postgresql/src/backend/access/index/genam.c
Tom Lane 34235a295b Cache fmgr lookup data for index's getnext() function in IndexScanDesc,
so that the fmgr lookup only has to happen once per index scan and not
once per tuple.  Seems to save 5% or so of CPU time for an indexscan.
2000-03-14 23:52:01 +00:00

277 lines
7.4 KiB
C

/*-------------------------------------------------------------------------
*
* genam.c
* general index access method routines
*
* Portions Copyright (c) 1996-2000, PostgreSQL, Inc
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/access/index/genam.c,v 1.24 2000/03/14 23:52:01 tgl Exp $
*
* NOTES
* many of the old access method routines have been turned into
* macros and moved to genam.h -cim 4/30/91
*
*-------------------------------------------------------------------------
*/
/*
* OLD COMMENTS
* Scans are implemented as follows:
*
* `0' represents an invalid item pointer.
* `-' represents an unknown item pointer.
* `X' represents a known item pointers.
* `+' represents known or invalid item pointers.
* `*' represents any item pointers.
*
* State is represented by a triple of these symbols in the order of
* previous, current, next. Note that the case of reverse scans works
* identically.
*
* State Result
* (1) + + - + 0 0 (if the next item pointer is invalid)
* (2) + X - (otherwise)
* (3) * 0 0 * 0 0 (no change)
* (4) + X 0 X 0 0 (shift)
* (5) * + X + X - (shift, add unknown)
*
* All other states cannot occur.
*
* Note:
* It would be possible to cache the status of the previous and
* next item pointer using the flags.
* ----------------------------------------------------------------
*/
#include "postgres.h"
#include "access/genam.h"
/* ----------------------------------------------------------------
* general access method routines
*
* All indexed access methods use an identical scan structure.
* We don't know how the various AMs do locking, however, so we don't
* do anything about that here.
*
* The intent is that an AM implementor will define a beginscan routine
* that calls RelationGetIndexScan, to fill in the scan, and then does
* whatever kind of locking he wants.
*
* At the end of a scan, the AM's endscan routine undoes the locking,
* but does *not* call IndexScanEnd --- the higher-level index_endscan
* routine does that. (We can't do it in the AM because index_endscan
* still needs to touch the IndexScanDesc after calling the AM.)
*
* Because of this, the AM does not have a choice whether to call
* RelationGetIndexScan or not; its beginscan routine must return an
* object made by RelationGetIndexScan. This is kinda ugly but not
* worth cleaning up now.
* ----------------------------------------------------------------
*/
/* ----------------
* RelationGetIndexScan -- Create and fill an IndexScanDesc.
*
* This routine creates an index scan structure and sets its contents
* up correctly. This routine calls AMrescan to set up the scan with
* the passed key.
*
* Parameters:
* relation -- index relation for scan.
* scanFromEnd -- if true, begin scan at one of the index's
* endpoints.
* numberOfKeys -- count of scan keys.
* key -- the ScanKey for the starting position of the scan.
*
* Returns:
* An initialized IndexScanDesc.
* ----------------
*/
IndexScanDesc
RelationGetIndexScan(Relation relation,
bool scanFromEnd,
uint16 numberOfKeys,
ScanKey key)
{
IndexScanDesc scan;
if (!RelationIsValid(relation))
elog(ERROR, "RelationGetIndexScan: relation invalid");
scan = (IndexScanDesc) palloc(sizeof(IndexScanDescData));
scan->relation = relation;
scan->opaque = NULL;
scan->numberOfKeys = numberOfKeys;
ItemPointerSetInvalid(&scan->previousItemData);
ItemPointerSetInvalid(&scan->currentItemData);
ItemPointerSetInvalid(&scan->nextItemData);
ItemPointerSetInvalid(&scan->previousMarkData);
ItemPointerSetInvalid(&scan->currentMarkData);
ItemPointerSetInvalid(&scan->nextMarkData);
/* mark cached function lookup data invalid; it will be set on first use */
scan->fn_getnext.fn_oid = InvalidOid;
if (numberOfKeys > 0)
scan->keyData = (ScanKey) palloc(sizeof(ScanKeyData) * numberOfKeys);
else
scan->keyData = NULL;
index_rescan(scan, scanFromEnd, key);
return scan;
}
/* ----------------
* IndexScanEnd -- End an index scan.
*
* This routine just releases the storage acquired by
* RelationGetIndexScan(). Any AM-level resources are
* assumed to already have been released by the AM's
* endscan routine.
*
* Returns:
* None.
* ----------------
*/
void
IndexScanEnd(IndexScanDesc scan)
{
if (!IndexScanIsValid(scan))
elog(ERROR, "IndexScanEnd: invalid scan");
if (scan->keyData != NULL)
pfree(scan->keyData);
pfree(scan);
}
#ifdef NOT_USED
/* ----------------
* IndexScanRestart -- Restart an index scan.
*
* This routine isn't used by any existing access method. It's
* appropriate if relation level locks are what you want.
*
* Returns:
* None.
*
* Side Effects:
* None.
* ----------------
*/
void
IndexScanRestart(IndexScanDesc scan,
bool scanFromEnd,
ScanKey key)
{
if (!IndexScanIsValid(scan))
elog(ERROR, "IndexScanRestart: invalid scan");
ItemPointerSetInvalid(&scan->previousItemData);
ItemPointerSetInvalid(&scan->currentItemData);
ItemPointerSetInvalid(&scan->nextItemData);
if (RelationGetNumberOfBlocks(scan->relation) == 0)
scan->flags = ScanUnmarked;
else if (scanFromEnd)
scan->flags = ScanUnmarked | ScanUncheckedPrevious;
else
scan->flags = ScanUnmarked | ScanUncheckedNext;
scan->scanFromEnd = (bool) scanFromEnd;
if (scan->numberOfKeys > 0)
memmove(scan->keyData,
key,
scan->numberOfKeys * sizeof(ScanKeyData));
}
/* ----------------
* IndexScanMarkPosition -- Mark current position in a scan.
*
* This routine isn't used by any existing access method, but is the
* one that AM implementors should use, if they don't want to do any
* special locking. If relation-level locking is sufficient, this is
* the routine for you.
*
* Returns:
* None.
*
* Side Effects:
* None.
* ----------------
*/
void
IndexScanMarkPosition(IndexScanDesc scan)
{
RetrieveIndexResult result;
if (scan->flags & ScanUncheckedPrevious)
{
result = index_getnext(scan, BackwardScanDirection);
if (result != NULL)
{
scan->previousItemData = result->index_iptr;
pfree(result);
}
else
ItemPointerSetInvalid(&scan->previousItemData);
}
else if (scan->flags & ScanUncheckedNext)
{
result = (RetrieveIndexResult)
index_getnext(scan, ForwardScanDirection);
if (result != NULL)
{
scan->nextItemData = result->index_iptr;
pfree(result);
}
else
ItemPointerSetInvalid(&scan->nextItemData);
}
scan->previousMarkData = scan->previousItemData;
scan->currentMarkData = scan->currentItemData;
scan->nextMarkData = scan->nextItemData;
scan->flags = 0x0; /* XXX should have a symbolic name */
}
/* ----------------
* IndexScanRestorePosition -- Restore position on a marked scan.
*
* This routine isn't used by any existing access method, but is the
* one that AM implementors should use if they don't want to do any
* special locking. If relation-level locking is sufficient, then
* this is the one you want.
*
* Returns:
* None.
*
* Side Effects:
* None.
* ----------------
*/
void
IndexScanRestorePosition(IndexScanDesc scan)
{
if (scan->flags & ScanUnmarked)
elog(ERROR, "IndexScanRestorePosition: no mark to restore");
scan->previousItemData = scan->previousMarkData;
scan->currentItemData = scan->currentMarkData;
scan->nextItemData = scan->nextMarkData;
scan->flags = 0x0; /* XXX should have a symbolic name */
}
#endif