferGetPage(mapbuf);
_hash_checkpage(rel, mappage, LH_BITMAP_PAGE);
freep = HashPageGetBitmap(mappage);
Assert(ISSET(freep, bitmapbit));
CLRBIT(freep, bitmapbit);
_hash_wrtbuf(rel, mapbuf);
/* Get write-lock on metapage to update firstfree */
_hash_chgbufaccess(rel, metabuf, HASH_NOLOCK, HASH_WRITE);
/* if this is now the first free page, update hashm_firstfree */
if (ovflbitno < metap->hashm_firstfree)
{
metap->hashm_firstfree = ovflbitno;
_hash_wrtbuf(rel, metabuf);
}
else
{
/* no need to change metapage */
_hash_relbuf(rel, metabuf);
}
return nextblkno;
}
/*
* _hash_initbitmap()
*
* Initialize a new bitmap page. The metapage has a write-lock upon
* entering the function, and must be written by caller after return.
*
* 'blkno' is the block number of the new bitmap page.
*
* All bits in the new bitmap page are set to "1", indicating "in use".
*/
void
_hash_initbitmap(Relation rel, HashMetaPage metap, BlockNumber blkno)
{
Buffer buf;
Page pg;
HashPageOpaque op;
uint32 *freep;
/*
* It is okay to write-lock the new bitmap page while holding metapage
* write lock, because no one else could be contending for the new
* page.
*
* There is some loss of concurrency in possibly doing I/O for the new
* page while holding the metapage lock, but this path is taken so
* seldom that it's not worth worrying about.
*/
buf = _hash_getbuf(rel, blkno, HASH_WRITE);
pg = BufferGetPage(buf);
/* initialize the page */
_hash_pageinit(pg, BufferGetPageSize(buf));
op = (HashPageOpaque) PageGetSpecialPointer(pg);
op->hasho_prevblkno = InvalidBlockNumber;
op->hasho_nextblkno = InvalidBlockNumber;
op->hasho_bucket = -1;
op->hasho_flag = LH_BITMAP_PAGE;
op->hasho_filler = HASHO_FILL;
/* set all of the bits to 1 */
freep = HashPageGetBitmap(pg);
MemSet((char *) freep, 0xFF, BMPGSZ_BYTE(metap));
/* write out the new bitmap page (releasing write lock and pin) */
_hash_wrtbuf(rel, buf);
/* add the new bitmap page to the metapage's list of bitmaps */
/* metapage already has a write lock */
if (metap->hashm_nmaps >= HASH_MAX_BITMAPS)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("out of overflow pages in hash index \"%s\"",
RelationGetRelationName(rel))));
metap->hashm_mapp[metap->hashm_nmaps] = blkno;
metap->hashm_nmaps++;
}
/*
* _hash_squeezebucket(rel, bucket)
*
* Try to squeeze the tuples onto pages occurring earlier in the
* bucket chain in an attempt to free overflow pages. When we start
* the "squeezing", the page from which we start taking tuples (the
* "read" page) is the last bucket in the bucket chain and the page
* onto which we start squeezing tuples (the "write" page) is the
* first page in the bucket chain. The read page works backward and
* the write page works forward; the procedure terminates when the
* read page and write page are the same page.
*
* At completion of this procedure, it is guaranteed that all pages in
* the bucket are nonempty, unless the bucket is totally empty (in
* which case all overflow pages will be freed). The original implementation
* required that to be true on entry as well, but it's a lot easier for
* callers to leave empty overflow pages and let this guy clean it up.
*
* Caller must hold exclusive lock on the target bucket. This allows
* us to safely lock multiple pages in the bucket.
*/
void
_hash_squeezebucket(Relation rel,
Bucket bucket,
BlockNumber bucket_blkno)
{
Buffer wbuf;
Buffer rbuf = 0;
BlockNumber wblkno;
BlockNumber rblkno;
Page wpage;
Page rpage;
HashPageOpaque wopaque;
HashPageOpaque ropaque;
OffsetNumber woffnum;
OffsetNumber roffnum;
HashItem hitem;
Size itemsz;
/*
* start squeezing into the base bucket page.
*/
wblkno = bucket_blkno;
wbuf = _hash_getbuf(rel, wblkno, HASH_WRITE);
wpage = BufferGetPage(wbuf);
_hash_checkpage(rel, wpage, LH_BUCKET_PAGE);
wopaque = (HashPageOpaque) PageGetSpecialPointer(wpage);
/*
* if there aren't any overflow pages, there's nothing to squeeze.
*/
if (!BlockNumberIsValid(wopaque->hasho_nextblkno))
{
_hash_relbuf(rel, wbuf);
return;
}
/*
* find the last page in the bucket chain by starting at the base
* bucket page and working forward.
*/
ropaque = wopaque;
do
{
rblkno = ropaque->hasho_nextblkno;
if (ropaque != wopaque)
_hash_relbuf(rel, rbuf);
rbuf = _hash_getbuf(rel, rblkno, HASH_WRITE);
rpage = BufferGetPage(rbuf);
_hash_checkpage(rel, rpage, LH_OVERFLOW_PAGE);
ropaque = (HashPageOpaque) PageGetSpecialPointer(rpage);
Assert(ropaque->hasho_bucket == bucket);
} while (BlockNumberIsValid(ropaque->hasho_nextblkno));
/*
* squeeze the tuples.
*/
roffnum = FirstOffsetNumber;
for (;;)
{
/* this test is needed in case page is empty on entry */
if (roffnum <= PageGetMaxOffsetNumber(rpage))
{
hitem = (HashItem) PageGetItem(rpage,
PageGetItemId(rpage, roffnum));
itemsz = IndexTupleDSize(hitem->hash_itup)
+ (sizeof(HashItemData) - sizeof(IndexTupleData));
itemsz = MAXALIGN(itemsz);
/*
* Walk up the bucket chain, looking for a page big enough for
* this item. Exit if we reach the read page.
*/
while (PageGetFreeSpace(wpage) < itemsz)
{
Assert(!PageIsEmpty(wpage));
wblkno = wopaque->hasho_nextblkno;
Assert(BlockNumberIsValid(wblkno));
_hash_wrtbuf(rel, wbuf);
if (rblkno == wblkno)
{
/* wbuf is already released */
_hash_wrtbuf(rel, rbuf);
return;
}
wbuf = _hash_getbuf(rel, wblkno, HASH_WRITE);
wpage = BufferGetPage(wbuf);
_hash_checkpage(rel, wpage, LH_OVERFLOW_PAGE);
wopaque = (HashPageOpaque) PageGetSpecialPointer(wpage);
Assert(wopaque->hasho_bucket == bucket);
}
/*
* we have found room so insert on the "write" page.
*/
woffnum = OffsetNumberNext(PageGetMaxOffsetNumber(wpage));
if (PageAddItem(wpage, (Item) hitem, itemsz, woffnum, LP_USED)
== InvalidOffsetNumber)
elog(ERROR, "failed to add index item to \"%s\"",
RelationGetRelationName(rel));
/*
* delete the tuple from the "read" page. PageIndexTupleDelete
* repacks the ItemId array, so 'roffnum' will be "advanced"
* to the "next" ItemId.
*/
PageIndexTupleDelete(rpage, roffnum);
}
/*
* if the "read" page is now empty because of the deletion (or
* because it was empty when we got to it), free it.
*
* Tricky point here: if our read and write pages are adjacent in the
* bucket chain, our write lock on wbuf will conflict with
* _hash_freeovflpage's attempt to update the sibling links of the
* removed page. However, in that case we are done anyway, so we
* can simply drop the write lock before calling
* _hash_freeovflpage.
*/
if (PageIsEmpty(rpage))
{
rblkno = ropaque->hasho_prevblkno;
Assert(BlockNumberIsValid(rblkno));
/* are we freeing the page adjacent to wbuf? */
if (rblkno == wblkno)
{
/* yes, so release wbuf lock first */
_hash_wrtbuf(rel, wbuf);
/* free this overflow page (releases rbuf) */
_hash_freeovflpage(rel, rbuf);
/* done */
return;
}
/* free this overflow page, then get the previous one */
_hash_freeovflpage(rel, rbuf);
rbuf = _hash_getbuf(rel, rblkno, HASH_WRITE);
rpage = BufferGetPage(rbuf);
_hash_checkpage(rel, rpage, LH_OVERFLOW_PAGE);
ropaque = (HashPageOpaque) PageGetSpecialPointer(rpage);
Assert(ropaque->hasho_bucket == bucket);
roffnum = FirstOffsetNumber;
}
}
/* NOTREACHED */
}