postgresql/src/backend/parser/parse_coerce.c

670 lines
15 KiB
C

/*-------------------------------------------------------------------------
*
* parse_coerce.c
* handle type coercions/conversions for parser
*
* Portions Copyright (c) 1996-2000, PostgreSQL, Inc
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/parser/parse_coerce.c,v 2.45 2000/07/05 23:11:32 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/pg_proc.h"
#include "optimizer/clauses.h"
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "parser/parse_func.h"
#include "parser/parse_type.h"
#include "utils/builtins.h"
#include "utils/syscache.h"
Oid DemoteType(Oid inType);
Oid PromoteTypeToNext(Oid inType);
static Oid PreferredType(CATEGORY category, Oid type);
/* coerce_type()
* Convert a function argument to a different type.
*/
Node *
coerce_type(ParseState *pstate, Node *node, Oid inputTypeId,
Oid targetTypeId, int32 atttypmod)
{
Node *result;
if (targetTypeId == inputTypeId ||
targetTypeId == InvalidOid ||
node == NULL)
{
/* no conversion needed */
result = node;
}
else if (inputTypeId == UNKNOWNOID && IsA(node, Const))
{
/*
* Input is a string constant with previously undetermined type.
* Apply the target type's typinput function to it to produce a
* constant of the target type.
*
* NOTE: this case cannot be folded together with the other
* constant-input case, since the typinput function does not
* necessarily behave the same as a type conversion function. For
* example, int4's typinput function will reject "1.2", whereas
* float-to-int type conversion will round to integer.
*
* XXX if the typinput function is not cachable, we really ought to
* postpone evaluation of the function call until runtime. But
* there is no way to represent a typinput function call as an
* expression tree, because C-string values are not Datums.
*/
Const *con = (Const *) node;
Const *newcon = makeNode(Const);
Type targetType = typeidType(targetTypeId);
newcon->consttype = targetTypeId;
newcon->constlen = typeLen(targetType);
newcon->constbyval = typeByVal(targetType);
newcon->constisnull = con->constisnull;
newcon->constisset = false;
if (!con->constisnull)
{
/* We know the source constant is really of type 'text' */
char *val = DatumGetCString(DirectFunctionCall1(textout,
con->constvalue));
newcon->constvalue = stringTypeDatum(targetType, val, atttypmod);
pfree(val);
}
result = (Node *) newcon;
}
else if (IS_BINARY_COMPATIBLE(inputTypeId, targetTypeId))
{
/*
* We don't really need to do a conversion, but we do need to
* attach a RelabelType node so that the expression will be seen
* to have the intended type when inspected by higher-level code.
*/
RelabelType *relabel = makeNode(RelabelType);
relabel->arg = node;
relabel->resulttype = targetTypeId;
/*
* XXX could we label result with exprTypmod(node) instead of
* default -1 typmod, to save a possible length-coercion later?
* Would work if both types have same interpretation of typmod,
* which is likely but not certain.
*/
relabel->resulttypmod = -1;
result = (Node *) relabel;
}
else if (typeInheritsFrom(inputTypeId, targetTypeId))
{
/* Input class type is a subclass of target, so nothing to do */
result = node;
}
else
{
/*
* Otherwise, find the appropriate type conversion function
* (caller should have determined that there is one), and generate
* an expression tree representing run-time application of the
* conversion function.
*/
FuncCall *n = makeNode(FuncCall);
Type targetType = typeidType(targetTypeId);
n->funcname = typeTypeName(targetType);
n->args = lcons(node, NIL);
n->agg_star = false;
n->agg_distinct = false;
result = transformExpr(pstate, (Node *) n, EXPR_COLUMN_FIRST);
/* safety check that we got the right thing */
if (exprType(result) != targetTypeId)
elog(ERROR, "coerce_type: conversion function %s produced %s",
typeTypeName(targetType),
typeidTypeName(exprType(result)));
/*
* If the input is a constant, apply the type conversion function
* now instead of delaying to runtime. (We could, of course, just
* leave this to be done during planning/optimization; but it's a
* very frequent special case, and we save cycles in the rewriter
* if we fold the expression now.)
*
* Note that no folding will occur if the conversion function is not
* marked 'iscachable'.
*
* HACK: if constant is NULL, don't fold it here. This is needed by
* make_subplan(), which calls this routine on placeholder Const
* nodes that mustn't be collapsed. (It'd be a lot cleaner to
* make a separate node type for that purpose...)
*/
if (IsA(node, Const) &&!((Const *) node)->constisnull)
result = eval_const_expressions(result);
}
return result;
}
/* can_coerce_type()
* Can input_typeids be coerced to func_typeids?
*
* There are a few types which are known apriori to be convertible.
* We will check for those cases first, and then look for possible
* conversion functions.
*
* Notes:
* This uses the same mechanism as the CAST() SQL construct in gram.y.
* We should also check the function return type on candidate conversion
* routines just to be safe but we do not do that yet...
* We need to have a zero-filled OID array here, otherwise the cache lookup fails.
* - thomas 1998-03-31
*/
bool
can_coerce_type(int nargs, Oid *input_typeids, Oid *func_typeids)
{
int i;
HeapTuple ftup;
Form_pg_proc pform;
Oid oid_array[FUNC_MAX_ARGS];
/* run through argument list... */
for (i = 0; i < nargs; i++)
{
Oid inputTypeId = input_typeids[i];
Oid targetTypeId = func_typeids[i];
/* no problem if same type */
if (inputTypeId == targetTypeId)
continue;
/*
* one of the known-good transparent conversions? then drop
* through...
*/
if (IS_BINARY_COMPATIBLE(inputTypeId, targetTypeId))
continue;
/* don't know what to do for the output type? then quit... */
if (targetTypeId == InvalidOid)
return false;
/* don't know what to do for the input type? then quit... */
if (inputTypeId == InvalidOid)
return false;
/*
* If input is an untyped string constant, assume we can convert
* it to anything except a class type.
*/
if (inputTypeId == UNKNOWNOID)
{
if (ISCOMPLEX(targetTypeId))
return false;
continue;
}
/*
* If input is a class type that inherits from target, no problem
*/
if (typeInheritsFrom(inputTypeId, targetTypeId))
continue;
/*
* Else, try for explicit conversion using functions: look for a
* single-argument function named with the target type name and
* accepting the source type.
*/
MemSet(oid_array, 0, FUNC_MAX_ARGS * sizeof(Oid));
oid_array[0] = inputTypeId;
ftup = SearchSysCacheTuple(PROCNAME,
PointerGetDatum(typeidTypeName(targetTypeId)),
Int32GetDatum(1),
PointerGetDatum(oid_array),
0);
if (!HeapTupleIsValid(ftup))
return false;
/* Make sure the function's result type is as expected, too */
pform = (Form_pg_proc) GETSTRUCT(ftup);
if (pform->prorettype != targetTypeId)
return false;
}
return true;
}
/* coerce_type_typmod()
* Force a value to a particular typmod, if meaningful and possible.
*
* This is applied to values that are going to be stored in a relation
* (where we have an atttypmod for the column) as well as values being
* explicitly CASTed (where the typmod comes from the target type spec).
*
* The caller must have already ensured that the value is of the correct
* type, typically by applying coerce_type.
*
* If the target column type possesses a function named for the type
* and having parameter signature (columntype, int4), we assume that
* the type requires coercion to its own length and that the said
* function should be invoked to do that.
*
* "bpchar" (ie, char(N)) and "numeric" are examples of such types.
*/
Node *
coerce_type_typmod(ParseState *pstate, Node *node,
Oid targetTypeId, int32 atttypmod)
{
char *funcname;
Oid oid_array[FUNC_MAX_ARGS];
HeapTuple ftup;
/*
* We assume that only typmod values greater than 0 indicate a forced
* conversion is necessary.
*/
if (atttypmod <= 0 ||
atttypmod == exprTypmod(node))
return node;
funcname = typeidTypeName(targetTypeId);
MemSet(oid_array, 0, FUNC_MAX_ARGS * sizeof(Oid));
oid_array[0] = targetTypeId;
oid_array[1] = INT4OID;
/* attempt to find with arguments exactly as specified... */
ftup = SearchSysCacheTuple(PROCNAME,
PointerGetDatum(funcname),
Int32GetDatum(2),
PointerGetDatum(oid_array),
0);
if (HeapTupleIsValid(ftup))
{
A_Const *cons = makeNode(A_Const);
FuncCall *func = makeNode(FuncCall);
cons->val.type = T_Integer;
cons->val.val.ival = atttypmod;
func->funcname = funcname;
func->args = lappend(lcons(node, NIL), cons);
func->agg_star = false;
func->agg_distinct = false;
node = transformExpr(pstate, (Node *) func, EXPR_COLUMN_FIRST);
}
return node;
}
/* TypeCategory()
* Assign a category to the specified OID.
*/
CATEGORY
TypeCategory(Oid inType)
{
CATEGORY result;
switch (inType)
{
case (BOOLOID):
result = BOOLEAN_TYPE;
break;
case (CHAROID):
case (NAMEOID):
case (BPCHAROID):
case (VARCHAROID):
case (TEXTOID):
case (LZTEXTOID):
result = STRING_TYPE;
break;
/*
* Kluge added 4/8/00 by tgl: treat the new BIT types as
* strings, so that 'unknown' || 'unknown' continues to
* resolve as textcat rather than generating an
* ambiguous-operator error. Probably BIT types should have
* their own type category, or maybe they should be numeric?
* Need a better way of handling unknown types first.
*/
case (ZPBITOID):
case (VARBITOID):
result = STRING_TYPE;
break;
case (OIDOID):
case (REGPROCOID):
case (INT2OID):
case (INT4OID):
case (INT8OID):
case (FLOAT4OID):
case (FLOAT8OID):
case (NUMERICOID):
case (CASHOID):
result = NUMERIC_TYPE;
break;
case (DATEOID):
case (TIMEOID):
case (TIMETZOID):
case (ABSTIMEOID):
case (TIMESTAMPOID):
result = DATETIME_TYPE;
break;
case (RELTIMEOID):
case (TINTERVALOID):
case (INTERVALOID):
result = TIMESPAN_TYPE;
break;
case (POINTOID):
case (LSEGOID):
case (PATHOID):
case (BOXOID):
case (POLYGONOID):
case (LINEOID):
case (CIRCLEOID):
result = GEOMETRIC_TYPE;
break;
case (INETOID):
case (CIDROID):
result = NETWORK_TYPE;
break;
case (UNKNOWNOID):
case (InvalidOid):
result = UNKNOWN_TYPE;
break;
default:
result = USER_TYPE;
break;
}
return result;
} /* TypeCategory() */
/* IsPreferredType()
* Check if this type is a preferred type.
*/
bool
IsPreferredType(CATEGORY category, Oid type)
{
return type == PreferredType(category, type);
} /* IsPreferredType() */
/* PreferredType()
* Return the preferred type OID for the specified category.
*/
static Oid
PreferredType(CATEGORY category, Oid type)
{
Oid result;
switch (category)
{
case (BOOLEAN_TYPE):
result = BOOLOID;
break;
case (STRING_TYPE):
result = TEXTOID;
break;
case (NUMERIC_TYPE):
if (type == OIDOID)
result = OIDOID;
else if (type == NUMERICOID)
result = NUMERICOID;
else
result = FLOAT8OID;
break;
case (DATETIME_TYPE):
result = TIMESTAMPOID;
break;
case (TIMESPAN_TYPE):
result = INTERVALOID;
break;
case (NETWORK_TYPE):
result = INETOID;
break;
case (GEOMETRIC_TYPE):
case (USER_TYPE):
result = type;
break;
default:
result = UNKNOWNOID;
break;
}
return result;
} /* PreferredType() */
#ifdef NOT_USED
Oid
PromoteTypeToNext(Oid inType)
{
Oid result;
switch (inType)
{
case (CHAROID):
case (BPCHAROID):
result = VARCHAROID;
break;
case (VARCHAROID):
result = TEXTOID;
break;
case (INT2OID):
case (CASHOID):
result = INT4OID;
break;
case (INT4OID):
case (INT8OID):
case (FLOAT4OID):
result = FLOAT8OID;
break;
case (NUMERICOID):
result = NUMERICOID;
break;
case (DATEOID):
case (ABSTIMEOID):
result = TIMESTAMPOID;
break;
case (TIMEOID):
case (RELTIMEOID):
result = INTERVALOID;
break;
case (BOOLOID):
case (TEXTOID):
case (FLOAT8OID):
case (TIMESTAMPOID):
case (INTERVALOID):
default:
result = inType;
break;
}
return result;
} /* PromoteTypeToNext() */
Oid
DemoteType(Oid inType)
{
Oid result;
switch (inType)
{
case (FLOAT4OID):
case (FLOAT8OID):
result = INT4OID;
break;
default:
result = inType;
break;
}
return result;
} /* DemoteType() */
Oid
PromoteLesserType(Oid inType1, Oid inType2, Oid *newType1, Oid *newType2)
{
Oid result;
if (inType1 == inType2)
{
result = PromoteTypeToNext(inType1);
inType1 = result;
*arg2 = result;
return result;
}
kind1 = ClassifyType(inType1);
kind2 = ClassifyType(*arg2);
if (kind1 != kind2)
{
*newType1 = inType1;
*newType2 = inType2;
result = InvalidOid;
}
isBuiltIn1 = IS_BUILTIN_TYPE(inType1);
isBuiltIn2 = IS_BUILTIN_TYPE(*arg2);
if (isBuiltIn1 && isBuiltIn2)
{
switch (*arg1)
{
case (CHAROID):
switch (*arg2)
{
case (BPCHAROID):
case (VARCHAROID):
case (TEXTOID):
case (INT2OID):
case (INT4OID):
case (FLOAT4OID):
case (FLOAT8OID):
case (CASHOID):
case (POINTOID):
case (LSEGOID):
case (LINEOID):
case (BOXOID):
case (PATHOID):
case (CIRCLEOID):
case (POLYGONOID):
case (InvalidOid):
case (UNKNOWNOID):
case (BOOLOID):
default:
*arg1 = InvalidOid;
*arg2 = InvalidOid;
result = InvalidOid;
}
}
}
else if (isBuiltIn1 && !isBuiltIn2)
{
if ((promotedType = PromoteBuiltInType(*arg1)) != *arg1)
{
*arg1 = promotedType;
return promotedType;
}
else if (CanCoerceType(*arg1, *arg2))
{
*arg1 = *arg2;
return *arg2;
}
}
else if (!isBuiltIn1 && isBuiltIn2)
{
if ((promotedType = PromoteBuiltInType(*arg2)) != *arg2)
{
*arg2 = promotedType;
return promotedType;
}
else if (CanCoerceType(*arg2, *arg1))
{
*arg2 = *arg1;
return *arg1;
}
}
if (*arg2 == InvalidOid)
return InvalidOid;
switch (*arg1)
{
case (CHAROID):
switch (*arg2)
{
case (BPCHAROID):
case (VARCHAROID):
case (TEXTOID):
case (INT2OID):
case (INT4OID):
case (FLOAT4OID):
case (FLOAT8OID):
case (CASHOID):
case (POINTOID):
case (LSEGOID):
case (LINEOID):
case (BOXOID):
case (PATHOID):
case (CIRCLEOID):
case (POLYGONOID):
case (InvalidOid):
case (UNKNOWNOID):
case (BOOLOID):
default:
*arg1 = InvalidOid;
*arg2 = InvalidOid;
result = InvalidOid;
}
}
}
#endif