postgresql/src/backend/regex/regc_nfa.c

3825 lines
98 KiB
C

/*
* NFA utilities.
* This file is #included by regcomp.c.
*
* Copyright (c) 1998, 1999 Henry Spencer. All rights reserved.
*
* Development of this software was funded, in part, by Cray Research Inc.,
* UUNET Communications Services Inc., Sun Microsystems Inc., and Scriptics
* Corporation, none of whom are responsible for the results. The author
* thanks all of them.
*
* Redistribution and use in source and binary forms -- with or without
* modification -- are permitted for any purpose, provided that
* redistributions in source form retain this entire copyright notice and
* indicate the origin and nature of any modifications.
*
* I'd appreciate being given credit for this package in the documentation
* of software which uses it, but that is not a requirement.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
* HENRY SPENCER BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* src/backend/regex/regc_nfa.c
*
*
* One or two things that technically ought to be in here
* are actually in color.c, thanks to some incestuous relationships in
* the color chains.
*/
#define NISERR() VISERR(nfa->v)
#define NERR(e) VERR(nfa->v, (e))
/*
* newnfa - set up an NFA
*/
static struct nfa * /* the NFA, or NULL */
newnfa(struct vars *v,
struct colormap *cm,
struct nfa *parent) /* NULL if primary NFA */
{
struct nfa *nfa;
nfa = (struct nfa *) MALLOC(sizeof(struct nfa));
if (nfa == NULL)
{
ERR(REG_ESPACE);
return NULL;
}
/* Make the NFA minimally valid, so freenfa() will behave sanely */
nfa->states = NULL;
nfa->slast = NULL;
nfa->freestates = NULL;
nfa->freearcs = NULL;
nfa->lastsb = NULL;
nfa->lastab = NULL;
nfa->lastsbused = 0;
nfa->lastabused = 0;
nfa->nstates = 0;
nfa->cm = cm;
nfa->v = v;
nfa->bos[0] = nfa->bos[1] = COLORLESS;
nfa->eos[0] = nfa->eos[1] = COLORLESS;
nfa->flags = 0;
nfa->minmatchall = nfa->maxmatchall = -1;
nfa->parent = parent; /* Precedes newfstate so parent is valid. */
/* Create required infrastructure */
nfa->post = newfstate(nfa, '@'); /* number 0 */
nfa->pre = newfstate(nfa, '>'); /* number 1 */
nfa->init = newstate(nfa); /* may become invalid later */
nfa->final = newstate(nfa);
if (ISERR())
{
freenfa(nfa);
return NULL;
}
rainbow(nfa, nfa->cm, PLAIN, COLORLESS, nfa->pre, nfa->init);
newarc(nfa, '^', 1, nfa->pre, nfa->init);
newarc(nfa, '^', 0, nfa->pre, nfa->init);
rainbow(nfa, nfa->cm, PLAIN, COLORLESS, nfa->final, nfa->post);
newarc(nfa, '$', 1, nfa->final, nfa->post);
newarc(nfa, '$', 0, nfa->final, nfa->post);
if (ISERR())
{
freenfa(nfa);
return NULL;
}
return nfa;
}
/*
* freenfa - free an entire NFA
*/
static void
freenfa(struct nfa *nfa)
{
struct statebatch *sb;
struct statebatch *sbnext;
struct arcbatch *ab;
struct arcbatch *abnext;
for (sb = nfa->lastsb; sb != NULL; sb = sbnext)
{
sbnext = sb->next;
nfa->v->spaceused -= STATEBATCHSIZE(sb->nstates);
FREE(sb);
}
nfa->lastsb = NULL;
for (ab = nfa->lastab; ab != NULL; ab = abnext)
{
abnext = ab->next;
nfa->v->spaceused -= ARCBATCHSIZE(ab->narcs);
FREE(ab);
}
nfa->lastab = NULL;
nfa->nstates = -1;
FREE(nfa);
}
/*
* newstate - allocate an NFA state, with zero flag value
*/
static struct state * /* NULL on error */
newstate(struct nfa *nfa)
{
struct state *s;
/*
* This is a handy place to check for operation cancel during regex
* compilation, since no code path will go very long without making a new
* state or arc.
*/
if (CANCEL_REQUESTED(nfa->v->re))
{
NERR(REG_CANCEL);
return NULL;
}
/* first, recycle anything that's on the freelist */
if (nfa->freestates != NULL)
{
s = nfa->freestates;
nfa->freestates = s->next;
}
/* otherwise, is there anything left in the last statebatch? */
else if (nfa->lastsb != NULL && nfa->lastsbused < nfa->lastsb->nstates)
{
s = &nfa->lastsb->s[nfa->lastsbused++];
}
/* otherwise, need to allocate a new statebatch */
else
{
struct statebatch *newSb;
size_t nstates;
if (nfa->v->spaceused >= REG_MAX_COMPILE_SPACE)
{
NERR(REG_ETOOBIG);
return NULL;
}
nstates = (nfa->lastsb != NULL) ? nfa->lastsb->nstates * 2 : FIRSTSBSIZE;
if (nstates > MAXSBSIZE)
nstates = MAXSBSIZE;
newSb = (struct statebatch *) MALLOC(STATEBATCHSIZE(nstates));
if (newSb == NULL)
{
NERR(REG_ESPACE);
return NULL;
}
nfa->v->spaceused += STATEBATCHSIZE(nstates);
newSb->nstates = nstates;
newSb->next = nfa->lastsb;
nfa->lastsb = newSb;
nfa->lastsbused = 1;
s = &newSb->s[0];
}
assert(nfa->nstates >= 0);
s->no = nfa->nstates++;
s->flag = 0;
if (nfa->states == NULL)
nfa->states = s;
s->nins = 0;
s->ins = NULL;
s->nouts = 0;
s->outs = NULL;
s->tmp = NULL;
s->next = NULL;
if (nfa->slast != NULL)
{
assert(nfa->slast->next == NULL);
nfa->slast->next = s;
}
s->prev = nfa->slast;
nfa->slast = s;
return s;
}
/*
* newfstate - allocate an NFA state with a specified flag value
*/
static struct state * /* NULL on error */
newfstate(struct nfa *nfa, int flag)
{
struct state *s;
s = newstate(nfa);
if (s != NULL)
s->flag = (char) flag;
return s;
}
/*
* dropstate - delete a state's inarcs and outarcs and free it
*/
static void
dropstate(struct nfa *nfa,
struct state *s)
{
struct arc *a;
while ((a = s->ins) != NULL)
freearc(nfa, a);
while ((a = s->outs) != NULL)
freearc(nfa, a);
freestate(nfa, s);
}
/*
* freestate - free a state, which has no in-arcs or out-arcs
*/
static void
freestate(struct nfa *nfa,
struct state *s)
{
assert(s != NULL);
assert(s->nins == 0 && s->nouts == 0);
s->no = FREESTATE;
s->flag = 0;
if (s->next != NULL)
s->next->prev = s->prev;
else
{
assert(s == nfa->slast);
nfa->slast = s->prev;
}
if (s->prev != NULL)
s->prev->next = s->next;
else
{
assert(s == nfa->states);
nfa->states = s->next;
}
s->prev = NULL;
s->next = nfa->freestates; /* don't delete it, put it on the free list */
nfa->freestates = s;
}
/*
* newarc - set up a new arc within an NFA
*
* This function checks to make sure that no duplicate arcs are created.
* In general we never want duplicates.
*
* However: in principle, a RAINBOW arc is redundant with any plain arc
* (unless that arc is for a pseudocolor). But we don't try to recognize
* that redundancy, either here or in allied operations such as moveins().
* The pseudocolor consideration makes that more costly than it seems worth.
*/
static void
newarc(struct nfa *nfa,
int t,
color co,
struct state *from,
struct state *to)
{
struct arc *a;
assert(from != NULL && to != NULL);
/*
* This is a handy place to check for operation cancel during regex
* compilation, since no code path will go very long without making a new
* state or arc.
*/
if (CANCEL_REQUESTED(nfa->v->re))
{
NERR(REG_CANCEL);
return;
}
/* check for duplicate arc, using whichever chain is shorter */
if (from->nouts <= to->nins)
{
for (a = from->outs; a != NULL; a = a->outchain)
if (a->to == to && a->co == co && a->type == t)
return;
}
else
{
for (a = to->ins; a != NULL; a = a->inchain)
if (a->from == from && a->co == co && a->type == t)
return;
}
/* no dup, so create the arc */
createarc(nfa, t, co, from, to);
}
/*
* createarc - create a new arc within an NFA
*
* This function must *only* be used after verifying that there is no existing
* identical arc (same type/color/from/to).
*/
static void
createarc(struct nfa *nfa,
int t,
color co,
struct state *from,
struct state *to)
{
struct arc *a;
a = allocarc(nfa);
if (NISERR())
return;
assert(a != NULL);
a->type = t;
a->co = co;
a->to = to;
a->from = from;
/*
* Put the new arc on the beginning, not the end, of the chains; it's
* simpler here, and freearc() is the same cost either way. See also the
* logic in moveins() and its cohorts, as well as fixempties().
*/
a->inchain = to->ins;
a->inchainRev = NULL;
if (to->ins)
to->ins->inchainRev = a;
to->ins = a;
a->outchain = from->outs;
a->outchainRev = NULL;
if (from->outs)
from->outs->outchainRev = a;
from->outs = a;
from->nouts++;
to->nins++;
if (COLORED(a) && nfa->parent == NULL)
colorchain(nfa->cm, a);
}
/*
* allocarc - allocate a new arc within an NFA
*/
static struct arc * /* NULL for failure */
allocarc(struct nfa *nfa)
{
struct arc *a;
/* first, recycle anything that's on the freelist */
if (nfa->freearcs != NULL)
{
a = nfa->freearcs;
nfa->freearcs = a->freechain;
}
/* otherwise, is there anything left in the last arcbatch? */
else if (nfa->lastab != NULL && nfa->lastabused < nfa->lastab->narcs)
{
a = &nfa->lastab->a[nfa->lastabused++];
}
/* otherwise, need to allocate a new arcbatch */
else
{
struct arcbatch *newAb;
size_t narcs;
if (nfa->v->spaceused >= REG_MAX_COMPILE_SPACE)
{
NERR(REG_ETOOBIG);
return NULL;
}
narcs = (nfa->lastab != NULL) ? nfa->lastab->narcs * 2 : FIRSTABSIZE;
if (narcs > MAXABSIZE)
narcs = MAXABSIZE;
newAb = (struct arcbatch *) MALLOC(ARCBATCHSIZE(narcs));
if (newAb == NULL)
{
NERR(REG_ESPACE);
return NULL;
}
nfa->v->spaceused += ARCBATCHSIZE(narcs);
newAb->narcs = narcs;
newAb->next = nfa->lastab;
nfa->lastab = newAb;
nfa->lastabused = 1;
a = &newAb->a[0];
}
return a;
}
/*
* freearc - free an arc
*/
static void
freearc(struct nfa *nfa,
struct arc *victim)
{
struct state *from = victim->from;
struct state *to = victim->to;
struct arc *predecessor;
assert(victim->type != 0);
/* take it off color chain if necessary */
if (COLORED(victim) && nfa->parent == NULL)
uncolorchain(nfa->cm, victim);
/* take it off source's out-chain */
assert(from != NULL);
predecessor = victim->outchainRev;
if (predecessor == NULL)
{
assert(from->outs == victim);
from->outs = victim->outchain;
}
else
{
assert(predecessor->outchain == victim);
predecessor->outchain = victim->outchain;
}
if (victim->outchain != NULL)
{
assert(victim->outchain->outchainRev == victim);
victim->outchain->outchainRev = predecessor;
}
from->nouts--;
/* take it off target's in-chain */
assert(to != NULL);
predecessor = victim->inchainRev;
if (predecessor == NULL)
{
assert(to->ins == victim);
to->ins = victim->inchain;
}
else
{
assert(predecessor->inchain == victim);
predecessor->inchain = victim->inchain;
}
if (victim->inchain != NULL)
{
assert(victim->inchain->inchainRev == victim);
victim->inchain->inchainRev = predecessor;
}
to->nins--;
/* clean up and place on NFA's free list */
victim->type = 0;
victim->from = NULL; /* precautions... */
victim->to = NULL;
victim->inchain = NULL;
victim->inchainRev = NULL;
victim->outchain = NULL;
victim->outchainRev = NULL;
victim->freechain = nfa->freearcs;
nfa->freearcs = victim;
}
/*
* changearcsource - flip an arc to have a different from state
*
* Caller must have verified that there is no pre-existing duplicate arc.
*/
static void
changearcsource(struct arc *a, struct state *newfrom)
{
struct state *oldfrom = a->from;
struct arc *predecessor;
assert(oldfrom != newfrom);
/* take it off old source's out-chain */
assert(oldfrom != NULL);
predecessor = a->outchainRev;
if (predecessor == NULL)
{
assert(oldfrom->outs == a);
oldfrom->outs = a->outchain;
}
else
{
assert(predecessor->outchain == a);
predecessor->outchain = a->outchain;
}
if (a->outchain != NULL)
{
assert(a->outchain->outchainRev == a);
a->outchain->outchainRev = predecessor;
}
oldfrom->nouts--;
a->from = newfrom;
/* prepend it to new source's out-chain */
a->outchain = newfrom->outs;
a->outchainRev = NULL;
if (newfrom->outs)
newfrom->outs->outchainRev = a;
newfrom->outs = a;
newfrom->nouts++;
}
/*
* changearctarget - flip an arc to have a different to state
*
* Caller must have verified that there is no pre-existing duplicate arc.
*/
static void
changearctarget(struct arc *a, struct state *newto)
{
struct state *oldto = a->to;
struct arc *predecessor;
assert(oldto != newto);
/* take it off old target's in-chain */
assert(oldto != NULL);
predecessor = a->inchainRev;
if (predecessor == NULL)
{
assert(oldto->ins == a);
oldto->ins = a->inchain;
}
else
{
assert(predecessor->inchain == a);
predecessor->inchain = a->inchain;
}
if (a->inchain != NULL)
{
assert(a->inchain->inchainRev == a);
a->inchain->inchainRev = predecessor;
}
oldto->nins--;
a->to = newto;
/* prepend it to new target's in-chain */
a->inchain = newto->ins;
a->inchainRev = NULL;
if (newto->ins)
newto->ins->inchainRev = a;
newto->ins = a;
newto->nins++;
}
/*
* hasnonemptyout - Does state have a non-EMPTY out arc?
*/
static int
hasnonemptyout(struct state *s)
{
struct arc *a;
for (a = s->outs; a != NULL; a = a->outchain)
{
if (a->type != EMPTY)
return 1;
}
return 0;
}
/*
* findarc - find arc, if any, from given source with given type and color
* If there is more than one such arc, the result is random.
*/
static struct arc *
findarc(struct state *s,
int type,
color co)
{
struct arc *a;
for (a = s->outs; a != NULL; a = a->outchain)
if (a->type == type && a->co == co)
return a;
return NULL;
}
/*
* cparc - allocate a new arc within an NFA, copying details from old one
*/
static void
cparc(struct nfa *nfa,
struct arc *oa,
struct state *from,
struct state *to)
{
newarc(nfa, oa->type, oa->co, from, to);
}
/*
* sortins - sort the in arcs of a state by from/color/type
*/
static void
sortins(struct nfa *nfa,
struct state *s)
{
struct arc **sortarray;
struct arc *a;
int n = s->nins;
int i;
if (n <= 1)
return; /* nothing to do */
/* make an array of arc pointers ... */
sortarray = (struct arc **) MALLOC(n * sizeof(struct arc *));
if (sortarray == NULL)
{
NERR(REG_ESPACE);
return;
}
i = 0;
for (a = s->ins; a != NULL; a = a->inchain)
sortarray[i++] = a;
assert(i == n);
/* ... sort the array */
qsort(sortarray, n, sizeof(struct arc *), sortins_cmp);
/* ... and rebuild arc list in order */
/* it seems worth special-casing first and last items to simplify loop */
a = sortarray[0];
s->ins = a;
a->inchain = sortarray[1];
a->inchainRev = NULL;
for (i = 1; i < n - 1; i++)
{
a = sortarray[i];
a->inchain = sortarray[i + 1];
a->inchainRev = sortarray[i - 1];
}
a = sortarray[i];
a->inchain = NULL;
a->inchainRev = sortarray[i - 1];
FREE(sortarray);
}
static int
sortins_cmp(const void *a, const void *b)
{
const struct arc *aa = *((const struct arc *const *) a);
const struct arc *bb = *((const struct arc *const *) b);
/* we check the fields in the order they are most likely to be different */
if (aa->from->no < bb->from->no)
return -1;
if (aa->from->no > bb->from->no)
return 1;
if (aa->co < bb->co)
return -1;
if (aa->co > bb->co)
return 1;
if (aa->type < bb->type)
return -1;
if (aa->type > bb->type)
return 1;
return 0;
}
/*
* sortouts - sort the out arcs of a state by to/color/type
*/
static void
sortouts(struct nfa *nfa,
struct state *s)
{
struct arc **sortarray;
struct arc *a;
int n = s->nouts;
int i;
if (n <= 1)
return; /* nothing to do */
/* make an array of arc pointers ... */
sortarray = (struct arc **) MALLOC(n * sizeof(struct arc *));
if (sortarray == NULL)
{
NERR(REG_ESPACE);
return;
}
i = 0;
for (a = s->outs; a != NULL; a = a->outchain)
sortarray[i++] = a;
assert(i == n);
/* ... sort the array */
qsort(sortarray, n, sizeof(struct arc *), sortouts_cmp);
/* ... and rebuild arc list in order */
/* it seems worth special-casing first and last items to simplify loop */
a = sortarray[0];
s->outs = a;
a->outchain = sortarray[1];
a->outchainRev = NULL;
for (i = 1; i < n - 1; i++)
{
a = sortarray[i];
a->outchain = sortarray[i + 1];
a->outchainRev = sortarray[i - 1];
}
a = sortarray[i];
a->outchain = NULL;
a->outchainRev = sortarray[i - 1];
FREE(sortarray);
}
static int
sortouts_cmp(const void *a, const void *b)
{
const struct arc *aa = *((const struct arc *const *) a);
const struct arc *bb = *((const struct arc *const *) b);
/* we check the fields in the order they are most likely to be different */
if (aa->to->no < bb->to->no)
return -1;
if (aa->to->no > bb->to->no)
return 1;
if (aa->co < bb->co)
return -1;
if (aa->co > bb->co)
return 1;
if (aa->type < bb->type)
return -1;
if (aa->type > bb->type)
return 1;
return 0;
}
/*
* Common decision logic about whether to use arc-by-arc operations or
* sort/merge. If there's just a few source arcs we cannot recoup the
* cost of sorting the destination arc list, no matter how large it is.
* Otherwise, limit the number of arc-by-arc comparisons to about 1000
* (a somewhat arbitrary choice, but the breakeven point would probably
* be machine dependent anyway).
*/
#define BULK_ARC_OP_USE_SORT(nsrcarcs, ndestarcs) \
((nsrcarcs) < 4 ? 0 : ((nsrcarcs) > 32 || (ndestarcs) > 32))
/*
* moveins - move all in arcs of a state to another state
*
* You might think this could be done better by just updating the
* existing arcs, and you would be right if it weren't for the need
* for duplicate suppression, which makes it easier to just make new
* ones to exploit the suppression built into newarc.
*
* However, if we have a whole lot of arcs to deal with, retail duplicate
* checks become too slow. In that case we proceed by sorting and merging
* the arc lists, and then we can indeed just update the arcs in-place.
*/
static void
moveins(struct nfa *nfa,
struct state *oldState,
struct state *newState)
{
assert(oldState != newState);
if (!BULK_ARC_OP_USE_SORT(oldState->nins, newState->nins))
{
/* With not too many arcs, just do them one at a time */
struct arc *a;
while ((a = oldState->ins) != NULL)
{
cparc(nfa, a, a->from, newState);
freearc(nfa, a);
}
}
else
{
/*
* With many arcs, use a sort-merge approach. Note changearctarget()
* will put the arc onto the front of newState's chain, so it does not
* break our walk through the sorted part of the chain.
*/
struct arc *oa;
struct arc *na;
/*
* Because we bypass newarc() in this code path, we'd better include a
* cancel check.
*/
if (CANCEL_REQUESTED(nfa->v->re))
{
NERR(REG_CANCEL);
return;
}
sortins(nfa, oldState);
sortins(nfa, newState);
if (NISERR())
return; /* might have failed to sort */
oa = oldState->ins;
na = newState->ins;
while (oa != NULL && na != NULL)
{
struct arc *a = oa;
switch (sortins_cmp(&oa, &na))
{
case -1:
/* newState does not have anything matching oa */
oa = oa->inchain;
/*
* Rather than doing createarc+freearc, we can just unlink
* and relink the existing arc struct.
*/
changearctarget(a, newState);
break;
case 0:
/* match, advance in both lists */
oa = oa->inchain;
na = na->inchain;
/* ... and drop duplicate arc from oldState */
freearc(nfa, a);
break;
case +1:
/* advance only na; oa might have a match later */
na = na->inchain;
break;
default:
assert(NOTREACHED);
}
}
while (oa != NULL)
{
/* newState does not have anything matching oa */
struct arc *a = oa;
oa = oa->inchain;
changearctarget(a, newState);
}
}
assert(oldState->nins == 0);
assert(oldState->ins == NULL);
}
/*
* copyins - copy in arcs of a state to another state
*/
static void
copyins(struct nfa *nfa,
struct state *oldState,
struct state *newState)
{
assert(oldState != newState);
if (!BULK_ARC_OP_USE_SORT(oldState->nins, newState->nins))
{
/* With not too many arcs, just do them one at a time */
struct arc *a;
for (a = oldState->ins; a != NULL; a = a->inchain)
cparc(nfa, a, a->from, newState);
}
else
{
/*
* With many arcs, use a sort-merge approach. Note that createarc()
* will put new arcs onto the front of newState's chain, so it does
* not break our walk through the sorted part of the chain.
*/
struct arc *oa;
struct arc *na;
/*
* Because we bypass newarc() in this code path, we'd better include a
* cancel check.
*/
if (CANCEL_REQUESTED(nfa->v->re))
{
NERR(REG_CANCEL);
return;
}
sortins(nfa, oldState);
sortins(nfa, newState);
if (NISERR())
return; /* might have failed to sort */
oa = oldState->ins;
na = newState->ins;
while (oa != NULL && na != NULL)
{
struct arc *a = oa;
switch (sortins_cmp(&oa, &na))
{
case -1:
/* newState does not have anything matching oa */
oa = oa->inchain;
createarc(nfa, a->type, a->co, a->from, newState);
break;
case 0:
/* match, advance in both lists */
oa = oa->inchain;
na = na->inchain;
break;
case +1:
/* advance only na; oa might have a match later */
na = na->inchain;
break;
default:
assert(NOTREACHED);
}
}
while (oa != NULL)
{
/* newState does not have anything matching oa */
struct arc *a = oa;
oa = oa->inchain;
createarc(nfa, a->type, a->co, a->from, newState);
}
}
}
/*
* mergeins - merge a list of inarcs into a state
*
* This is much like copyins, but the source arcs are listed in an array,
* and are not guaranteed unique. It's okay to clobber the array contents.
*/
static void
mergeins(struct nfa *nfa,
struct state *s,
struct arc **arcarray,
int arccount)
{
struct arc *na;
int i;
int j;
if (arccount <= 0)
return;
/*
* Because we bypass newarc() in this code path, we'd better include a
* cancel check.
*/
if (CANCEL_REQUESTED(nfa->v->re))
{
NERR(REG_CANCEL);
return;
}
/* Sort existing inarcs as well as proposed new ones */
sortins(nfa, s);
if (NISERR())
return; /* might have failed to sort */
qsort(arcarray, arccount, sizeof(struct arc *), sortins_cmp);
/*
* arcarray very likely includes dups, so we must eliminate them. (This
* could be folded into the next loop, but it's not worth the trouble.)
*/
j = 0;
for (i = 1; i < arccount; i++)
{
switch (sortins_cmp(&arcarray[j], &arcarray[i]))
{
case -1:
/* non-dup */
arcarray[++j] = arcarray[i];
break;
case 0:
/* dup */
break;
default:
/* trouble */
assert(NOTREACHED);
}
}
arccount = j + 1;
/*
* Now merge into s' inchain. Note that createarc() will put new arcs
* onto the front of s's chain, so it does not break our walk through the
* sorted part of the chain.
*/
i = 0;
na = s->ins;
while (i < arccount && na != NULL)
{
struct arc *a = arcarray[i];
switch (sortins_cmp(&a, &na))
{
case -1:
/* s does not have anything matching a */
createarc(nfa, a->type, a->co, a->from, s);
i++;
break;
case 0:
/* match, advance in both lists */
i++;
na = na->inchain;
break;
case +1:
/* advance only na; array might have a match later */
na = na->inchain;
break;
default:
assert(NOTREACHED);
}
}
while (i < arccount)
{
/* s does not have anything matching a */
struct arc *a = arcarray[i];
createarc(nfa, a->type, a->co, a->from, s);
i++;
}
}
/*
* moveouts - move all out arcs of a state to another state
*
* See comments for moveins()
*/
static void
moveouts(struct nfa *nfa,
struct state *oldState,
struct state *newState)
{
assert(oldState != newState);
if (!BULK_ARC_OP_USE_SORT(oldState->nouts, newState->nouts))
{
/* With not too many arcs, just do them one at a time */
struct arc *a;
while ((a = oldState->outs) != NULL)
{
cparc(nfa, a, newState, a->to);
freearc(nfa, a);
}
}
else
{
/*
* With many arcs, use a sort-merge approach. Note changearcsource()
* will put the arc onto the front of newState's chain, so it does not
* break our walk through the sorted part of the chain.
*/
struct arc *oa;
struct arc *na;
/*
* Because we bypass newarc() in this code path, we'd better include a
* cancel check.
*/
if (CANCEL_REQUESTED(nfa->v->re))
{
NERR(REG_CANCEL);
return;
}
sortouts(nfa, oldState);
sortouts(nfa, newState);
if (NISERR())
return; /* might have failed to sort */
oa = oldState->outs;
na = newState->outs;
while (oa != NULL && na != NULL)
{
struct arc *a = oa;
switch (sortouts_cmp(&oa, &na))
{
case -1:
/* newState does not have anything matching oa */
oa = oa->outchain;
/*
* Rather than doing createarc+freearc, we can just unlink
* and relink the existing arc struct.
*/
changearcsource(a, newState);
break;
case 0:
/* match, advance in both lists */
oa = oa->outchain;
na = na->outchain;
/* ... and drop duplicate arc from oldState */
freearc(nfa, a);
break;
case +1:
/* advance only na; oa might have a match later */
na = na->outchain;
break;
default:
assert(NOTREACHED);
}
}
while (oa != NULL)
{
/* newState does not have anything matching oa */
struct arc *a = oa;
oa = oa->outchain;
changearcsource(a, newState);
}
}
assert(oldState->nouts == 0);
assert(oldState->outs == NULL);
}
/*
* copyouts - copy out arcs of a state to another state
*/
static void
copyouts(struct nfa *nfa,
struct state *oldState,
struct state *newState)
{
assert(oldState != newState);
if (!BULK_ARC_OP_USE_SORT(oldState->nouts, newState->nouts))
{
/* With not too many arcs, just do them one at a time */
struct arc *a;
for (a = oldState->outs; a != NULL; a = a->outchain)
cparc(nfa, a, newState, a->to);
}
else
{
/*
* With many arcs, use a sort-merge approach. Note that createarc()
* will put new arcs onto the front of newState's chain, so it does
* not break our walk through the sorted part of the chain.
*/
struct arc *oa;
struct arc *na;
/*
* Because we bypass newarc() in this code path, we'd better include a
* cancel check.
*/
if (CANCEL_REQUESTED(nfa->v->re))
{
NERR(REG_CANCEL);
return;
}
sortouts(nfa, oldState);
sortouts(nfa, newState);
if (NISERR())
return; /* might have failed to sort */
oa = oldState->outs;
na = newState->outs;
while (oa != NULL && na != NULL)
{
struct arc *a = oa;
switch (sortouts_cmp(&oa, &na))
{
case -1:
/* newState does not have anything matching oa */
oa = oa->outchain;
createarc(nfa, a->type, a->co, newState, a->to);
break;
case 0:
/* match, advance in both lists */
oa = oa->outchain;
na = na->outchain;
break;
case +1:
/* advance only na; oa might have a match later */
na = na->outchain;
break;
default:
assert(NOTREACHED);
}
}
while (oa != NULL)
{
/* newState does not have anything matching oa */
struct arc *a = oa;
oa = oa->outchain;
createarc(nfa, a->type, a->co, newState, a->to);
}
}
}
/*
* cloneouts - copy out arcs of a state to another state pair, modifying type
*
* This is only used to convert PLAIN arcs to AHEAD/BEHIND arcs, which share
* the same interpretation of "co". It wouldn't be sensible with LACONs.
*/
static void
cloneouts(struct nfa *nfa,
struct state *old,
struct state *from,
struct state *to,
int type)
{
struct arc *a;
assert(old != from);
assert(type == AHEAD || type == BEHIND);
for (a = old->outs; a != NULL; a = a->outchain)
{
assert(a->type == PLAIN);
newarc(nfa, type, a->co, from, to);
}
}
/*
* delsub - delete a sub-NFA, updating subre pointers if necessary
*
* This uses a recursive traversal of the sub-NFA, marking already-seen
* states using their tmp pointer.
*/
static void
delsub(struct nfa *nfa,
struct state *lp, /* the sub-NFA goes from here... */
struct state *rp) /* ...to here, *not* inclusive */
{
assert(lp != rp);
rp->tmp = rp; /* mark end */
deltraverse(nfa, lp, lp);
if (NISERR())
return; /* asserts might not hold after failure */
assert(lp->nouts == 0 && rp->nins == 0); /* did the job */
assert(lp->no != FREESTATE && rp->no != FREESTATE); /* no more */
rp->tmp = NULL; /* unmark end */
lp->tmp = NULL; /* and begin, marked by deltraverse */
}
/*
* deltraverse - the recursive heart of delsub
* This routine's basic job is to destroy all out-arcs of the state.
*/
static void
deltraverse(struct nfa *nfa,
struct state *leftend,
struct state *s)
{
struct arc *a;
struct state *to;
/* Since this is recursive, it could be driven to stack overflow */
if (STACK_TOO_DEEP(nfa->v->re))
{
NERR(REG_ETOOBIG);
return;
}
if (s->nouts == 0)
return; /* nothing to do */
if (s->tmp != NULL)
return; /* already in progress */
s->tmp = s; /* mark as in progress */
while ((a = s->outs) != NULL)
{
to = a->to;
deltraverse(nfa, leftend, to);
if (NISERR())
return; /* asserts might not hold after failure */
assert(to->nouts == 0 || to->tmp != NULL);
freearc(nfa, a);
if (to->nins == 0 && to->tmp == NULL)
{
assert(to->nouts == 0);
freestate(nfa, to);
}
}
assert(s->no != FREESTATE); /* we're still here */
assert(s == leftend || s->nins != 0); /* and still reachable */
assert(s->nouts == 0); /* but have no outarcs */
s->tmp = NULL; /* we're done here */
}
/*
* dupnfa - duplicate sub-NFA
*
* Another recursive traversal, this time using tmp to point to duplicates
* as well as mark already-seen states. (You knew there was a reason why
* it's a state pointer, didn't you? :-))
*/
static void
dupnfa(struct nfa *nfa,
struct state *start, /* duplicate of subNFA starting here */
struct state *stop, /* and stopping here */
struct state *from, /* stringing duplicate from here */
struct state *to) /* to here */
{
if (start == stop)
{
newarc(nfa, EMPTY, 0, from, to);
return;
}
stop->tmp = to;
duptraverse(nfa, start, from);
/* done, except for clearing out the tmp pointers */
stop->tmp = NULL;
cleartraverse(nfa, start);
}
/*
* duptraverse - recursive heart of dupnfa
*/
static void
duptraverse(struct nfa *nfa,
struct state *s,
struct state *stmp) /* s's duplicate, or NULL */
{
struct arc *a;
/* Since this is recursive, it could be driven to stack overflow */
if (STACK_TOO_DEEP(nfa->v->re))
{
NERR(REG_ETOOBIG);
return;
}
if (s->tmp != NULL)
return; /* already done */
s->tmp = (stmp == NULL) ? newstate(nfa) : stmp;
if (s->tmp == NULL)
{
assert(NISERR());
return;
}
for (a = s->outs; a != NULL && !NISERR(); a = a->outchain)
{
duptraverse(nfa, a->to, (struct state *) NULL);
if (NISERR())
break;
assert(a->to->tmp != NULL);
cparc(nfa, a, s->tmp, a->to->tmp);
}
}
/*
* removeconstraints - remove any constraints in an NFA
*
* Constraint arcs are replaced by empty arcs, essentially treating all
* constraints as automatically satisfied.
*/
static void
removeconstraints(struct nfa *nfa,
struct state *start, /* process subNFA starting here */
struct state *stop) /* and stopping here */
{
if (start == stop)
return;
stop->tmp = stop;
removetraverse(nfa, start);
/* done, except for clearing out the tmp pointers */
stop->tmp = NULL;
cleartraverse(nfa, start);
}
/*
* removetraverse - recursive heart of removeconstraints
*/
static void
removetraverse(struct nfa *nfa,
struct state *s)
{
struct arc *a;
struct arc *oa;
/* Since this is recursive, it could be driven to stack overflow */
if (STACK_TOO_DEEP(nfa->v->re))
{
NERR(REG_ETOOBIG);
return;
}
if (s->tmp != NULL)
return; /* already done */
s->tmp = s;
for (a = s->outs; a != NULL && !NISERR(); a = oa)
{
removetraverse(nfa, a->to);
if (NISERR())
break;
oa = a->outchain;
switch (a->type)
{
case PLAIN:
case EMPTY:
/* nothing to do */
break;
case AHEAD:
case BEHIND:
case '^':
case '$':
case LACON:
/* replace it */
newarc(nfa, EMPTY, 0, s, a->to);
freearc(nfa, a);
break;
default:
NERR(REG_ASSERT);
break;
}
}
}
/*
* cleartraverse - recursive cleanup for algorithms that leave tmp ptrs set
*/
static void
cleartraverse(struct nfa *nfa,
struct state *s)
{
struct arc *a;
/* Since this is recursive, it could be driven to stack overflow */
if (STACK_TOO_DEEP(nfa->v->re))
{
NERR(REG_ETOOBIG);
return;
}
if (s->tmp == NULL)
return;
s->tmp = NULL;
for (a = s->outs; a != NULL; a = a->outchain)
cleartraverse(nfa, a->to);
}
/*
* single_color_transition - does getting from s1 to s2 cross one PLAIN arc?
*
* If traversing from s1 to s2 requires a single PLAIN match (possibly of any
* of a set of colors), return a state whose outarc list contains only PLAIN
* arcs of those color(s). Otherwise return NULL.
*
* This is used before optimizing the NFA, so there may be EMPTY arcs, which
* we should ignore; the possibility of an EMPTY is why the result state could
* be different from s1.
*
* It's worth troubling to handle multiple parallel PLAIN arcs here because a
* bracket construct such as [abc] might yield either one or several parallel
* PLAIN arcs depending on earlier atoms in the expression. We'd rather that
* that implementation detail not create user-visible performance differences.
*/
static struct state *
single_color_transition(struct state *s1, struct state *s2)
{
struct arc *a;
/* Ignore leading EMPTY arc, if any */
if (s1->nouts == 1 && s1->outs->type == EMPTY)
s1 = s1->outs->to;
/* Likewise for any trailing EMPTY arc */
if (s2->nins == 1 && s2->ins->type == EMPTY)
s2 = s2->ins->from;
/* Perhaps we could have a single-state loop in between, if so reject */
if (s1 == s2)
return NULL;
/* s1 must have at least one outarc... */
if (s1->outs == NULL)
return NULL;
/* ... and they must all be PLAIN arcs to s2 */
for (a = s1->outs; a != NULL; a = a->outchain)
{
if (a->type != PLAIN || a->to != s2)
return NULL;
}
/* OK, return s1 as the possessor of the relevant outarcs */
return s1;
}
/*
* specialcolors - fill in special colors for an NFA
*/
static void
specialcolors(struct nfa *nfa)
{
/* false colors for BOS, BOL, EOS, EOL */
if (nfa->parent == NULL)
{
nfa->bos[0] = pseudocolor(nfa->cm);
nfa->bos[1] = pseudocolor(nfa->cm);
nfa->eos[0] = pseudocolor(nfa->cm);
nfa->eos[1] = pseudocolor(nfa->cm);
}
else
{
assert(nfa->parent->bos[0] != COLORLESS);
nfa->bos[0] = nfa->parent->bos[0];
assert(nfa->parent->bos[1] != COLORLESS);
nfa->bos[1] = nfa->parent->bos[1];
assert(nfa->parent->eos[0] != COLORLESS);
nfa->eos[0] = nfa->parent->eos[0];
assert(nfa->parent->eos[1] != COLORLESS);
nfa->eos[1] = nfa->parent->eos[1];
}
}
/*
* optimize - optimize an NFA
*
* The main goal of this function is not so much "optimization" (though it
* does try to get rid of useless NFA states) as reducing the NFA to a form
* the regex executor can handle. The executor, and indeed the cNFA format
* that is its input, can only handle PLAIN and LACON arcs. The output of
* the regex parser also includes EMPTY (do-nothing) arcs, as well as
* ^, $, AHEAD, and BEHIND constraint arcs, which we must get rid of here.
* We first get rid of EMPTY arcs and then deal with the constraint arcs.
* The hardest part of either job is to get rid of circular loops of the
* target arc type. We would have to do that in any case, though, as such a
* loop would otherwise allow the executor to cycle through the loop endlessly
* without making any progress in the input string.
*/
static long /* re_info bits */
optimize(struct nfa *nfa,
FILE *f) /* for debug output; NULL none */
{
#ifdef REG_DEBUG
int verbose = (f != NULL) ? 1 : 0;
if (verbose)
fprintf(f, "\ninitial cleanup:\n");
#endif
cleanup(nfa); /* may simplify situation */
#ifdef REG_DEBUG
if (verbose)
dumpnfa(nfa, f);
if (verbose)
fprintf(f, "\nempties:\n");
#endif
fixempties(nfa, f); /* get rid of EMPTY arcs */
#ifdef REG_DEBUG
if (verbose)
fprintf(f, "\nconstraints:\n");
#endif
fixconstraintloops(nfa, f); /* get rid of constraint loops */
pullback(nfa, f); /* pull back constraints backward */
pushfwd(nfa, f); /* push fwd constraints forward */
#ifdef REG_DEBUG
if (verbose)
fprintf(f, "\nfinal cleanup:\n");
#endif
cleanup(nfa); /* final tidying */
#ifdef REG_DEBUG
if (verbose)
dumpnfa(nfa, f);
#endif
return analyze(nfa); /* and analysis */
}
/*
* pullback - pull back constraints backward to eliminate them
*/
static void
pullback(struct nfa *nfa,
FILE *f) /* for debug output; NULL none */
{
struct state *s;
struct state *nexts;
struct arc *a;
struct arc *nexta;
struct state *intermediates;
int progress;
/* find and pull until there are no more */
do
{
progress = 0;
for (s = nfa->states; s != NULL && !NISERR(); s = nexts)
{
nexts = s->next;
intermediates = NULL;
for (a = s->outs; a != NULL && !NISERR(); a = nexta)
{
nexta = a->outchain;
if (a->type == '^' || a->type == BEHIND)
if (pull(nfa, a, &intermediates))
progress = 1;
}
/* clear tmp fields of intermediate states created here */
while (intermediates != NULL)
{
struct state *ns = intermediates->tmp;
intermediates->tmp = NULL;
intermediates = ns;
}
/* if s is now useless, get rid of it */
if ((s->nins == 0 || s->nouts == 0) && !s->flag)
dropstate(nfa, s);
}
if (progress && f != NULL)
dumpnfa(nfa, f);
} while (progress && !NISERR());
if (NISERR())
return;
/*
* Any ^ constraints we were able to pull to the start state can now be
* replaced by PLAIN arcs referencing the BOS or BOL colors. There should
* be no other ^ or BEHIND arcs left in the NFA, though we do not check
* that here (compact() will fail if so).
*/
for (a = nfa->pre->outs; a != NULL; a = nexta)
{
nexta = a->outchain;
if (a->type == '^')
{
assert(a->co == 0 || a->co == 1);
newarc(nfa, PLAIN, nfa->bos[a->co], a->from, a->to);
freearc(nfa, a);
}
}
}
/*
* pull - pull a back constraint backward past its source state
*
* Returns 1 if successful (which it always is unless the source is the
* start state or we have an internal error), 0 if nothing happened.
*
* A significant property of this function is that it deletes no pre-existing
* states, and no outarcs of the constraint's from state other than the given
* constraint arc. This makes the loops in pullback() safe, at the cost that
* we may leave useless states behind. Therefore, we leave it to pullback()
* to delete such states.
*
* If the from state has multiple back-constraint outarcs, and/or multiple
* compatible constraint inarcs, we only need to create one new intermediate
* state per combination of predecessor and successor states. *intermediates
* points to a list of such intermediate states for this from state (chained
* through their tmp fields).
*/
static int
pull(struct nfa *nfa,
struct arc *con,
struct state **intermediates)
{
struct state *from = con->from;
struct state *to = con->to;
struct arc *a;
struct arc *nexta;
struct state *s;
assert(from != to); /* should have gotten rid of this earlier */
if (from->flag) /* can't pull back beyond start */
return 0;
if (from->nins == 0)
{ /* unreachable */
freearc(nfa, con);
return 1;
}
/*
* First, clone from state if necessary to avoid other outarcs. This may
* seem wasteful, but it simplifies the logic, and we'll get rid of the
* clone state again at the bottom.
*/
if (from->nouts > 1)
{
s = newstate(nfa);
if (NISERR())
return 0;
copyins(nfa, from, s); /* duplicate inarcs */
cparc(nfa, con, s, to); /* move constraint arc */
freearc(nfa, con);
if (NISERR())
return 0;
from = s;
con = from->outs;
}
assert(from->nouts == 1);
/* propagate the constraint into the from state's inarcs */
for (a = from->ins; a != NULL && !NISERR(); a = nexta)
{
nexta = a->inchain;
switch (combine(nfa, con, a))
{
case INCOMPATIBLE: /* destroy the arc */
freearc(nfa, a);
break;
case SATISFIED: /* no action needed */
break;
case COMPATIBLE: /* swap the two arcs, more or less */
/* need an intermediate state, but might have one already */
for (s = *intermediates; s != NULL; s = s->tmp)
{
assert(s->nins > 0 && s->nouts > 0);
if (s->ins->from == a->from && s->outs->to == to)
break;
}
if (s == NULL)
{
s = newstate(nfa);
if (NISERR())
return 0;
s->tmp = *intermediates;
*intermediates = s;
}
cparc(nfa, con, a->from, s);
cparc(nfa, a, s, to);
freearc(nfa, a);
break;
case REPLACEARC: /* replace arc's color */
newarc(nfa, a->type, con->co, a->from, to);
freearc(nfa, a);
break;
default:
assert(NOTREACHED);
break;
}
}
/* remaining inarcs, if any, incorporate the constraint */
moveins(nfa, from, to);
freearc(nfa, con);
/* from state is now useless, but we leave it to pullback() to clean up */
return 1;
}
/*
* pushfwd - push forward constraints forward to eliminate them
*/
static void
pushfwd(struct nfa *nfa,
FILE *f) /* for debug output; NULL none */
{
struct state *s;
struct state *nexts;
struct arc *a;
struct arc *nexta;
struct state *intermediates;
int progress;
/* find and push until there are no more */
do
{
progress = 0;
for (s = nfa->states; s != NULL && !NISERR(); s = nexts)
{
nexts = s->next;
intermediates = NULL;
for (a = s->ins; a != NULL && !NISERR(); a = nexta)
{
nexta = a->inchain;
if (a->type == '$' || a->type == AHEAD)
if (push(nfa, a, &intermediates))
progress = 1;
}
/* clear tmp fields of intermediate states created here */
while (intermediates != NULL)
{
struct state *ns = intermediates->tmp;
intermediates->tmp = NULL;
intermediates = ns;
}
/* if s is now useless, get rid of it */
if ((s->nins == 0 || s->nouts == 0) && !s->flag)
dropstate(nfa, s);
}
if (progress && f != NULL)
dumpnfa(nfa, f);
} while (progress && !NISERR());
if (NISERR())
return;
/*
* Any $ constraints we were able to push to the post state can now be
* replaced by PLAIN arcs referencing the EOS or EOL colors. There should
* be no other $ or AHEAD arcs left in the NFA, though we do not check
* that here (compact() will fail if so).
*/
for (a = nfa->post->ins; a != NULL; a = nexta)
{
nexta = a->inchain;
if (a->type == '$')
{
assert(a->co == 0 || a->co == 1);
newarc(nfa, PLAIN, nfa->eos[a->co], a->from, a->to);
freearc(nfa, a);
}
}
}
/*
* push - push a forward constraint forward past its destination state
*
* Returns 1 if successful (which it always is unless the destination is the
* post state or we have an internal error), 0 if nothing happened.
*
* A significant property of this function is that it deletes no pre-existing
* states, and no inarcs of the constraint's to state other than the given
* constraint arc. This makes the loops in pushfwd() safe, at the cost that
* we may leave useless states behind. Therefore, we leave it to pushfwd()
* to delete such states.
*
* If the to state has multiple forward-constraint inarcs, and/or multiple
* compatible constraint outarcs, we only need to create one new intermediate
* state per combination of predecessor and successor states. *intermediates
* points to a list of such intermediate states for this to state (chained
* through their tmp fields).
*/
static int
push(struct nfa *nfa,
struct arc *con,
struct state **intermediates)
{
struct state *from = con->from;
struct state *to = con->to;
struct arc *a;
struct arc *nexta;
struct state *s;
assert(to != from); /* should have gotten rid of this earlier */
if (to->flag) /* can't push forward beyond end */
return 0;
if (to->nouts == 0)
{ /* dead end */
freearc(nfa, con);
return 1;
}
/*
* First, clone to state if necessary to avoid other inarcs. This may
* seem wasteful, but it simplifies the logic, and we'll get rid of the
* clone state again at the bottom.
*/
if (to->nins > 1)
{
s = newstate(nfa);
if (NISERR())
return 0;
copyouts(nfa, to, s); /* duplicate outarcs */
cparc(nfa, con, from, s); /* move constraint arc */
freearc(nfa, con);
if (NISERR())
return 0;
to = s;
con = to->ins;
}
assert(to->nins == 1);
/* propagate the constraint into the to state's outarcs */
for (a = to->outs; a != NULL && !NISERR(); a = nexta)
{
nexta = a->outchain;
switch (combine(nfa, con, a))
{
case INCOMPATIBLE: /* destroy the arc */
freearc(nfa, a);
break;
case SATISFIED: /* no action needed */
break;
case COMPATIBLE: /* swap the two arcs, more or less */
/* need an intermediate state, but might have one already */
for (s = *intermediates; s != NULL; s = s->tmp)
{
assert(s->nins > 0 && s->nouts > 0);
if (s->ins->from == from && s->outs->to == a->to)
break;
}
if (s == NULL)
{
s = newstate(nfa);
if (NISERR())
return 0;
s->tmp = *intermediates;
*intermediates = s;
}
cparc(nfa, con, s, a->to);
cparc(nfa, a, from, s);
freearc(nfa, a);
break;
case REPLACEARC: /* replace arc's color */
newarc(nfa, a->type, con->co, from, a->to);
freearc(nfa, a);
break;
default:
assert(NOTREACHED);
break;
}
}
/* remaining outarcs, if any, incorporate the constraint */
moveouts(nfa, to, from);
freearc(nfa, con);
/* to state is now useless, but we leave it to pushfwd() to clean up */
return 1;
}
/*
* combine - constraint lands on an arc, what happens?
*
* #def INCOMPATIBLE 1 // destroys arc
* #def SATISFIED 2 // constraint satisfied
* #def COMPATIBLE 3 // compatible but not satisfied yet
* #def REPLACEARC 4 // replace arc's color with constraint color
*/
static int
combine(struct nfa *nfa,
struct arc *con,
struct arc *a)
{
#define CA(ct,at) (((ct)<<CHAR_BIT) | (at))
switch (CA(con->type, a->type))
{
case CA('^', PLAIN): /* newlines are handled separately */
case CA('$', PLAIN):
return INCOMPATIBLE;
break;
case CA(AHEAD, PLAIN): /* color constraints meet colors */
case CA(BEHIND, PLAIN):
if (con->co == a->co)
return SATISFIED;
if (con->co == RAINBOW)
{
/* con is satisfied unless arc's color is a pseudocolor */
if (!(nfa->cm->cd[a->co].flags & PSEUDO))
return SATISFIED;
}
else if (a->co == RAINBOW)
{
/* con is incompatible if it's for a pseudocolor */
if (nfa->cm->cd[con->co].flags & PSEUDO)
return INCOMPATIBLE;
/* otherwise, constraint constrains arc to be only its color */
return REPLACEARC;
}
return INCOMPATIBLE;
break;
case CA('^', '^'): /* collision, similar constraints */
case CA('$', '$'):
if (con->co == a->co) /* true duplication */
return SATISFIED;
return INCOMPATIBLE;
break;
case CA(AHEAD, AHEAD): /* collision, similar constraints */
case CA(BEHIND, BEHIND):
if (con->co == a->co) /* true duplication */
return SATISFIED;
if (con->co == RAINBOW)
{
/* con is satisfied unless arc's color is a pseudocolor */
if (!(nfa->cm->cd[a->co].flags & PSEUDO))
return SATISFIED;
}
else if (a->co == RAINBOW)
{
/* con is incompatible if it's for a pseudocolor */
if (nfa->cm->cd[con->co].flags & PSEUDO)
return INCOMPATIBLE;
/* otherwise, constraint constrains arc to be only its color */
return REPLACEARC;
}
return INCOMPATIBLE;
break;
case CA('^', BEHIND): /* collision, dissimilar constraints */
case CA(BEHIND, '^'):
case CA('$', AHEAD):
case CA(AHEAD, '$'):
return INCOMPATIBLE;
break;
case CA('^', '$'): /* constraints passing each other */
case CA('^', AHEAD):
case CA(BEHIND, '$'):
case CA(BEHIND, AHEAD):
case CA('$', '^'):
case CA('$', BEHIND):
case CA(AHEAD, '^'):
case CA(AHEAD, BEHIND):
case CA('^', LACON):
case CA(BEHIND, LACON):
case CA('$', LACON):
case CA(AHEAD, LACON):
return COMPATIBLE;
break;
}
assert(NOTREACHED);
return INCOMPATIBLE; /* for benefit of blind compilers */
}
/*
* fixempties - get rid of EMPTY arcs
*/
static void
fixempties(struct nfa *nfa,
FILE *f) /* for debug output; NULL none */
{
struct state *s;
struct state *s2;
struct state *nexts;
struct arc *a;
struct arc *nexta;
int totalinarcs;
struct arc **inarcsorig;
struct arc **arcarray;
int arccount;
int prevnins;
int nskip;
/*
* First, get rid of any states whose sole out-arc is an EMPTY, since
* they're basically just aliases for their successor. The parsing
* algorithm creates enough of these that it's worth special-casing this.
*/
for (s = nfa->states; s != NULL && !NISERR(); s = nexts)
{
nexts = s->next;
if (s->flag || s->nouts != 1)
continue;
a = s->outs;
assert(a != NULL && a->outchain == NULL);
if (a->type != EMPTY)
continue;
if (s != a->to)
moveins(nfa, s, a->to);
dropstate(nfa, s);
}
/*
* Similarly, get rid of any state with a single EMPTY in-arc, by folding
* it into its predecessor.
*/
for (s = nfa->states; s != NULL && !NISERR(); s = nexts)
{
nexts = s->next;
/* while we're at it, ensure tmp fields are clear for next step */
assert(s->tmp == NULL);
if (s->flag || s->nins != 1)
continue;
a = s->ins;
assert(a != NULL && a->inchain == NULL);
if (a->type != EMPTY)
continue;
if (s != a->from)
moveouts(nfa, s, a->from);
dropstate(nfa, s);
}
if (NISERR())
return;
/*
* For each remaining NFA state, find all other states from which it is
* reachable by a chain of one or more EMPTY arcs. Then generate new arcs
* that eliminate the need for each such chain.
*
* We could replace a chain of EMPTY arcs that leads from a "from" state
* to a "to" state either by pushing non-EMPTY arcs forward (linking
* directly from "from"'s predecessors to "to") or by pulling them back
* (linking directly from "from" to "to"'s successors). We choose to
* always do the former; this choice is somewhat arbitrary, but the
* approach below requires that we uniformly do one or the other.
*
* Suppose we have a chain of N successive EMPTY arcs (where N can easily
* approach the size of the NFA). All of the intermediate states must
* have additional inarcs and outarcs, else they'd have been removed by
* the steps above. Assuming their inarcs are mostly not empties, we will
* add O(N^2) arcs to the NFA, since a non-EMPTY inarc leading to any one
* state in the chain must be duplicated to lead to all its successor
* states as well. So there is no hope of doing less than O(N^2) work;
* however, we should endeavor to keep the big-O cost from being even
* worse than that, which it can easily become without care. In
* particular, suppose we were to copy all S1's inarcs forward to S2, and
* then also to S3, and then later we consider pushing S2's inarcs forward
* to S3. If we include the arcs already copied from S1 in that, we'd be
* doing O(N^3) work. (The duplicate-arc elimination built into newarc()
* and its cohorts would get rid of the extra arcs, but not without cost.)
*
* We can avoid this cost by treating only arcs that existed at the start
* of this phase as candidates to be pushed forward. To identify those,
* we remember the first inarc each state had to start with. We rely on
* the fact that newarc() and friends put new arcs on the front of their
* to-states' inchains, and that this phase never deletes arcs, so that
* the original arcs must be the last arcs in their to-states' inchains.
*
* So the process here is that, for each state in the NFA, we gather up
* all non-EMPTY inarcs of states that can reach the target state via
* EMPTY arcs. We then sort, de-duplicate, and merge these arcs into the
* target state's inchain. (We can safely use sort-merge for this as long
* as we update each state's original-arcs pointer after we add arcs to
* it; the sort step of mergeins probably changed the order of the old
* arcs.)
*
* Another refinement worth making is that, because we only add non-EMPTY
* arcs during this phase, and all added arcs have the same from-state as
* the non-EMPTY arc they were cloned from, we know ahead of time that any
* states having only EMPTY outarcs will be useless for lack of outarcs
* after we drop the EMPTY arcs. (They cannot gain non-EMPTY outarcs if
* they had none to start with.) So we need not bother to update the
* inchains of such states at all.
*/
/* Remember the states' first original inarcs */
/* ... and while at it, count how many old inarcs there are altogether */
inarcsorig = (struct arc **) MALLOC(nfa->nstates * sizeof(struct arc *));
if (inarcsorig == NULL)
{
NERR(REG_ESPACE);
return;
}
totalinarcs = 0;
for (s = nfa->states; s != NULL; s = s->next)
{
inarcsorig[s->no] = s->ins;
totalinarcs += s->nins;
}
/*
* Create a workspace for accumulating the inarcs to be added to the
* current target state. totalinarcs is probably a considerable
* overestimate of the space needed, but the NFA is unlikely to be large
* enough at this point to make it worth being smarter.
*/
arcarray = (struct arc **) MALLOC(totalinarcs * sizeof(struct arc *));
if (arcarray == NULL)
{
NERR(REG_ESPACE);
FREE(inarcsorig);
return;
}
/* And iterate over the target states */
for (s = nfa->states; s != NULL && !NISERR(); s = s->next)
{
/* Ignore target states without non-EMPTY outarcs, per note above */
if (!s->flag && !hasnonemptyout(s))
continue;
/* Find predecessor states and accumulate their original inarcs */
arccount = 0;
for (s2 = emptyreachable(nfa, s, s, inarcsorig); s2 != s; s2 = nexts)
{
/* Add s2's original inarcs to arcarray[], but ignore empties */
for (a = inarcsorig[s2->no]; a != NULL; a = a->inchain)
{
if (a->type != EMPTY)
arcarray[arccount++] = a;
}
/* Reset the tmp fields as we walk back */
nexts = s2->tmp;
s2->tmp = NULL;
}
s->tmp = NULL;
assert(arccount <= totalinarcs);
/* Remember how many original inarcs this state has */
prevnins = s->nins;
/* Add non-duplicate inarcs to target state */
mergeins(nfa, s, arcarray, arccount);
/* Now we must update the state's inarcsorig pointer */
nskip = s->nins - prevnins;
a = s->ins;
while (nskip-- > 0)
a = a->inchain;
inarcsorig[s->no] = a;
}
FREE(arcarray);
FREE(inarcsorig);
if (NISERR())
return;
/*
* Now remove all the EMPTY arcs, since we don't need them anymore.
*/
for (s = nfa->states; s != NULL; s = s->next)
{
for (a = s->outs; a != NULL; a = nexta)
{
nexta = a->outchain;
if (a->type == EMPTY)
freearc(nfa, a);
}
}
/*
* And remove any states that have become useless. (This cleanup is not
* very thorough, and would be even less so if we tried to combine it with
* the previous step; but cleanup() will take care of anything we miss.)
*/
for (s = nfa->states; s != NULL; s = nexts)
{
nexts = s->next;
if ((s->nins == 0 || s->nouts == 0) && !s->flag)
dropstate(nfa, s);
}
if (f != NULL)
dumpnfa(nfa, f);
}
/*
* emptyreachable - recursively find all states that can reach s by EMPTY arcs
*
* The return value is the last such state found. Its tmp field links back
* to the next-to-last such state, and so on back to s, so that all these
* states can be located without searching the whole NFA.
*
* Since this is only used in fixempties(), we pass in the inarcsorig[] array
* maintained by that function. This lets us skip over all new inarcs, which
* are certainly not EMPTY arcs.
*
* The maximum recursion depth here is equal to the length of the longest
* loop-free chain of EMPTY arcs, which is surely no more than the size of
* the NFA ... but that could still be enough to cause trouble.
*/
static struct state *
emptyreachable(struct nfa *nfa,
struct state *s,
struct state *lastfound,
struct arc **inarcsorig)
{
struct arc *a;
/* Since this is recursive, it could be driven to stack overflow */
if (STACK_TOO_DEEP(nfa->v->re))
{
NERR(REG_ETOOBIG);
return lastfound;
}
s->tmp = lastfound;
lastfound = s;
for (a = inarcsorig[s->no]; a != NULL; a = a->inchain)
{
if (a->type == EMPTY && a->from->tmp == NULL)
lastfound = emptyreachable(nfa, a->from, lastfound, inarcsorig);
}
return lastfound;
}
/*
* isconstraintarc - detect whether an arc is of a constraint type
*/
static inline int
isconstraintarc(struct arc *a)
{
switch (a->type)
{
case '^':
case '$':
case BEHIND:
case AHEAD:
case LACON:
return 1;
}
return 0;
}
/*
* hasconstraintout - does state have a constraint out arc?
*/
static int
hasconstraintout(struct state *s)
{
struct arc *a;
for (a = s->outs; a != NULL; a = a->outchain)
{
if (isconstraintarc(a))
return 1;
}
return 0;
}
/*
* fixconstraintloops - get rid of loops containing only constraint arcs
*
* A loop of states that contains only constraint arcs is useless, since
* passing around the loop represents no forward progress. Moreover, it
* would cause infinite looping in pullback/pushfwd, so we need to get rid
* of such loops before doing that.
*/
static void
fixconstraintloops(struct nfa *nfa,
FILE *f) /* for debug output; NULL none */
{
struct state *s;
struct state *nexts;
struct arc *a;
struct arc *nexta;
int hasconstraints;
/*
* In the trivial case of a state that loops to itself, we can just drop
* the constraint arc altogether. This is worth special-casing because
* such loops are far more common than loops containing multiple states.
* While we're at it, note whether any constraint arcs survive.
*/
hasconstraints = 0;
for (s = nfa->states; s != NULL && !NISERR(); s = nexts)
{
nexts = s->next;
/* while we're at it, ensure tmp fields are clear for next step */
assert(s->tmp == NULL);
for (a = s->outs; a != NULL && !NISERR(); a = nexta)
{
nexta = a->outchain;
if (isconstraintarc(a))
{
if (a->to == s)
freearc(nfa, a);
else
hasconstraints = 1;
}
}
/* If we removed all the outarcs, the state is useless. */
if (s->nouts == 0 && !s->flag)
dropstate(nfa, s);
}
/* Nothing to do if no remaining constraint arcs */
if (NISERR() || !hasconstraints)
return;
/*
* Starting from each remaining NFA state, search outwards for a
* constraint loop. If we find a loop, break the loop, then start the
* search over. (We could possibly retain some state from the first scan,
* but it would complicate things greatly, and multi-state constraint
* loops are rare enough that it's not worth optimizing the case.)
*/
restart:
for (s = nfa->states; s != NULL && !NISERR(); s = s->next)
{
if (findconstraintloop(nfa, s))
goto restart;
}
if (NISERR())
return;
/*
* Now remove any states that have become useless. (This cleanup is not
* very thorough, and would be even less so if we tried to combine it with
* the previous step; but cleanup() will take care of anything we miss.)
*
* Because findconstraintloop intentionally doesn't reset all tmp fields,
* we have to clear them after it's done. This is a convenient place to
* do that, too.
*/
for (s = nfa->states; s != NULL; s = nexts)
{
nexts = s->next;
s->tmp = NULL;
if ((s->nins == 0 || s->nouts == 0) && !s->flag)
dropstate(nfa, s);
}
if (f != NULL)
dumpnfa(nfa, f);
}
/*
* findconstraintloop - recursively find a loop of constraint arcs
*
* If we find a loop, break it by calling breakconstraintloop(), then
* return 1; otherwise return 0.
*
* State tmp fields are guaranteed all NULL on a success return, because
* breakconstraintloop does that. After a failure return, any state that
* is known not to be part of a loop is marked with s->tmp == s; this allows
* us not to have to re-prove that fact on later calls. (This convention is
* workable because we already eliminated single-state loops.)
*
* Note that the found loop doesn't necessarily include the first state we
* are called on. Any loop reachable from that state will do.
*
* The maximum recursion depth here is one more than the length of the longest
* loop-free chain of constraint arcs, which is surely no more than the size
* of the NFA ... but that could still be enough to cause trouble.
*/
static int
findconstraintloop(struct nfa *nfa, struct state *s)
{
struct arc *a;
/* Since this is recursive, it could be driven to stack overflow */
if (STACK_TOO_DEEP(nfa->v->re))
{
NERR(REG_ETOOBIG);
return 1; /* to exit as quickly as possible */
}
if (s->tmp != NULL)
{
/* Already proven uninteresting? */
if (s->tmp == s)
return 0;
/* Found a loop involving s */
breakconstraintloop(nfa, s);
/* The tmp fields have been cleaned up by breakconstraintloop */
return 1;
}
for (a = s->outs; a != NULL; a = a->outchain)
{
if (isconstraintarc(a))
{
struct state *sto = a->to;
assert(sto != s);
s->tmp = sto;
if (findconstraintloop(nfa, sto))
return 1;
}
}
/*
* If we get here, no constraint loop exists leading out from s. Mark it
* with s->tmp == s so we need not rediscover that fact again later.
*/
s->tmp = s;
return 0;
}
/*
* breakconstraintloop - break a loop of constraint arcs
*
* sinitial is any one member state of the loop. Each loop member's tmp
* field links to its successor within the loop. (Note that this function
* will reset all the tmp fields to NULL.)
*
* We can break the loop by, for any one state S1 in the loop, cloning its
* loop successor state S2 (and possibly following states), and then moving
* all S1->S2 constraint arcs to point to the cloned S2. The cloned S2 should
* copy any non-constraint outarcs of S2. Constraint outarcs should be
* dropped if they point back to S1, else they need to be copied as arcs to
* similarly cloned states S3, S4, etc. In general, each cloned state copies
* non-constraint outarcs, drops constraint outarcs that would lead to itself
* or any earlier cloned state, and sends other constraint outarcs to newly
* cloned states. No cloned state will have any inarcs that aren't constraint
* arcs or do not lead from S1 or earlier-cloned states. It's okay to drop
* constraint back-arcs since they would not take us to any state we've not
* already been in; therefore, no new constraint loop is created. In this way
* we generate a modified NFA that can still represent every useful state
* sequence, but not sequences that represent state loops with no consumption
* of input data. Note that the set of cloned states will certainly include
* all of the loop member states other than S1, and it may also include
* non-loop states that are reachable from S2 via constraint arcs. This is
* important because there is no guarantee that findconstraintloop found a
* maximal loop (and searching for one would be NP-hard, so don't try).
* Frequently the "non-loop states" are actually part of a larger loop that
* we didn't notice, and indeed there may be several overlapping loops.
* This technique ensures convergence in such cases, while considering only
* the originally-found loop does not.
*
* If there is only one S1->S2 constraint arc, then that constraint is
* certainly satisfied when we enter any of the clone states. This means that
* in the common case where many of the constraint arcs are identically
* labeled, we can merge together clone states linked by a similarly-labeled
* constraint: if we can get to the first one we can certainly get to the
* second, so there's no need to distinguish. This greatly reduces the number
* of new states needed, so we preferentially break the given loop at a state
* pair where this is true.
*
* Furthermore, it's fairly common to find that a cloned successor state has
* no outarcs, especially if we're a bit aggressive about removing unnecessary
* outarcs. If that happens, then there is simply not any interesting state
* that can be reached through the predecessor's loop arcs, which means we can
* break the loop just by removing those loop arcs, with no new states added.
*/
static void
breakconstraintloop(struct nfa *nfa, struct state *sinitial)
{
struct state *s;
struct state *shead;
struct state *stail;
struct state *sclone;
struct state *nexts;
struct arc *refarc;
struct arc *a;
struct arc *nexta;
/*
* Start by identifying which loop step we want to break at.
* Preferentially this is one with only one constraint arc. (XXX are
* there any other secondary heuristics we want to use here?) Set refarc
* to point to the selected lone constraint arc, if there is one.
*/
refarc = NULL;
s = sinitial;
do
{
nexts = s->tmp;
assert(nexts != s); /* should not see any one-element loops */
if (refarc == NULL)
{
int narcs = 0;
for (a = s->outs; a != NULL; a = a->outchain)
{
if (a->to == nexts && isconstraintarc(a))
{
refarc = a;
narcs++;
}
}
assert(narcs > 0);
if (narcs > 1)
refarc = NULL; /* multiple constraint arcs here, no good */
}
s = nexts;
} while (s != sinitial);
if (refarc)
{
/* break at the refarc */
shead = refarc->from;
stail = refarc->to;
assert(stail == shead->tmp);
}
else
{
/* for lack of a better idea, break after sinitial */
shead = sinitial;
stail = sinitial->tmp;
}
/*
* Reset the tmp fields so that we can use them for local storage in
* clonesuccessorstates. (findconstraintloop won't mind, since it's just
* going to abandon its search anyway.)
*/
for (s = nfa->states; s != NULL; s = s->next)
s->tmp = NULL;
/*
* Recursively build clone state(s) as needed.
*/
sclone = newstate(nfa);
if (sclone == NULL)
{
assert(NISERR());
return;
}
clonesuccessorstates(nfa, stail, sclone, shead, refarc,
NULL, NULL, nfa->nstates);
if (NISERR())
return;
/*
* It's possible that sclone has no outarcs at all, in which case it's
* useless. (We don't try extremely hard to get rid of useless states
* here, but this is an easy and fairly common case.)
*/
if (sclone->nouts == 0)
{
freestate(nfa, sclone);
sclone = NULL;
}
/*
* Move shead's constraint-loop arcs to point to sclone, or just drop them
* if we discovered we don't need sclone.
*/
for (a = shead->outs; a != NULL; a = nexta)
{
nexta = a->outchain;
if (a->to == stail && isconstraintarc(a))
{
if (sclone)
cparc(nfa, a, shead, sclone);
freearc(nfa, a);
if (NISERR())
break;
}
}
}
/*
* clonesuccessorstates - create a tree of constraint-arc successor states
*
* ssource is the state to be cloned, and sclone is the state to copy its
* outarcs into. sclone's inarcs, if any, should already be set up.
*
* spredecessor is the original predecessor state that we are trying to build
* successors for (it may not be the immediate predecessor of ssource).
* refarc, if not NULL, is the original constraint arc that is known to have
* been traversed out of spredecessor to reach the successor(s).
*
* For each cloned successor state, we transiently create a "donemap" that is
* a boolean array showing which source states we've already visited for this
* clone state. This prevents infinite recursion as well as useless repeat
* visits to the same state subtree (which can add up fast, since typical NFAs
* have multiple redundant arc pathways). Each donemap is a char array
* indexed by state number. The donemaps are all of the same size "nstates",
* which is nfa->nstates as of the start of the recursion. This is enough to
* have entries for all pre-existing states, but *not* entries for clone
* states created during the recursion. That's okay since we have no need to
* mark those.
*
* curdonemap is NULL when recursing to a new sclone state, or sclone's
* donemap when we are recursing without having created a new state (which we
* do when we decide we can merge a successor state into the current clone
* state). outerdonemap is NULL at the top level and otherwise the parent
* clone state's donemap.
*
* The successor states we create and fill here form a strict tree structure,
* with each state having exactly one predecessor, except that the toplevel
* state has no inarcs as yet (breakconstraintloop will add its inarcs from
* spredecessor after we're done). Thus, we can examine sclone's inarcs back
* to the root, plus refarc if any, to identify the set of constraints already
* known valid at the current point. This allows us to avoid generating extra
* successor states.
*/
static void
clonesuccessorstates(struct nfa *nfa,
struct state *ssource,
struct state *sclone,
struct state *spredecessor,
struct arc *refarc,
char *curdonemap,
char *outerdonemap,
int nstates)
{
char *donemap;
struct arc *a;
/* Since this is recursive, it could be driven to stack overflow */
if (STACK_TOO_DEEP(nfa->v->re))
{
NERR(REG_ETOOBIG);
return;
}
/* If this state hasn't already got a donemap, create one */
donemap = curdonemap;
if (donemap == NULL)
{
donemap = (char *) MALLOC(nstates * sizeof(char));
if (donemap == NULL)
{
NERR(REG_ESPACE);
return;
}
if (outerdonemap != NULL)
{
/*
* Not at outermost recursion level, so copy the outer level's
* donemap; this ensures that we see states in process of being
* visited at outer levels, or already merged into predecessor
* states, as ones we shouldn't traverse back to.
*/
memcpy(donemap, outerdonemap, nstates * sizeof(char));
}
else
{
/* At outermost level, only spredecessor is off-limits */
memset(donemap, 0, nstates * sizeof(char));
assert(spredecessor->no < nstates);
donemap[spredecessor->no] = 1;
}
}
/* Mark ssource as visited in the donemap */
assert(ssource->no < nstates);
assert(donemap[ssource->no] == 0);
donemap[ssource->no] = 1;
/*
* We proceed by first cloning all of ssource's outarcs, creating new
* clone states as needed but not doing more with them than that. Then in
* a second pass, recurse to process the child clone states. This allows
* us to have only one child clone state per reachable source state, even
* when there are multiple outarcs leading to the same state. Also, when
* we do visit a child state, its set of inarcs is known exactly, which
* makes it safe to apply the constraint-is-already-checked optimization.
* Also, this ensures that we've merged all the states we can into the
* current clone before we recurse to any children, thus possibly saving
* them from making extra images of those states.
*
* While this function runs, child clone states of the current state are
* marked by setting their tmp fields to point to the original state they
* were cloned from. This makes it possible to detect multiple outarcs
* leading to the same state, and also makes it easy to distinguish clone
* states from original states (which will have tmp == NULL).
*/
for (a = ssource->outs; a != NULL && !NISERR(); a = a->outchain)
{
struct state *sto = a->to;
/*
* We do not consider cloning successor states that have no constraint
* outarcs; just link to them as-is. They cannot be part of a
* constraint loop so there is no need to make copies. In particular,
* this rule keeps us from trying to clone the post state, which would
* be a bad idea.
*/
if (isconstraintarc(a) && hasconstraintout(sto))
{
struct state *prevclone;
int canmerge;
struct arc *a2;
/*
* Back-link constraint arcs must not be followed. Nor is there a
* need to revisit states previously merged into this clone.
*/
assert(sto->no < nstates);
if (donemap[sto->no] != 0)
continue;
/*
* Check whether we already have a child clone state for this
* source state.
*/
prevclone = NULL;
for (a2 = sclone->outs; a2 != NULL; a2 = a2->outchain)
{
if (a2->to->tmp == sto)
{
prevclone = a2->to;
break;
}
}
/*
* If this arc is labeled the same as refarc, or the same as any
* arc we must have traversed to get to sclone, then no additional
* constraints need to be met to get to sto, so we should just
* merge its outarcs into sclone.
*/
if (refarc && a->type == refarc->type && a->co == refarc->co)
canmerge = 1;
else
{
struct state *s;
canmerge = 0;
for (s = sclone; s->ins; s = s->ins->from)
{
if (s->nins == 1 &&
a->type == s->ins->type && a->co == s->ins->co)
{
canmerge = 1;
break;
}
}
}
if (canmerge)
{
/*
* We can merge into sclone. If we previously made a child
* clone state, drop it; there's no need to visit it. (This
* can happen if ssource has multiple pathways to sto, and we
* only just now found one that is provably a no-op.)
*/
if (prevclone)
dropstate(nfa, prevclone); /* kills our outarc, too */
/* Recurse to merge sto's outarcs into sclone */
clonesuccessorstates(nfa,
sto,
sclone,
spredecessor,
refarc,
donemap,
outerdonemap,
nstates);
/* sto should now be marked as previously visited */
assert(NISERR() || donemap[sto->no] == 1);
}
else if (prevclone)
{
/*
* We already have a clone state for this successor, so just
* make another arc to it.
*/
cparc(nfa, a, sclone, prevclone);
}
else
{
/*
* We need to create a new successor clone state.
*/
struct state *stoclone;
stoclone = newstate(nfa);
if (stoclone == NULL)
{
assert(NISERR());
break;
}
/* Mark it as to what it's a clone of */
stoclone->tmp = sto;
/* ... and add the outarc leading to it */
cparc(nfa, a, sclone, stoclone);
}
}
else
{
/*
* Non-constraint outarcs just get copied to sclone, as do outarcs
* leading to states with no constraint outarc.
*/
cparc(nfa, a, sclone, sto);
}
}
/*
* If we are at outer level for this clone state, recurse to all its child
* clone states, clearing their tmp fields as we go. (If we're not
* outermost for sclone, leave this to be done by the outer call level.)
* Note that if we have multiple outarcs leading to the same clone state,
* it will only be recursed-to once.
*/
if (curdonemap == NULL)
{
for (a = sclone->outs; a != NULL && !NISERR(); a = a->outchain)
{
struct state *stoclone = a->to;
struct state *sto = stoclone->tmp;
if (sto != NULL)
{
stoclone->tmp = NULL;
clonesuccessorstates(nfa,
sto,
stoclone,
spredecessor,
refarc,
NULL,
donemap,
nstates);
}
}
/* Don't forget to free sclone's donemap when done with it */
FREE(donemap);
}
}
/*
* cleanup - clean up NFA after optimizations
*/
static void
cleanup(struct nfa *nfa)
{
struct state *s;
struct state *nexts;
int n;
if (NISERR())
return;
/* clear out unreachable or dead-end states */
/* use pre to mark reachable, then post to mark can-reach-post */
markreachable(nfa, nfa->pre, (struct state *) NULL, nfa->pre);
markcanreach(nfa, nfa->post, nfa->pre, nfa->post);
for (s = nfa->states; s != NULL && !NISERR(); s = nexts)
{
nexts = s->next;
if (s->tmp != nfa->post && !s->flag)
dropstate(nfa, s);
}
assert(NISERR() || nfa->post->nins == 0 || nfa->post->tmp == nfa->post);
cleartraverse(nfa, nfa->pre);
assert(NISERR() || nfa->post->nins == 0 || nfa->post->tmp == NULL);
/* the nins==0 (final unreachable) case will be caught later */
/* renumber surviving states */
n = 0;
for (s = nfa->states; s != NULL; s = s->next)
s->no = n++;
nfa->nstates = n;
}
/*
* markreachable - recursive marking of reachable states
*/
static void
markreachable(struct nfa *nfa,
struct state *s,
struct state *okay, /* consider only states with this mark */
struct state *mark) /* the value to mark with */
{
struct arc *a;
/* Since this is recursive, it could be driven to stack overflow */
if (STACK_TOO_DEEP(nfa->v->re))
{
NERR(REG_ETOOBIG);
return;
}
if (s->tmp != okay)
return;
s->tmp = mark;
for (a = s->outs; a != NULL; a = a->outchain)
markreachable(nfa, a->to, okay, mark);
}
/*
* markcanreach - recursive marking of states which can reach here
*/
static void
markcanreach(struct nfa *nfa,
struct state *s,
struct state *okay, /* consider only states with this mark */
struct state *mark) /* the value to mark with */
{
struct arc *a;
/* Since this is recursive, it could be driven to stack overflow */
if (STACK_TOO_DEEP(nfa->v->re))
{
NERR(REG_ETOOBIG);
return;
}
if (s->tmp != okay)
return;
s->tmp = mark;
for (a = s->ins; a != NULL; a = a->inchain)
markcanreach(nfa, a->from, okay, mark);
}
/*
* analyze - ascertain potentially-useful facts about an optimized NFA
*/
static long /* re_info bits to be ORed in */
analyze(struct nfa *nfa)
{
struct arc *a;
struct arc *aa;
if (NISERR())
return 0;
/* Detect whether NFA can't match anything */
if (nfa->pre->outs == NULL)
return REG_UIMPOSSIBLE;
/* Detect whether NFA matches all strings (possibly with length bounds) */
checkmatchall(nfa);
/* Detect whether NFA can possibly match a zero-length string */
for (a = nfa->pre->outs; a != NULL; a = a->outchain)
for (aa = a->to->outs; aa != NULL; aa = aa->outchain)
if (aa->to == nfa->post)
return REG_UEMPTYMATCH;
return 0;
}
/*
* checkmatchall - does the NFA represent no more than a string length test?
*
* If so, set nfa->minmatchall and nfa->maxmatchall correctly (they are -1
* to begin with) and set the MATCHALL bit in nfa->flags.
*
* To succeed, we require all arcs to be PLAIN RAINBOW arcs, except for those
* for pseudocolors (i.e., BOS/BOL/EOS/EOL). We must be able to reach the
* post state via RAINBOW arcs, and if there are any loops in the graph, they
* must be loop-to-self arcs, ensuring that each loop iteration consumes
* exactly one character. (Longer loops are problematic because they create
* non-consecutive possible match lengths; we have no good way to represent
* that situation for lengths beyond the DUPINF limit.)
*
* Pseudocolor arcs complicate things a little. We know that they can only
* appear as pre-state outarcs (for BOS/BOL) or post-state inarcs (for
* EOS/EOL). There, they must exactly replicate the parallel RAINBOW arcs,
* e.g. if the pre state has one RAINBOW outarc to state 2, it must have BOS
* and BOL outarcs to state 2, and no others. Missing or extra pseudocolor
* arcs can occur, meaning that the NFA involves some constraint on the
* adjacent characters, which makes it not a matchall NFA.
*/
static void
checkmatchall(struct nfa *nfa)
{
bool **haspaths;
struct state *s;
int i;
/*
* If there are too many states, don't bother trying to detect matchall.
* This limit serves to bound the time and memory we could consume below.
* Note that even if the graph is all-RAINBOW, if there are significantly
* more than DUPINF states then it's likely that there are paths of length
* more than DUPINF, which would force us to fail anyhow. In practice,
* plausible ways of writing a matchall regex with maximum finite path
* length K tend not to have very many more than K states.
*/
if (nfa->nstates > DUPINF * 2)
return;
/*
* First, scan all the states to verify that only RAINBOW arcs appear,
* plus pseudocolor arcs adjacent to the pre and post states. This lets
* us quickly eliminate most cases that aren't matchall NFAs.
*/
for (s = nfa->states; s != NULL; s = s->next)
{
struct arc *a;
for (a = s->outs; a != NULL; a = a->outchain)
{
if (a->type != PLAIN)
return; /* any LACONs make it non-matchall */
if (a->co != RAINBOW)
{
if (nfa->cm->cd[a->co].flags & PSEUDO)
{
/*
* Pseudocolor arc: verify it's in a valid place (this
* seems quite unlikely to fail, but let's be sure).
*/
if (s == nfa->pre &&
(a->co == nfa->bos[0] || a->co == nfa->bos[1]))
/* okay BOS/BOL arc */ ;
else if (a->to == nfa->post &&
(a->co == nfa->eos[0] || a->co == nfa->eos[1]))
/* okay EOS/EOL arc */ ;
else
return; /* unexpected pseudocolor arc */
/* We'll check these arcs some more below. */
}
else
return; /* any other color makes it non-matchall */
}
}
/* Also, assert that the tmp fields are available for use. */
assert(s->tmp == NULL);
}
/*
* The next cheapest check we can make is to verify that the BOS/BOL
* outarcs of the pre state reach the same states as its RAINBOW outarcs.
* If they don't, the NFA expresses some constraints on the character
* before the matched string, making it non-matchall. Likewise, the
* EOS/EOL inarcs of the post state must match its RAINBOW inarcs.
*/
if (!check_out_colors_match(nfa->pre, RAINBOW, nfa->bos[0]) ||
!check_out_colors_match(nfa->pre, RAINBOW, nfa->bos[1]) ||
!check_in_colors_match(nfa->post, RAINBOW, nfa->eos[0]) ||
!check_in_colors_match(nfa->post, RAINBOW, nfa->eos[1]))
return;
/*
* Initialize an array of path-length arrays, in which
* checkmatchall_recurse will return per-state results. This lets us
* memo-ize the recursive search and avoid exponential time consumption.
*/
haspaths = (bool **) MALLOC(nfa->nstates * sizeof(bool *));
if (haspaths == NULL)
return; /* fail quietly */
memset(haspaths, 0, nfa->nstates * sizeof(bool *));
/*
* Recursively search the graph for all-RAINBOW paths to the "post" state,
* starting at the "pre" state, and computing the lengths of the paths.
* (Given the preceding checks, there should be at least one such path.
* However we could get back a false result anyway, in case there are
* multi-state loops, paths exceeding DUPINF+1 length, or non-algorithmic
* failures such as ENOMEM.)
*/
if (checkmatchall_recurse(nfa, nfa->pre, haspaths))
{
/* The useful result is the path length array for the pre state */
bool *haspath = haspaths[nfa->pre->no];
int minmatch,
maxmatch,
morematch;
assert(haspath != NULL);
/*
* haspath[] now represents the set of possible path lengths; but we
* want to reduce that to a min and max value, because it doesn't seem
* worth complicating regexec.c to deal with nonconsecutive possible
* match lengths. Find min and max of first run of lengths, then
* verify there are no nonconsecutive lengths.
*/
for (minmatch = 0; minmatch <= DUPINF + 1; minmatch++)
{
if (haspath[minmatch])
break;
}
assert(minmatch <= DUPINF + 1); /* else checkmatchall_recurse lied */
for (maxmatch = minmatch; maxmatch < DUPINF + 1; maxmatch++)
{
if (!haspath[maxmatch + 1])
break;
}
for (morematch = maxmatch + 1; morematch <= DUPINF + 1; morematch++)
{
if (haspath[morematch])
{
haspath = NULL; /* fail, there are nonconsecutive lengths */
break;
}
}
if (haspath != NULL)
{
/*
* Success, so record the info. Here we have a fine point: the
* path length from the pre state includes the pre-to-initial
* transition, so it's one more than the actually matched string
* length. (We avoided counting the final-to-post transition
* within checkmatchall_recurse, but not this one.) This is why
* checkmatchall_recurse allows one more level of path length than
* might seem necessary. This decrement also takes care of
* converting checkmatchall_recurse's definition of "infinity" as
* "DUPINF+1" to our normal representation as "DUPINF".
*/
assert(minmatch > 0); /* else pre and post states were adjacent */
nfa->minmatchall = minmatch - 1;
nfa->maxmatchall = maxmatch - 1;
nfa->flags |= MATCHALL;
}
}
/* Clean up */
for (i = 0; i < nfa->nstates; i++)
{
if (haspaths[i] != NULL)
FREE(haspaths[i]);
}
FREE(haspaths);
}
/*
* checkmatchall_recurse - recursive search for checkmatchall
*
* s is the state to be examined in this recursion level.
* haspaths[] is an array of per-state exit path length arrays.
*
* We return true if the search was performed successfully, false if
* we had to fail because of multi-state loops or other internal reasons.
* (Because "dead" states that can't reach the post state have been
* eliminated, and we already verified that only RAINBOW and matching
* pseudocolor arcs exist, every state should have RAINBOW path(s) to
* the post state. Hence we take a false result from recursive calls
* as meaning that we'd better fail altogether, not just that that
* particular state can't reach the post state.)
*
* On success, we store a malloc'd result array in haspaths[s->no],
* showing the possible path lengths from s to the post state.
* Each state's haspath[] array is of length DUPINF+2. The entries from
* k = 0 to DUPINF are true if there is an all-RAINBOW path of length k
* from this state to the string end. haspath[DUPINF+1] is true if all
* path lengths >= DUPINF+1 are possible. (Situations that cannot be
* represented under these rules cause failure.)
*
* checkmatchall is responsible for eventually freeing the haspath[] arrays.
*/
static bool
checkmatchall_recurse(struct nfa *nfa, struct state *s, bool **haspaths)
{
bool result = false;
bool foundloop = false;
bool *haspath;
struct arc *a;
/*
* Since this is recursive, it could be driven to stack overflow. But we
* need not treat that as a hard failure; just deem the NFA non-matchall.
*/
if (STACK_TOO_DEEP(nfa->v->re))
return false;
/* In case the search takes a long time, check for cancel */
if (CANCEL_REQUESTED(nfa->v->re))
{
NERR(REG_CANCEL);
return false;
}
/* Create a haspath array for this state */
haspath = (bool *) MALLOC((DUPINF + 2) * sizeof(bool));
if (haspath == NULL)
return false; /* again, treat as non-matchall */
memset(haspath, 0, (DUPINF + 2) * sizeof(bool));
/* Mark this state as being visited */
assert(s->tmp == NULL);
s->tmp = s;
for (a = s->outs; a != NULL; a = a->outchain)
{
if (a->co != RAINBOW)
continue; /* ignore pseudocolor arcs */
if (a->to == nfa->post)
{
/* We found an all-RAINBOW path to the post state */
result = true;
/*
* Mark this state as being zero steps away from the string end
* (the transition to the post state isn't counted).
*/
haspath[0] = true;
}
else if (a->to == s)
{
/* We found a cycle of length 1, which we'll deal with below. */
foundloop = true;
}
else if (a->to->tmp != NULL)
{
/* It's busy, so we found a cycle of length > 1, so fail. */
result = false;
break;
}
else
{
/* Consider paths forward through this to-state. */
bool *nexthaspath;
int i;
/* If to-state was not already visited, recurse */
if (haspaths[a->to->no] == NULL)
{
result = checkmatchall_recurse(nfa, a->to, haspaths);
/* Fail if any recursive path fails */
if (!result)
break;
}
else
{
/* The previous visit must have found path(s) to the end */
result = true;
}
assert(a->to->tmp == NULL);
nexthaspath = haspaths[a->to->no];
assert(nexthaspath != NULL);
/*
* Now, for every path of length i from a->to to the string end,
* there is a path of length i + 1 from s to the string end.
*/
if (nexthaspath[DUPINF] != nexthaspath[DUPINF + 1])
{
/*
* a->to has a path of length exactly DUPINF, but not longer;
* or it has paths of all lengths > DUPINF but not one of
* exactly that length. In either case, we cannot represent
* the possible path lengths from s correctly, so fail.
*/
result = false;
break;
}
/* Merge knowledge of these path lengths into what we have */
for (i = 0; i < DUPINF; i++)
haspath[i + 1] |= nexthaspath[i];
/* Infinity + 1 is still infinity */
haspath[DUPINF + 1] |= nexthaspath[DUPINF + 1];
}
}
if (result && foundloop)
{
/*
* If there is a length-1 loop at this state, then find the shortest
* known path length to the end. The loop means that every larger
* path length is possible, too. (It doesn't matter whether any of
* the longer lengths were already known possible.)
*/
int i;
for (i = 0; i <= DUPINF; i++)
{
if (haspath[i])
break;
}
for (i++; i <= DUPINF + 1; i++)
haspath[i] = true;
}
/* Report out the completed path length map */
assert(s->no < nfa->nstates);
assert(haspaths[s->no] == NULL);
haspaths[s->no] = haspath;
/* Mark state no longer busy */
s->tmp = NULL;
return result;
}
/*
* check_out_colors_match - subroutine for checkmatchall
*
* Check whether the set of states reachable from s by arcs of color co1
* is equivalent to the set reachable by arcs of color co2.
* checkmatchall already verified that all of the NFA's arcs are PLAIN,
* so we need not examine arc types here.
*/
static bool
check_out_colors_match(struct state *s, color co1, color co2)
{
bool result = true;
struct arc *a;
/*
* To do this in linear time, we assume that the NFA contains no duplicate
* arcs. Run through the out-arcs, marking states reachable by arcs of
* color co1. Run through again, un-marking states reachable by arcs of
* color co2; if we see a not-marked state, we know this co2 arc is
* unmatched. Then run through again, checking for still-marked states,
* and in any case leaving all the tmp fields reset to NULL.
*/
for (a = s->outs; a != NULL; a = a->outchain)
{
if (a->co == co1)
{
assert(a->to->tmp == NULL);
a->to->tmp = a->to;
}
}
for (a = s->outs; a != NULL; a = a->outchain)
{
if (a->co == co2)
{
if (a->to->tmp != NULL)
a->to->tmp = NULL;
else
result = false; /* unmatched co2 arc */
}
}
for (a = s->outs; a != NULL; a = a->outchain)
{
if (a->co == co1)
{
if (a->to->tmp != NULL)
{
result = false; /* unmatched co1 arc */
a->to->tmp = NULL;
}
}
}
return result;
}
/*
* check_in_colors_match - subroutine for checkmatchall
*
* Check whether the set of states that can reach s by arcs of color co1
* is equivalent to the set that can reach s by arcs of color co2.
* checkmatchall already verified that all of the NFA's arcs are PLAIN,
* so we need not examine arc types here.
*/
static bool
check_in_colors_match(struct state *s, color co1, color co2)
{
bool result = true;
struct arc *a;
/*
* Identical algorithm to check_out_colors_match, except examine the
* from-states of s' inarcs.
*/
for (a = s->ins; a != NULL; a = a->inchain)
{
if (a->co == co1)
{
assert(a->from->tmp == NULL);
a->from->tmp = a->from;
}
}
for (a = s->ins; a != NULL; a = a->inchain)
{
if (a->co == co2)
{
if (a->from->tmp != NULL)
a->from->tmp = NULL;
else
result = false; /* unmatched co2 arc */
}
}
for (a = s->ins; a != NULL; a = a->inchain)
{
if (a->co == co1)
{
if (a->from->tmp != NULL)
{
result = false; /* unmatched co1 arc */
a->from->tmp = NULL;
}
}
}
return result;
}
/*
* compact - construct the compact representation of an NFA
*/
static void
compact(struct nfa *nfa,
struct cnfa *cnfa)
{
struct state *s;
struct arc *a;
size_t nstates;
size_t narcs;
struct carc *ca;
struct carc *first;
assert(!NISERR());
nstates = 0;
narcs = 0;
for (s = nfa->states; s != NULL; s = s->next)
{
nstates++;
narcs += s->nouts + 1; /* need one extra for endmarker */
}
cnfa->stflags = (char *) MALLOC(nstates * sizeof(char));
cnfa->states = (struct carc **) MALLOC(nstates * sizeof(struct carc *));
cnfa->arcs = (struct carc *) MALLOC(narcs * sizeof(struct carc));
if (cnfa->stflags == NULL || cnfa->states == NULL || cnfa->arcs == NULL)
{
if (cnfa->stflags != NULL)
FREE(cnfa->stflags);
if (cnfa->states != NULL)
FREE(cnfa->states);
if (cnfa->arcs != NULL)
FREE(cnfa->arcs);
NERR(REG_ESPACE);
return;
}
cnfa->nstates = nstates;
cnfa->pre = nfa->pre->no;
cnfa->post = nfa->post->no;
cnfa->bos[0] = nfa->bos[0];
cnfa->bos[1] = nfa->bos[1];
cnfa->eos[0] = nfa->eos[0];
cnfa->eos[1] = nfa->eos[1];
cnfa->ncolors = maxcolor(nfa->cm) + 1;
cnfa->flags = nfa->flags;
cnfa->minmatchall = nfa->minmatchall;
cnfa->maxmatchall = nfa->maxmatchall;
ca = cnfa->arcs;
for (s = nfa->states; s != NULL; s = s->next)
{
assert((size_t) s->no < nstates);
cnfa->stflags[s->no] = 0;
cnfa->states[s->no] = ca;
first = ca;
for (a = s->outs; a != NULL; a = a->outchain)
switch (a->type)
{
case PLAIN:
ca->co = a->co;
ca->to = a->to->no;
ca++;
break;
case LACON:
assert(s->no != cnfa->pre);
assert(a->co >= 0);
ca->co = (color) (cnfa->ncolors + a->co);
ca->to = a->to->no;
ca++;
cnfa->flags |= HASLACONS;
break;
default:
NERR(REG_ASSERT);
return;
}
carcsort(first, ca - first);
ca->co = COLORLESS;
ca->to = 0;
ca++;
}
assert(ca == &cnfa->arcs[narcs]);
assert(cnfa->nstates != 0);
/* mark no-progress states */
for (a = nfa->pre->outs; a != NULL; a = a->outchain)
cnfa->stflags[a->to->no] = CNFA_NOPROGRESS;
cnfa->stflags[nfa->pre->no] = CNFA_NOPROGRESS;
}
/*
* carcsort - sort compacted-NFA arcs by color
*/
static void
carcsort(struct carc *first, size_t n)
{
if (n > 1)
qsort(first, n, sizeof(struct carc), carc_cmp);
}
static int
carc_cmp(const void *a, const void *b)
{
const struct carc *aa = (const struct carc *) a;
const struct carc *bb = (const struct carc *) b;
if (aa->co < bb->co)
return -1;
if (aa->co > bb->co)
return +1;
if (aa->to < bb->to)
return -1;
if (aa->to > bb->to)
return +1;
return 0;
}
/*
* freecnfa - free a compacted NFA
*/
static void
freecnfa(struct cnfa *cnfa)
{
assert(!NULLCNFA(*cnfa)); /* not empty already */
FREE(cnfa->stflags);
FREE(cnfa->states);
FREE(cnfa->arcs);
ZAPCNFA(*cnfa);
}
/*
* dumpnfa - dump an NFA in human-readable form
*/
static void
dumpnfa(struct nfa *nfa,
FILE *f)
{
#ifdef REG_DEBUG
struct state *s;
int nstates = 0;
int narcs = 0;
fprintf(f, "pre %d, post %d", nfa->pre->no, nfa->post->no);
if (nfa->bos[0] != COLORLESS)
fprintf(f, ", bos [%ld]", (long) nfa->bos[0]);
if (nfa->bos[1] != COLORLESS)
fprintf(f, ", bol [%ld]", (long) nfa->bos[1]);
if (nfa->eos[0] != COLORLESS)
fprintf(f, ", eos [%ld]", (long) nfa->eos[0]);
if (nfa->eos[1] != COLORLESS)
fprintf(f, ", eol [%ld]", (long) nfa->eos[1]);
if (nfa->flags & HASLACONS)
fprintf(f, ", haslacons");
if (nfa->flags & MATCHALL)
{
fprintf(f, ", minmatchall %d", nfa->minmatchall);
if (nfa->maxmatchall == DUPINF)
fprintf(f, ", maxmatchall inf");
else
fprintf(f, ", maxmatchall %d", nfa->maxmatchall);
}
fprintf(f, "\n");
for (s = nfa->states; s != NULL; s = s->next)
{
dumpstate(s, f);
nstates++;
narcs += s->nouts;
}
fprintf(f, "total of %d states, %d arcs\n", nstates, narcs);
if (nfa->parent == NULL)
dumpcolors(nfa->cm, f);
fflush(f);
#endif
}
#ifdef REG_DEBUG /* subordinates of dumpnfa */
/*
* dumpstate - dump an NFA state in human-readable form
*/
static void
dumpstate(struct state *s,
FILE *f)
{
struct arc *a;
fprintf(f, "%d%s%c", s->no, (s->tmp != NULL) ? "T" : "",
(s->flag) ? s->flag : '.');
if (s->prev != NULL && s->prev->next != s)
fprintf(f, "\tstate chain bad\n");
if (s->nouts == 0)
fprintf(f, "\tno out arcs\n");
else
dumparcs(s, f);
for (a = s->ins; a != NULL; a = a->inchain)
{
if (a->to != s)
fprintf(f, "\tlink from %d to %d on %d's in-chain\n",
a->from->no, a->to->no, s->no);
}
fflush(f);
}
/*
* dumparcs - dump out-arcs in human-readable form
*/
static void
dumparcs(struct state *s,
FILE *f)
{
int pos;
struct arc *a;
/* printing oldest arcs first is usually clearer */
a = s->outs;
assert(a != NULL);
while (a->outchain != NULL)
a = a->outchain;
pos = 1;
do
{
dumparc(a, s, f);
if (pos == 5)
{
fprintf(f, "\n");
pos = 1;
}
else
pos++;
a = a->outchainRev;
} while (a != NULL);
if (pos != 1)
fprintf(f, "\n");
}
/*
* dumparc - dump one outarc in readable form, including prefixing tab
*/
static void
dumparc(struct arc *a,
struct state *s,
FILE *f)
{
struct arc *aa;
fprintf(f, "\t");
switch (a->type)
{
case PLAIN:
if (a->co == RAINBOW)
fprintf(f, "[*]");
else
fprintf(f, "[%ld]", (long) a->co);
break;
case AHEAD:
if (a->co == RAINBOW)
fprintf(f, ">*>");
else
fprintf(f, ">%ld>", (long) a->co);
break;
case BEHIND:
if (a->co == RAINBOW)
fprintf(f, "<*<");
else
fprintf(f, "<%ld<", (long) a->co);
break;
case LACON:
fprintf(f, ":%ld:", (long) a->co);
break;
case '^':
case '$':
fprintf(f, "%c%d", a->type, (int) a->co);
break;
case EMPTY:
break;
default:
fprintf(f, "0x%x/0%lo", a->type, (long) a->co);
break;
}
if (a->from != s)
fprintf(f, "?%d?", a->from->no);
for (aa = a->from->outs; aa != NULL; aa = aa->outchain)
if (aa == a)
break; /* NOTE BREAK OUT */
if (aa == NULL)
fprintf(f, "?!?"); /* missing from out-chain */
fprintf(f, "->");
if (a->to == NULL)
{
fprintf(f, "NULL");
return;
}
fprintf(f, "%d", a->to->no);
for (aa = a->to->ins; aa != NULL; aa = aa->inchain)
if (aa == a)
break; /* NOTE BREAK OUT */
if (aa == NULL)
fprintf(f, "?!?"); /* missing from in-chain */
}
#endif /* REG_DEBUG */
/*
* dumpcnfa - dump a compacted NFA in human-readable form
*/
#ifdef REG_DEBUG
static void
dumpcnfa(struct cnfa *cnfa,
FILE *f)
{
int st;
fprintf(f, "pre %d, post %d", cnfa->pre, cnfa->post);
if (cnfa->bos[0] != COLORLESS)
fprintf(f, ", bos [%ld]", (long) cnfa->bos[0]);
if (cnfa->bos[1] != COLORLESS)
fprintf(f, ", bol [%ld]", (long) cnfa->bos[1]);
if (cnfa->eos[0] != COLORLESS)
fprintf(f, ", eos [%ld]", (long) cnfa->eos[0]);
if (cnfa->eos[1] != COLORLESS)
fprintf(f, ", eol [%ld]", (long) cnfa->eos[1]);
if (cnfa->flags & HASLACONS)
fprintf(f, ", haslacons");
if (cnfa->flags & MATCHALL)
{
fprintf(f, ", minmatchall %d", cnfa->minmatchall);
if (cnfa->maxmatchall == DUPINF)
fprintf(f, ", maxmatchall inf");
else
fprintf(f, ", maxmatchall %d", cnfa->maxmatchall);
}
fprintf(f, "\n");
for (st = 0; st < cnfa->nstates; st++)
dumpcstate(st, cnfa, f);
fflush(f);
}
#endif
#ifdef REG_DEBUG /* subordinates of dumpcnfa */
/*
* dumpcstate - dump a compacted-NFA state in human-readable form
*/
static void
dumpcstate(int st,
struct cnfa *cnfa,
FILE *f)
{
struct carc *ca;
int pos;
fprintf(f, "%d%s", st, (cnfa->stflags[st] & CNFA_NOPROGRESS) ? ":" : ".");
pos = 1;
for (ca = cnfa->states[st]; ca->co != COLORLESS; ca++)
{
if (ca->co == RAINBOW)
fprintf(f, "\t[*]->%d", ca->to);
else if (ca->co < cnfa->ncolors)
fprintf(f, "\t[%ld]->%d", (long) ca->co, ca->to);
else
fprintf(f, "\t:%ld:->%d", (long) (ca->co - cnfa->ncolors), ca->to);
if (pos == 5)
{
fprintf(f, "\n");
pos = 1;
}
else
pos++;
}
if (ca == cnfa->states[st] || pos != 1)
fprintf(f, "\n");
fflush(f);
}
#endif /* REG_DEBUG */