postgresql/src/backend/partitioning/partprune.c
Tom Lane 1d9351a87c Fix hash partition pruning with asymmetric partition sets.
perform_pruning_combine_step() was not taught about the number of
partition indexes used in hash partitioning; more embarrassingly,
get_matching_hash_bounds() also had it wrong.  These errors are masked
in the common case where all the partitions have the same modulus
and no partition is missing.  However, with missing or unequal-size
partitions, we could erroneously prune some partitions that need
to be scanned, leading to silently wrong query answers.

While a minimal-footprint fix for this could be to export
get_partition_bound_num_indexes and make the incorrect functions use it,
I'm of the opinion that that function should never have existed in the
first place.  It's not reasonable data structure design that
PartitionBoundInfoData lacks any explicit record of the length of
its indexes[] array.  Perhaps that was all right when it could always
be assumed equal to ndatums, but something should have been done about
it as soon as that stopped being true.  Putting in an explicit
"nindexes" field makes both partition_bounds_equal() and
partition_bounds_copy() simpler, safer, and faster than before,
and removes explicit knowledge of the number-of-partition-indexes
rules from some other places too.

This change also makes get_hash_partition_greatest_modulus obsolete.
I left that in place in case any external code uses it, but no core
code does anymore.

Per bug #16840 from Michał Albrycht.  Back-patch to v11 where the
hash partitioning code came in.  (In the back branches, add the new
field at the end of PartitionBoundInfoData to minimize ABI risks.)

Discussion: https://postgr.es/m/16840-571a22976f829ad4@postgresql.org
2021-01-28 13:41:55 -05:00

3595 lines
108 KiB
C

/*-------------------------------------------------------------------------
*
* partprune.c
* Support for partition pruning during query planning and execution
*
* This module implements partition pruning using the information contained in
* a table's partition descriptor, query clauses, and run-time parameters.
*
* During planning, clauses that can be matched to the table's partition key
* are turned into a set of "pruning steps", which are then executed to
* identify a set of partitions (as indexes in the RelOptInfo->part_rels
* array) that satisfy the constraints in the step. Partitions not in the set
* are said to have been pruned.
*
* A base pruning step may involve expressions whose values are only known
* during execution, such as Params, in which case pruning cannot occur
* entirely during planning. In that case, such steps are included alongside
* the plan, so that they can be used by the executor for further pruning.
*
* There are two kinds of pruning steps. A "base" pruning step represents
* tests on partition key column(s), typically comparisons to expressions.
* A "combine" pruning step represents a Boolean connector (AND/OR), and
* combines the outputs of some previous steps using the appropriate
* combination method.
*
* See gen_partprune_steps_internal() for more details on step generation.
*
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/partitioning/partprune.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/hash.h"
#include "access/nbtree.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_opfamily.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/appendinfo.h"
#include "optimizer/cost.h"
#include "optimizer/optimizer.h"
#include "optimizer/pathnode.h"
#include "parser/parsetree.h"
#include "partitioning/partbounds.h"
#include "partitioning/partprune.h"
#include "rewrite/rewriteManip.h"
#include "utils/array.h"
#include "utils/lsyscache.h"
/*
* Information about a clause matched with a partition key.
*/
typedef struct PartClauseInfo
{
int keyno; /* Partition key number (0 to partnatts - 1) */
Oid opno; /* operator used to compare partkey to expr */
bool op_is_ne; /* is clause's original operator <> ? */
Expr *expr; /* expr the partition key is compared to */
Oid cmpfn; /* Oid of function to compare 'expr' to the
* partition key */
int op_strategy; /* btree strategy identifying the operator */
} PartClauseInfo;
/*
* PartClauseMatchStatus
* Describes the result of match_clause_to_partition_key()
*/
typedef enum PartClauseMatchStatus
{
PARTCLAUSE_NOMATCH,
PARTCLAUSE_MATCH_CLAUSE,
PARTCLAUSE_MATCH_NULLNESS,
PARTCLAUSE_MATCH_STEPS,
PARTCLAUSE_MATCH_CONTRADICT,
PARTCLAUSE_UNSUPPORTED
} PartClauseMatchStatus;
/*
* PartClauseTarget
* Identifies which qual clauses we can use for generating pruning steps
*/
typedef enum PartClauseTarget
{
PARTTARGET_PLANNER, /* want to prune during planning */
PARTTARGET_INITIAL, /* want to prune during executor startup */
PARTTARGET_EXEC /* want to prune during each plan node scan */
} PartClauseTarget;
/*
* GeneratePruningStepsContext
* Information about the current state of generation of "pruning steps"
* for a given set of clauses
*
* gen_partprune_steps() initializes and returns an instance of this struct.
*
* Note that has_mutable_op, has_mutable_arg, and has_exec_param are set if
* we found any potentially-useful-for-pruning clause having those properties,
* whether or not we actually used the clause in the steps list. This
* definition allows us to skip the PARTTARGET_EXEC pass in some cases.
*/
typedef struct GeneratePruningStepsContext
{
/* Copies of input arguments for gen_partprune_steps: */
RelOptInfo *rel; /* the partitioned relation */
PartClauseTarget target; /* use-case we're generating steps for */
/* Result data: */
List *steps; /* list of PartitionPruneSteps */
bool has_mutable_op; /* clauses include any stable operators */
bool has_mutable_arg; /* clauses include any mutable comparison
* values, *other than* exec params */
bool has_exec_param; /* clauses include any PARAM_EXEC params */
bool contradictory; /* clauses were proven self-contradictory */
/* Working state: */
int next_step_id;
} GeneratePruningStepsContext;
/* The result of performing one PartitionPruneStep */
typedef struct PruneStepResult
{
/*
* The offsets of bounds (in a table's boundinfo) whose partition is
* selected by the pruning step.
*/
Bitmapset *bound_offsets;
bool scan_default; /* Scan the default partition? */
bool scan_null; /* Scan the partition for NULL values? */
} PruneStepResult;
static List *make_partitionedrel_pruneinfo(PlannerInfo *root,
RelOptInfo *parentrel,
int *relid_subplan_map,
Relids partrelids, List *prunequal,
Bitmapset **matchedsubplans);
static void gen_partprune_steps(RelOptInfo *rel, List *clauses,
PartClauseTarget target,
GeneratePruningStepsContext *context);
static List *gen_partprune_steps_internal(GeneratePruningStepsContext *context,
List *clauses);
static PartitionPruneStep *gen_prune_step_op(GeneratePruningStepsContext *context,
StrategyNumber opstrategy, bool op_is_ne,
List *exprs, List *cmpfns, Bitmapset *nullkeys);
static PartitionPruneStep *gen_prune_step_combine(GeneratePruningStepsContext *context,
List *source_stepids,
PartitionPruneCombineOp combineOp);
static PartitionPruneStep *gen_prune_steps_from_opexps(GeneratePruningStepsContext *context,
List **keyclauses, Bitmapset *nullkeys);
static PartClauseMatchStatus match_clause_to_partition_key(GeneratePruningStepsContext *context,
Expr *clause, Expr *partkey, int partkeyidx,
bool *clause_is_not_null,
PartClauseInfo **pc, List **clause_steps);
static List *get_steps_using_prefix(GeneratePruningStepsContext *context,
StrategyNumber step_opstrategy,
bool step_op_is_ne,
Expr *step_lastexpr,
Oid step_lastcmpfn,
int step_lastkeyno,
Bitmapset *step_nullkeys,
List *prefix);
static List *get_steps_using_prefix_recurse(GeneratePruningStepsContext *context,
StrategyNumber step_opstrategy,
bool step_op_is_ne,
Expr *step_lastexpr,
Oid step_lastcmpfn,
int step_lastkeyno,
Bitmapset *step_nullkeys,
List *prefix,
ListCell *start,
List *step_exprs,
List *step_cmpfns);
static PruneStepResult *get_matching_hash_bounds(PartitionPruneContext *context,
StrategyNumber opstrategy, Datum *values, int nvalues,
FmgrInfo *partsupfunc, Bitmapset *nullkeys);
static PruneStepResult *get_matching_list_bounds(PartitionPruneContext *context,
StrategyNumber opstrategy, Datum value, int nvalues,
FmgrInfo *partsupfunc, Bitmapset *nullkeys);
static PruneStepResult *get_matching_range_bounds(PartitionPruneContext *context,
StrategyNumber opstrategy, Datum *values, int nvalues,
FmgrInfo *partsupfunc, Bitmapset *nullkeys);
static Bitmapset *pull_exec_paramids(Expr *expr);
static bool pull_exec_paramids_walker(Node *node, Bitmapset **context);
static Bitmapset *get_partkey_exec_paramids(List *steps);
static PruneStepResult *perform_pruning_base_step(PartitionPruneContext *context,
PartitionPruneStepOp *opstep);
static PruneStepResult *perform_pruning_combine_step(PartitionPruneContext *context,
PartitionPruneStepCombine *cstep,
PruneStepResult **step_results);
static PartClauseMatchStatus match_boolean_partition_clause(Oid partopfamily,
Expr *clause,
Expr *partkey,
Expr **outconst);
static void partkey_datum_from_expr(PartitionPruneContext *context,
Expr *expr, int stateidx,
Datum *value, bool *isnull);
/*
* make_partition_pruneinfo
* Builds a PartitionPruneInfo which can be used in the executor to allow
* additional partition pruning to take place. Returns NULL when
* partition pruning would be useless.
*
* 'parentrel' is the RelOptInfo for an appendrel, and 'subpaths' is the list
* of scan paths for its child rels.
*
* 'partitioned_rels' is a List containing Lists of relids of partitioned
* tables (a/k/a non-leaf partitions) that are parents of some of the child
* rels. Here we attempt to populate the PartitionPruneInfo by adding a
* 'prune_infos' item for each sublist in the 'partitioned_rels' list.
* However, some of the sets of partitioned relations may not require any
* run-time pruning. In these cases we'll simply not include a 'prune_infos'
* item for that set and instead we'll add all the subplans which belong to
* that set into the PartitionPruneInfo's 'other_subplans' field. Callers
* will likely never want to prune subplans which are mentioned in this field.
*
* 'prunequal' is a list of potential pruning quals.
*/
PartitionPruneInfo *
make_partition_pruneinfo(PlannerInfo *root, RelOptInfo *parentrel,
List *subpaths, List *partitioned_rels,
List *prunequal)
{
PartitionPruneInfo *pruneinfo;
Bitmapset *allmatchedsubplans = NULL;
int *relid_subplan_map;
ListCell *lc;
List *prunerelinfos;
int i;
/*
* Construct a temporary array to map from planner relids to subplan
* indexes. For convenience, we use 1-based indexes here, so that zero
* can represent an un-filled array entry.
*/
relid_subplan_map = palloc0(sizeof(int) * root->simple_rel_array_size);
/*
* relid_subplan_map maps relid of a leaf partition to the index in
* 'subpaths' of the scan plan for that partition.
*/
i = 1;
foreach(lc, subpaths)
{
Path *path = (Path *) lfirst(lc);
RelOptInfo *pathrel = path->parent;
Assert(IS_SIMPLE_REL(pathrel));
Assert(pathrel->relid < root->simple_rel_array_size);
/* No duplicates please */
Assert(relid_subplan_map[pathrel->relid] == 0);
relid_subplan_map[pathrel->relid] = i++;
}
/* We now build a PartitionedRelPruneInfo for each partitioned rel. */
prunerelinfos = NIL;
foreach(lc, partitioned_rels)
{
Relids partrelids = (Relids) lfirst(lc);
List *pinfolist;
Bitmapset *matchedsubplans = NULL;
pinfolist = make_partitionedrel_pruneinfo(root, parentrel,
relid_subplan_map,
partrelids, prunequal,
&matchedsubplans);
/* When pruning is possible, record the matched subplans */
if (pinfolist != NIL)
{
prunerelinfos = lappend(prunerelinfos, pinfolist);
allmatchedsubplans = bms_join(matchedsubplans,
allmatchedsubplans);
}
}
pfree(relid_subplan_map);
/*
* If none of the partition hierarchies had any useful run-time pruning
* quals, then we can just not bother with run-time pruning.
*/
if (prunerelinfos == NIL)
return NULL;
/* Else build the result data structure */
pruneinfo = makeNode(PartitionPruneInfo);
pruneinfo->prune_infos = prunerelinfos;
/*
* Some subplans may not belong to any of the listed partitioned rels.
* This can happen for UNION ALL queries which include a non-partitioned
* table, or when some of the hierarchies aren't run-time prunable. Build
* a bitmapset of the indexes of all such subplans, so that the executor
* can identify which subplans should never be pruned.
*/
if (bms_num_members(allmatchedsubplans) < list_length(subpaths))
{
Bitmapset *other_subplans;
/* Create the complement of allmatchedsubplans */
other_subplans = bms_add_range(NULL, 0, list_length(subpaths) - 1);
other_subplans = bms_del_members(other_subplans, allmatchedsubplans);
pruneinfo->other_subplans = other_subplans;
}
else
pruneinfo->other_subplans = NULL;
return pruneinfo;
}
/*
* make_partitionedrel_pruneinfo
* Build a List of PartitionedRelPruneInfos, one for each partitioned
* rel. These can be used in the executor to allow additional partition
* pruning to take place.
*
* Here we generate partition pruning steps for 'prunequal' and also build a
* data structure which allows mapping of partition indexes into 'subpaths'
* indexes.
*
* If no non-Const expressions are being compared to the partition key in any
* of the 'partitioned_rels', then we return NIL to indicate no run-time
* pruning should be performed. Run-time pruning would be useless since the
* pruning done during planning will have pruned everything that can be.
*
* On non-NIL return, 'matchedsubplans' is set to the subplan indexes which
* were matched to this partition hierarchy.
*/
static List *
make_partitionedrel_pruneinfo(PlannerInfo *root, RelOptInfo *parentrel,
int *relid_subplan_map,
Relids partrelids, List *prunequal,
Bitmapset **matchedsubplans)
{
RelOptInfo *targetpart = NULL;
List *pinfolist = NIL;
bool doruntimeprune = false;
int *relid_subpart_map;
Bitmapset *subplansfound = NULL;
ListCell *lc;
int rti;
int i;
/*
* Examine each partitioned rel, constructing a temporary array to map
* from planner relids to index of the partitioned rel, and building a
* PartitionedRelPruneInfo for each partitioned rel.
*
* In this phase we discover whether runtime pruning is needed at all; if
* not, we can avoid doing further work.
*/
relid_subpart_map = palloc0(sizeof(int) * root->simple_rel_array_size);
i = 1;
rti = -1;
while ((rti = bms_next_member(partrelids, rti)) > 0)
{
RelOptInfo *subpart = find_base_rel(root, rti);
PartitionedRelPruneInfo *pinfo;
List *partprunequal;
List *initial_pruning_steps;
List *exec_pruning_steps;
Bitmapset *execparamids;
GeneratePruningStepsContext context;
/*
* Fill the mapping array.
*
* relid_subpart_map maps relid of a non-leaf partition to the index
* in the returned PartitionedRelPruneInfo list of the info for that
* partition. We use 1-based indexes here, so that zero can represent
* an un-filled array entry.
*/
Assert(rti < root->simple_rel_array_size);
relid_subpart_map[rti] = i++;
/*
* Translate pruning qual, if necessary, for this partition.
*
* The first item in the list is the target partitioned relation.
*/
if (!targetpart)
{
targetpart = subpart;
/*
* The prunequal is presented to us as a qual for 'parentrel'.
* Frequently this rel is the same as targetpart, so we can skip
* an adjust_appendrel_attrs step. But it might not be, and then
* we have to translate. We update the prunequal parameter here,
* because in later iterations of the loop for child partitions,
* we want to translate from parent to child variables.
*/
if (!bms_equal(parentrel->relids, subpart->relids))
{
int nappinfos;
AppendRelInfo **appinfos = find_appinfos_by_relids(root,
subpart->relids,
&nappinfos);
prunequal = (List *) adjust_appendrel_attrs(root, (Node *)
prunequal,
nappinfos,
appinfos);
pfree(appinfos);
}
partprunequal = prunequal;
}
else
{
/*
* For sub-partitioned tables the columns may not be in the same
* order as the parent, so we must translate the prunequal to make
* it compatible with this relation.
*/
partprunequal = (List *)
adjust_appendrel_attrs_multilevel(root,
(Node *) prunequal,
subpart->relids,
targetpart->relids);
}
/*
* Convert pruning qual to pruning steps. We may need to do this
* twice, once to obtain executor startup pruning steps, and once for
* executor per-scan pruning steps. This first pass creates startup
* pruning steps and detects whether there's any possibly-useful quals
* that would require per-scan pruning.
*/
gen_partprune_steps(subpart, partprunequal, PARTTARGET_INITIAL,
&context);
if (context.contradictory)
{
/*
* This shouldn't happen as the planner should have detected this
* earlier. However, we do use additional quals from parameterized
* paths here. These do only compare Params to the partition key,
* so this shouldn't cause the discovery of any new qual
* contradictions that were not previously discovered as the Param
* values are unknown during planning. Anyway, we'd better do
* something sane here, so let's just disable run-time pruning.
*/
return NIL;
}
/*
* If no mutable operators or expressions appear in usable pruning
* clauses, then there's no point in running startup pruning, because
* plan-time pruning should have pruned everything prunable.
*/
if (context.has_mutable_op || context.has_mutable_arg)
initial_pruning_steps = context.steps;
else
initial_pruning_steps = NIL;
/*
* If no exec Params appear in potentially-usable pruning clauses,
* then there's no point in even thinking about per-scan pruning.
*/
if (context.has_exec_param)
{
/* ... OK, we'd better think about it */
gen_partprune_steps(subpart, partprunequal, PARTTARGET_EXEC,
&context);
if (context.contradictory)
{
/* As above, skip run-time pruning if anything fishy happens */
return NIL;
}
exec_pruning_steps = context.steps;
/*
* Detect which exec Params actually got used; the fact that some
* were in available clauses doesn't mean we actually used them.
* Skip per-scan pruning if there are none.
*/
execparamids = get_partkey_exec_paramids(exec_pruning_steps);
if (bms_is_empty(execparamids))
exec_pruning_steps = NIL;
}
else
{
/* No exec Params anywhere, so forget about scan-time pruning */
exec_pruning_steps = NIL;
execparamids = NULL;
}
if (initial_pruning_steps || exec_pruning_steps)
doruntimeprune = true;
/* Begin constructing the PartitionedRelPruneInfo for this rel */
pinfo = makeNode(PartitionedRelPruneInfo);
pinfo->rtindex = rti;
pinfo->initial_pruning_steps = initial_pruning_steps;
pinfo->exec_pruning_steps = exec_pruning_steps;
pinfo->execparamids = execparamids;
/* Remaining fields will be filled in the next loop */
pinfolist = lappend(pinfolist, pinfo);
}
if (!doruntimeprune)
{
/* No run-time pruning required. */
pfree(relid_subpart_map);
return NIL;
}
/*
* Run-time pruning will be required, so initialize other information.
* That includes two maps -- one needed to convert partition indexes of
* leaf partitions to the indexes of their subplans in the subplan list,
* another needed to convert partition indexes of sub-partitioned
* partitions to the indexes of their PartitionedRelPruneInfo in the
* PartitionedRelPruneInfo list.
*/
foreach(lc, pinfolist)
{
PartitionedRelPruneInfo *pinfo = lfirst(lc);
RelOptInfo *subpart = find_base_rel(root, pinfo->rtindex);
Bitmapset *present_parts;
int nparts = subpart->nparts;
int *subplan_map;
int *subpart_map;
Oid *relid_map;
/*
* Construct the subplan and subpart maps for this partitioning level.
* Here we convert to zero-based indexes, with -1 for empty entries.
* Also construct a Bitmapset of all partitions that are present (that
* is, not pruned already).
*/
subplan_map = (int *) palloc(nparts * sizeof(int));
memset(subplan_map, -1, nparts * sizeof(int));
subpart_map = (int *) palloc(nparts * sizeof(int));
memset(subpart_map, -1, nparts * sizeof(int));
relid_map = (Oid *) palloc0(nparts * sizeof(Oid));
present_parts = NULL;
for (i = 0; i < nparts; i++)
{
RelOptInfo *partrel = subpart->part_rels[i];
int subplanidx;
int subpartidx;
/* Skip processing pruned partitions. */
if (partrel == NULL)
continue;
subplan_map[i] = subplanidx = relid_subplan_map[partrel->relid] - 1;
subpart_map[i] = subpartidx = relid_subpart_map[partrel->relid] - 1;
relid_map[i] = planner_rt_fetch(partrel->relid, root)->relid;
if (subplanidx >= 0)
{
present_parts = bms_add_member(present_parts, i);
/* Record finding this subplan */
subplansfound = bms_add_member(subplansfound, subplanidx);
}
else if (subpartidx >= 0)
present_parts = bms_add_member(present_parts, i);
}
/*
* Ensure there were no stray PartitionedRelPruneInfo generated for
* partitioned tables that we have no sub-paths or
* sub-PartitionedRelPruneInfo for.
*/
Assert(!bms_is_empty(present_parts));
/* Record the maps and other information. */
pinfo->present_parts = present_parts;
pinfo->nparts = nparts;
pinfo->subplan_map = subplan_map;
pinfo->subpart_map = subpart_map;
pinfo->relid_map = relid_map;
}
pfree(relid_subpart_map);
*matchedsubplans = subplansfound;
return pinfolist;
}
/*
* gen_partprune_steps
* Process 'clauses' (typically a rel's baserestrictinfo list of clauses)
* and create a list of "partition pruning steps".
*
* 'target' tells whether to generate pruning steps for planning (use
* immutable clauses only), or for executor startup (use any allowable
* clause except ones containing PARAM_EXEC Params), or for executor
* per-scan pruning (use any allowable clause).
*
* 'context' is an output argument that receives the steps list as well as
* some subsidiary flags; see the GeneratePruningStepsContext typedef.
*/
static void
gen_partprune_steps(RelOptInfo *rel, List *clauses, PartClauseTarget target,
GeneratePruningStepsContext *context)
{
/* Initialize all output values to zero/false/NULL */
memset(context, 0, sizeof(GeneratePruningStepsContext));
context->rel = rel;
context->target = target;
/*
* If this partitioned table is in turn a partition, and it shares any
* partition keys with its parent, then it's possible that the hierarchy
* allows the parent a narrower range of values than some of its
* partitions (particularly the default one). This is normally not
* useful, but it can be to prune the default partition.
*/
if (partition_bound_has_default(rel->boundinfo) && rel->partition_qual)
{
/* Make a copy to avoid modifying the passed-in List */
clauses = list_concat_copy(clauses, rel->partition_qual);
}
/* Down into the rabbit-hole. */
(void) gen_partprune_steps_internal(context, clauses);
}
/*
* prune_append_rel_partitions
* Process rel's baserestrictinfo and make use of quals which can be
* evaluated during query planning in order to determine the minimum set
* of partitions which must be scanned to satisfy these quals. Returns
* the matching partitions in the form of a Bitmapset containing the
* partitions' indexes in the rel's part_rels array.
*
* Callers must ensure that 'rel' is a partitioned table.
*/
Bitmapset *
prune_append_rel_partitions(RelOptInfo *rel)
{
List *clauses = rel->baserestrictinfo;
List *pruning_steps;
GeneratePruningStepsContext gcontext;
PartitionPruneContext context;
Assert(rel->part_scheme != NULL);
/* If there are no partitions, return the empty set */
if (rel->nparts == 0)
return NULL;
/*
* If pruning is disabled or if there are no clauses to prune with, return
* all partitions.
*/
if (!enable_partition_pruning || clauses == NIL)
return bms_add_range(NULL, 0, rel->nparts - 1);
/*
* Process clauses to extract pruning steps that are usable at plan time.
* If the clauses are found to be contradictory, we can return the empty
* set.
*/
gen_partprune_steps(rel, clauses, PARTTARGET_PLANNER,
&gcontext);
if (gcontext.contradictory)
return NULL;
pruning_steps = gcontext.steps;
/* If there's nothing usable, return all partitions */
if (pruning_steps == NIL)
return bms_add_range(NULL, 0, rel->nparts - 1);
/* Set up PartitionPruneContext */
context.strategy = rel->part_scheme->strategy;
context.partnatts = rel->part_scheme->partnatts;
context.nparts = rel->nparts;
context.boundinfo = rel->boundinfo;
context.partcollation = rel->part_scheme->partcollation;
context.partsupfunc = rel->part_scheme->partsupfunc;
context.stepcmpfuncs = (FmgrInfo *) palloc0(sizeof(FmgrInfo) *
context.partnatts *
list_length(pruning_steps));
context.ppccontext = CurrentMemoryContext;
/* These are not valid when being called from the planner */
context.planstate = NULL;
context.exprstates = NULL;
/* Actual pruning happens here. */
return get_matching_partitions(&context, pruning_steps);
}
/*
* get_matching_partitions
* Determine partitions that survive partition pruning
*
* Note: context->planstate must be set to a valid PlanState when the
* pruning_steps were generated with a target other than PARTTARGET_PLANNER.
*
* Returns a Bitmapset of the RelOptInfo->part_rels indexes of the surviving
* partitions.
*/
Bitmapset *
get_matching_partitions(PartitionPruneContext *context, List *pruning_steps)
{
Bitmapset *result;
int num_steps = list_length(pruning_steps),
i;
PruneStepResult **results,
*final_result;
ListCell *lc;
bool scan_default;
/* If there are no pruning steps then all partitions match. */
if (num_steps == 0)
{
Assert(context->nparts > 0);
return bms_add_range(NULL, 0, context->nparts - 1);
}
/*
* Allocate space for individual pruning steps to store its result. Each
* slot will hold a PruneStepResult after performing a given pruning step.
* Later steps may use the result of one or more earlier steps. The
* result of applying all pruning steps is the value contained in the slot
* of the last pruning step.
*/
results = (PruneStepResult **)
palloc0(num_steps * sizeof(PruneStepResult *));
foreach(lc, pruning_steps)
{
PartitionPruneStep *step = lfirst(lc);
switch (nodeTag(step))
{
case T_PartitionPruneStepOp:
results[step->step_id] =
perform_pruning_base_step(context,
(PartitionPruneStepOp *) step);
break;
case T_PartitionPruneStepCombine:
results[step->step_id] =
perform_pruning_combine_step(context,
(PartitionPruneStepCombine *) step,
results);
break;
default:
elog(ERROR, "invalid pruning step type: %d",
(int) nodeTag(step));
}
}
/*
* At this point we know the offsets of all the datums whose corresponding
* partitions need to be in the result, including special null-accepting
* and default partitions. Collect the actual partition indexes now.
*/
final_result = results[num_steps - 1];
Assert(final_result != NULL);
i = -1;
result = NULL;
scan_default = final_result->scan_default;
while ((i = bms_next_member(final_result->bound_offsets, i)) >= 0)
{
int partindex;
Assert(i < context->boundinfo->nindexes);
partindex = context->boundinfo->indexes[i];
if (partindex < 0)
{
/*
* In range partitioning cases, if a partition index is -1 it
* means that the bound at the offset is the upper bound for a
* range not covered by any partition (other than a possible
* default partition). In hash partitioning, the same means no
* partition has been defined for the corresponding remainder
* value.
*
* In either case, the value is still part of the queried range of
* values, so mark to scan the default partition if one exists.
*/
scan_default |= partition_bound_has_default(context->boundinfo);
continue;
}
result = bms_add_member(result, partindex);
}
/* Add the null and/or default partition if needed and present. */
if (final_result->scan_null)
{
Assert(context->strategy == PARTITION_STRATEGY_LIST);
Assert(partition_bound_accepts_nulls(context->boundinfo));
result = bms_add_member(result, context->boundinfo->null_index);
}
if (scan_default)
{
Assert(context->strategy == PARTITION_STRATEGY_LIST ||
context->strategy == PARTITION_STRATEGY_RANGE);
Assert(partition_bound_has_default(context->boundinfo));
result = bms_add_member(result, context->boundinfo->default_index);
}
return result;
}
/*
* gen_partprune_steps_internal
* Processes 'clauses' to generate partition pruning steps.
*
* From OpExpr clauses that are mutually AND'd, we find combinations of those
* that match to the partition key columns and for every such combination,
* we emit a PartitionPruneStepOp containing a vector of expressions whose
* values are used as a look up key to search partitions by comparing the
* values with partition bounds. Relevant details of the operator and a
* vector of (possibly cross-type) comparison functions is also included with
* each step.
*
* For BoolExpr clauses, we recursively generate steps for each argument, and
* return a PartitionPruneStepCombine of their results.
*
* The return value is a list of the steps generated, which are also added to
* the context's steps list. Each step is assigned a step identifier, unique
* even across recursive calls.
*
* If we find clauses that are mutually contradictory, or contradictory with
* the partitioning constraint, or a pseudoconstant clause that contains
* false, we set context->contradictory to true and return NIL (that is, no
* pruning steps). Caller should consider all partitions as pruned in that
* case.
*/
static List *
gen_partprune_steps_internal(GeneratePruningStepsContext *context,
List *clauses)
{
PartitionScheme part_scheme = context->rel->part_scheme;
List *keyclauses[PARTITION_MAX_KEYS];
Bitmapset *nullkeys = NULL,
*notnullkeys = NULL;
bool generate_opsteps = false;
List *result = NIL;
ListCell *lc;
/*
* If this partitioned relation has a default partition and is itself a
* partition (as evidenced by partition_qual being not NIL), we first
* check if the clauses contradict the partition constraint. If they do,
* there's no need to generate any steps as it'd already be proven that no
* partitions need to be scanned.
*
* This is a measure of last resort only to be used because the default
* partition cannot be pruned using the steps generated from clauses that
* contradict the parent's partition constraint; regular pruning, which is
* cheaper, is sufficient when no default partition exists.
*/
if (partition_bound_has_default(context->rel->boundinfo) &&
predicate_refuted_by(context->rel->partition_qual, clauses, false))
{
context->contradictory = true;
return NIL;
}
memset(keyclauses, 0, sizeof(keyclauses));
foreach(lc, clauses)
{
Expr *clause = (Expr *) lfirst(lc);
int i;
/* Look through RestrictInfo, if any */
if (IsA(clause, RestrictInfo))
clause = ((RestrictInfo *) clause)->clause;
/* Constant-false-or-null is contradictory */
if (IsA(clause, Const) &&
(((Const *) clause)->constisnull ||
!DatumGetBool(((Const *) clause)->constvalue)))
{
context->contradictory = true;
return NIL;
}
/* Get the BoolExpr's out of the way. */
if (IsA(clause, BoolExpr))
{
/*
* Generate steps for arguments.
*
* While steps generated for the arguments themselves will be
* added to context->steps during recursion and will be evaluated
* independently, collect their step IDs to be stored in the
* combine step we'll be creating.
*/
if (is_orclause(clause))
{
List *arg_stepids = NIL;
bool all_args_contradictory = true;
ListCell *lc1;
/*
* We can share the outer context area with the recursive
* call, but contradictory had better not be true yet.
*/
Assert(!context->contradictory);
/*
* Get pruning step for each arg. If we get contradictory for
* all args, it means the OR expression is false as a whole.
*/
foreach(lc1, ((BoolExpr *) clause)->args)
{
Expr *arg = lfirst(lc1);
bool arg_contradictory;
List *argsteps;
argsteps = gen_partprune_steps_internal(context,
list_make1(arg));
arg_contradictory = context->contradictory;
/* Keep context->contradictory clear till we're done */
context->contradictory = false;
if (arg_contradictory)
{
/* Just ignore self-contradictory arguments. */
continue;
}
else
all_args_contradictory = false;
if (argsteps != NIL)
{
PartitionPruneStep *step;
Assert(list_length(argsteps) == 1);
step = (PartitionPruneStep *) linitial(argsteps);
arg_stepids = lappend_int(arg_stepids, step->step_id);
}
else
{
PartitionPruneStep *orstep;
/*
* The arg didn't contain a clause matching this
* partition key. We cannot prune using such an arg.
* To indicate that to the pruning code, we must
* construct a dummy PartitionPruneStepCombine whose
* source_stepids is set to an empty List.
*/
orstep = gen_prune_step_combine(context, NIL,
PARTPRUNE_COMBINE_UNION);
arg_stepids = lappend_int(arg_stepids, orstep->step_id);
}
}
/* If all the OR arms are contradictory, we can stop */
if (all_args_contradictory)
{
context->contradictory = true;
return NIL;
}
if (arg_stepids != NIL)
{
PartitionPruneStep *step;
step = gen_prune_step_combine(context, arg_stepids,
PARTPRUNE_COMBINE_UNION);
result = lappend(result, step);
}
continue;
}
else if (is_andclause(clause))
{
List *args = ((BoolExpr *) clause)->args;
List *argsteps,
*arg_stepids = NIL;
ListCell *lc1;
/*
* args may itself contain clauses of arbitrary type, so just
* recurse and later combine the component partitions sets
* using a combine step.
*/
argsteps = gen_partprune_steps_internal(context, args);
/* If any AND arm is contradictory, we can stop immediately */
if (context->contradictory)
return NIL;
foreach(lc1, argsteps)
{
PartitionPruneStep *step = lfirst(lc1);
arg_stepids = lappend_int(arg_stepids, step->step_id);
}
if (arg_stepids != NIL)
{
PartitionPruneStep *step;
step = gen_prune_step_combine(context, arg_stepids,
PARTPRUNE_COMBINE_INTERSECT);
result = lappend(result, step);
}
continue;
}
/*
* Fall-through for a NOT clause, which if it's a Boolean clause,
* will be handled in match_clause_to_partition_key(). We
* currently don't perform any pruning for more complex NOT
* clauses.
*/
}
/*
* See if we can match this clause to any of the partition keys.
*/
for (i = 0; i < part_scheme->partnatts; i++)
{
Expr *partkey = linitial(context->rel->partexprs[i]);
bool clause_is_not_null = false;
PartClauseInfo *pc = NULL;
List *clause_steps = NIL;
switch (match_clause_to_partition_key(context,
clause, partkey, i,
&clause_is_not_null,
&pc, &clause_steps))
{
case PARTCLAUSE_MATCH_CLAUSE:
Assert(pc != NULL);
/*
* Since we only allow strict operators, check for any
* contradicting IS NULL.
*/
if (bms_is_member(i, nullkeys))
{
context->contradictory = true;
return NIL;
}
generate_opsteps = true;
keyclauses[i] = lappend(keyclauses[i], pc);
break;
case PARTCLAUSE_MATCH_NULLNESS:
if (!clause_is_not_null)
{
/*
* check for conflicting IS NOT NULL as well as
* contradicting strict clauses
*/
if (bms_is_member(i, notnullkeys) ||
keyclauses[i] != NIL)
{
context->contradictory = true;
return NIL;
}
nullkeys = bms_add_member(nullkeys, i);
}
else
{
/* check for conflicting IS NULL */
if (bms_is_member(i, nullkeys))
{
context->contradictory = true;
return NIL;
}
notnullkeys = bms_add_member(notnullkeys, i);
}
break;
case PARTCLAUSE_MATCH_STEPS:
Assert(clause_steps != NIL);
result = list_concat(result, clause_steps);
break;
case PARTCLAUSE_MATCH_CONTRADICT:
/* We've nothing more to do if a contradiction was found. */
context->contradictory = true;
return NIL;
case PARTCLAUSE_NOMATCH:
/*
* Clause didn't match this key, but it might match the
* next one.
*/
continue;
case PARTCLAUSE_UNSUPPORTED:
/* This clause cannot be used for pruning. */
break;
}
/* done; go check the next clause. */
break;
}
}
/*-----------
* Now generate some (more) pruning steps. We have three strategies:
*
* 1) Generate pruning steps based on IS NULL clauses:
* a) For list partitioning, null partition keys can only be found in
* the designated null-accepting partition, so if there are IS NULL
* clauses containing partition keys we should generate a pruning
* step that gets rid of all partitions but that one. We can
* disregard any OpExpr we may have found.
* b) For range partitioning, only the default partition can contain
* NULL values, so the same rationale applies.
* c) For hash partitioning, we only apply this strategy if we have
* IS NULL clauses for all the keys. Strategy 2 below will take
* care of the case where some keys have OpExprs and others have
* IS NULL clauses.
*
* 2) If not, generate steps based on OpExprs we have (if any).
*
* 3) If this doesn't work either, we may be able to generate steps to
* prune just the null-accepting partition (if one exists), if we have
* IS NOT NULL clauses for all partition keys.
*/
if (!bms_is_empty(nullkeys) &&
(part_scheme->strategy == PARTITION_STRATEGY_LIST ||
part_scheme->strategy == PARTITION_STRATEGY_RANGE ||
(part_scheme->strategy == PARTITION_STRATEGY_HASH &&
bms_num_members(nullkeys) == part_scheme->partnatts)))
{
PartitionPruneStep *step;
/* Strategy 1 */
step = gen_prune_step_op(context, InvalidStrategy,
false, NIL, NIL, nullkeys);
result = lappend(result, step);
}
else if (generate_opsteps)
{
PartitionPruneStep *step;
/* Strategy 2 */
step = gen_prune_steps_from_opexps(context, keyclauses, nullkeys);
if (step != NULL)
result = lappend(result, step);
}
else if (bms_num_members(notnullkeys) == part_scheme->partnatts)
{
PartitionPruneStep *step;
/* Strategy 3 */
step = gen_prune_step_op(context, InvalidStrategy,
false, NIL, NIL, NULL);
result = lappend(result, step);
}
/*
* Finally, results from all entries appearing in result should be
* combined using an INTERSECT combine step, if more than one.
*/
if (list_length(result) > 1)
{
List *step_ids = NIL;
foreach(lc, result)
{
PartitionPruneStep *step = lfirst(lc);
step_ids = lappend_int(step_ids, step->step_id);
}
if (step_ids != NIL)
{
PartitionPruneStep *step;
step = gen_prune_step_combine(context, step_ids,
PARTPRUNE_COMBINE_INTERSECT);
result = lappend(result, step);
}
}
return result;
}
/*
* gen_prune_step_op
* Generate a pruning step for a specific operator
*
* The step is assigned a unique step identifier and added to context's 'steps'
* list.
*/
static PartitionPruneStep *
gen_prune_step_op(GeneratePruningStepsContext *context,
StrategyNumber opstrategy, bool op_is_ne,
List *exprs, List *cmpfns,
Bitmapset *nullkeys)
{
PartitionPruneStepOp *opstep = makeNode(PartitionPruneStepOp);
opstep->step.step_id = context->next_step_id++;
/*
* For clauses that contain an <> operator, set opstrategy to
* InvalidStrategy to signal get_matching_list_bounds to do the right
* thing.
*/
opstep->opstrategy = op_is_ne ? InvalidStrategy : opstrategy;
Assert(list_length(exprs) == list_length(cmpfns));
opstep->exprs = exprs;
opstep->cmpfns = cmpfns;
opstep->nullkeys = nullkeys;
context->steps = lappend(context->steps, opstep);
return (PartitionPruneStep *) opstep;
}
/*
* gen_prune_step_combine
* Generate a pruning step for a combination of several other steps
*
* The step is assigned a unique step identifier and added to context's
* 'steps' list.
*/
static PartitionPruneStep *
gen_prune_step_combine(GeneratePruningStepsContext *context,
List *source_stepids,
PartitionPruneCombineOp combineOp)
{
PartitionPruneStepCombine *cstep = makeNode(PartitionPruneStepCombine);
cstep->step.step_id = context->next_step_id++;
cstep->combineOp = combineOp;
cstep->source_stepids = source_stepids;
context->steps = lappend(context->steps, cstep);
return (PartitionPruneStep *) cstep;
}
/*
* gen_prune_steps_from_opexps
* Generate pruning steps based on clauses for partition keys
*
* 'keyclauses' contains one list of clauses per partition key. We check here
* if we have found clauses for a valid subset of the partition key. In some
* cases, (depending on the type of partitioning being used) if we didn't
* find clauses for a given key, we discard clauses that may have been
* found for any subsequent keys; see specific notes below.
*/
static PartitionPruneStep *
gen_prune_steps_from_opexps(GeneratePruningStepsContext *context,
List **keyclauses, Bitmapset *nullkeys)
{
PartitionScheme part_scheme = context->rel->part_scheme;
List *opsteps = NIL;
List *btree_clauses[BTMaxStrategyNumber + 1],
*hash_clauses[HTMaxStrategyNumber + 1];
int i;
ListCell *lc;
memset(btree_clauses, 0, sizeof(btree_clauses));
memset(hash_clauses, 0, sizeof(hash_clauses));
for (i = 0; i < part_scheme->partnatts; i++)
{
List *clauselist = keyclauses[i];
bool consider_next_key = true;
/*
* For range partitioning, if we have no clauses for the current key,
* we can't consider any later keys either, so we can stop here.
*/
if (part_scheme->strategy == PARTITION_STRATEGY_RANGE &&
clauselist == NIL)
break;
/*
* For hash partitioning, if a column doesn't have the necessary
* equality clause, there should be an IS NULL clause, otherwise
* pruning is not possible.
*/
if (part_scheme->strategy == PARTITION_STRATEGY_HASH &&
clauselist == NIL && !bms_is_member(i, nullkeys))
return NULL;
foreach(lc, clauselist)
{
PartClauseInfo *pc = (PartClauseInfo *) lfirst(lc);
Oid lefttype,
righttype;
/* Look up the operator's btree/hash strategy number. */
if (pc->op_strategy == InvalidStrategy)
get_op_opfamily_properties(pc->opno,
part_scheme->partopfamily[i],
false,
&pc->op_strategy,
&lefttype,
&righttype);
switch (part_scheme->strategy)
{
case PARTITION_STRATEGY_LIST:
case PARTITION_STRATEGY_RANGE:
btree_clauses[pc->op_strategy] =
lappend(btree_clauses[pc->op_strategy], pc);
/*
* We can't consider subsequent partition keys if the
* clause for the current key contains a non-inclusive
* operator.
*/
if (pc->op_strategy == BTLessStrategyNumber ||
pc->op_strategy == BTGreaterStrategyNumber)
consider_next_key = false;
break;
case PARTITION_STRATEGY_HASH:
if (pc->op_strategy != HTEqualStrategyNumber)
elog(ERROR, "invalid clause for hash partitioning");
hash_clauses[pc->op_strategy] =
lappend(hash_clauses[pc->op_strategy], pc);
break;
default:
elog(ERROR, "invalid partition strategy: %c",
part_scheme->strategy);
break;
}
}
/*
* If we've decided that clauses for subsequent partition keys
* wouldn't be useful for pruning, don't search any further.
*/
if (!consider_next_key)
break;
}
/*
* Now, we have divided clauses according to their operator strategies.
* Check for each strategy if we can generate pruning step(s) by
* collecting a list of expressions whose values will constitute a vector
* that can be used as a lookup key by a partition bound searching
* function.
*/
switch (part_scheme->strategy)
{
case PARTITION_STRATEGY_LIST:
case PARTITION_STRATEGY_RANGE:
{
List *eq_clauses = btree_clauses[BTEqualStrategyNumber];
List *le_clauses = btree_clauses[BTLessEqualStrategyNumber];
List *ge_clauses = btree_clauses[BTGreaterEqualStrategyNumber];
int strat;
/*
* For each clause under consideration for a given strategy,
* we collect expressions from clauses for earlier keys, whose
* operator strategy is inclusive, into a list called
* 'prefix'. By appending the clause's own expression to the
* 'prefix', we'll generate one step using the so generated
* vector and assign the current strategy to it. Actually,
* 'prefix' might contain multiple clauses for the same key,
* in which case, we must generate steps for various
* combinations of expressions of different keys, which
* get_steps_using_prefix takes care of for us.
*/
for (strat = 1; strat <= BTMaxStrategyNumber; strat++)
{
foreach(lc, btree_clauses[strat])
{
PartClauseInfo *pc = lfirst(lc);
ListCell *eq_start;
ListCell *le_start;
ListCell *ge_start;
ListCell *lc1;
List *prefix = NIL;
List *pc_steps;
bool prefix_valid = true;
bool pk_has_clauses;
int keyno;
/*
* If this is a clause for the first partition key,
* there are no preceding expressions; generate a
* pruning step without a prefix.
*
* Note that we pass NULL for step_nullkeys, because
* we don't search list/range partition bounds where
* some keys are NULL.
*/
if (pc->keyno == 0)
{
Assert(pc->op_strategy == strat);
pc_steps = get_steps_using_prefix(context, strat,
pc->op_is_ne,
pc->expr,
pc->cmpfn,
0,
NULL,
NIL);
opsteps = list_concat(opsteps, pc_steps);
continue;
}
eq_start = list_head(eq_clauses);
le_start = list_head(le_clauses);
ge_start = list_head(ge_clauses);
/*
* We arrange clauses into prefix in ascending order
* of their partition key numbers.
*/
for (keyno = 0; keyno < pc->keyno; keyno++)
{
pk_has_clauses = false;
/*
* Expressions from = clauses can always be in the
* prefix, provided they're from an earlier key.
*/
for_each_cell(lc1, eq_clauses, eq_start)
{
PartClauseInfo *eqpc = lfirst(lc1);
if (eqpc->keyno == keyno)
{
prefix = lappend(prefix, eqpc);
pk_has_clauses = true;
}
else
{
Assert(eqpc->keyno > keyno);
break;
}
}
eq_start = lc1;
/*
* If we're generating steps for </<= strategy, we
* can add other <= clauses to the prefix,
* provided they're from an earlier key.
*/
if (strat == BTLessStrategyNumber ||
strat == BTLessEqualStrategyNumber)
{
for_each_cell(lc1, le_clauses, le_start)
{
PartClauseInfo *lepc = lfirst(lc1);
if (lepc->keyno == keyno)
{
prefix = lappend(prefix, lepc);
pk_has_clauses = true;
}
else
{
Assert(lepc->keyno > keyno);
break;
}
}
le_start = lc1;
}
/*
* If we're generating steps for >/>= strategy, we
* can add other >= clauses to the prefix,
* provided they're from an earlier key.
*/
if (strat == BTGreaterStrategyNumber ||
strat == BTGreaterEqualStrategyNumber)
{
for_each_cell(lc1, ge_clauses, ge_start)
{
PartClauseInfo *gepc = lfirst(lc1);
if (gepc->keyno == keyno)
{
prefix = lappend(prefix, gepc);
pk_has_clauses = true;
}
else
{
Assert(gepc->keyno > keyno);
break;
}
}
ge_start = lc1;
}
/*
* If this key has no clauses, prefix is not valid
* anymore.
*/
if (!pk_has_clauses)
{
prefix_valid = false;
break;
}
}
/*
* If prefix_valid, generate PartitionPruneStepOps.
* Otherwise, we would not find clauses for a valid
* subset of the partition keys anymore for the
* strategy; give up on generating partition pruning
* steps further for the strategy.
*
* As mentioned above, if 'prefix' contains multiple
* expressions for the same key, the following will
* generate multiple steps, one for each combination
* of the expressions for different keys.
*
* Note that we pass NULL for step_nullkeys, because
* we don't search list/range partition bounds where
* some keys are NULL.
*/
if (prefix_valid)
{
Assert(pc->op_strategy == strat);
pc_steps = get_steps_using_prefix(context, strat,
pc->op_is_ne,
pc->expr,
pc->cmpfn,
pc->keyno,
NULL,
prefix);
opsteps = list_concat(opsteps, pc_steps);
}
else
break;
}
}
break;
}
case PARTITION_STRATEGY_HASH:
{
List *eq_clauses = hash_clauses[HTEqualStrategyNumber];
/* For hash partitioning, we have just the = strategy. */
if (eq_clauses != NIL)
{
PartClauseInfo *pc;
List *pc_steps;
List *prefix = NIL;
int last_keyno;
ListCell *lc1;
/*
* Locate the clause for the greatest column. This may
* not belong to the last partition key, but it is the
* clause belonging to the last partition key we found a
* clause for above.
*/
pc = llast(eq_clauses);
/*
* There might be multiple clauses which matched to that
* partition key; find the first such clause. While at
* it, add all the clauses before that one to 'prefix'.
*/
last_keyno = pc->keyno;
foreach(lc, eq_clauses)
{
pc = lfirst(lc);
if (pc->keyno == last_keyno)
break;
prefix = lappend(prefix, pc);
}
/*
* For each clause for the "last" column, after appending
* the clause's own expression to the 'prefix', we'll
* generate one step using the so generated vector and
* assign = as its strategy. Actually, 'prefix' might
* contain multiple clauses for the same key, in which
* case, we must generate steps for various combinations
* of expressions of different keys, which
* get_steps_using_prefix will take care of for us.
*/
for_each_cell(lc1, eq_clauses, lc)
{
pc = lfirst(lc1);
/*
* Note that we pass nullkeys for step_nullkeys,
* because we need to tell hash partition bound search
* function which of the keys we found IS NULL clauses
* for.
*/
Assert(pc->op_strategy == HTEqualStrategyNumber);
pc_steps =
get_steps_using_prefix(context,
HTEqualStrategyNumber,
false,
pc->expr,
pc->cmpfn,
pc->keyno,
nullkeys,
prefix);
opsteps = list_concat(opsteps, pc_steps);
}
}
break;
}
default:
elog(ERROR, "invalid partition strategy: %c",
part_scheme->strategy);
break;
}
/* Lastly, add a combine step to mutually AND these op steps, if needed */
if (list_length(opsteps) > 1)
{
List *opstep_ids = NIL;
foreach(lc, opsteps)
{
PartitionPruneStep *step = lfirst(lc);
opstep_ids = lappend_int(opstep_ids, step->step_id);
}
if (opstep_ids != NIL)
return gen_prune_step_combine(context, opstep_ids,
PARTPRUNE_COMBINE_INTERSECT);
return NULL;
}
else if (opsteps != NIL)
return linitial(opsteps);
return NULL;
}
/*
* If the partition key has a collation, then the clause must have the same
* input collation. If the partition key is non-collatable, we assume the
* collation doesn't matter, because while collation wasn't considered when
* performing partitioning, the clause still may have a collation assigned
* due to the other input being of a collatable type.
*
* See also IndexCollMatchesExprColl.
*/
#define PartCollMatchesExprColl(partcoll, exprcoll) \
((partcoll) == InvalidOid || (partcoll) == (exprcoll))
/*
* match_clause_to_partition_key
* Attempt to match the given 'clause' with the specified partition key.
*
* Return value is:
* * PARTCLAUSE_NOMATCH if the clause doesn't match this partition key (but
* caller should keep trying, because it might match a subsequent key).
* Output arguments: none set.
*
* * PARTCLAUSE_MATCH_CLAUSE if there is a match.
* Output arguments: *pc is set to a PartClauseInfo constructed for the
* matched clause.
*
* * PARTCLAUSE_MATCH_NULLNESS if there is a match, and the matched clause was
* either a "a IS NULL" or "a IS NOT NULL" clause.
* Output arguments: *clause_is_not_null is set to false in the former case
* true otherwise.
*
* * PARTCLAUSE_MATCH_STEPS if there is a match.
* Output arguments: *clause_steps is set to a list of PartitionPruneStep
* generated for the clause.
*
* * PARTCLAUSE_MATCH_CONTRADICT if the clause is self-contradictory, ie
* it provably returns FALSE or NULL.
* Output arguments: none set.
*
* * PARTCLAUSE_UNSUPPORTED if the clause doesn't match this partition key
* and couldn't possibly match any other one either, due to its form or
* properties (such as containing a volatile function).
* Output arguments: none set.
*/
static PartClauseMatchStatus
match_clause_to_partition_key(GeneratePruningStepsContext *context,
Expr *clause, Expr *partkey, int partkeyidx,
bool *clause_is_not_null, PartClauseInfo **pc,
List **clause_steps)
{
PartClauseMatchStatus boolmatchstatus;
PartitionScheme part_scheme = context->rel->part_scheme;
Oid partopfamily = part_scheme->partopfamily[partkeyidx],
partcoll = part_scheme->partcollation[partkeyidx];
Expr *expr;
/*
* Recognize specially shaped clauses that match a Boolean partition key.
*/
boolmatchstatus = match_boolean_partition_clause(partopfamily, clause,
partkey, &expr);
if (boolmatchstatus == PARTCLAUSE_MATCH_CLAUSE)
{
PartClauseInfo *partclause;
partclause = (PartClauseInfo *) palloc(sizeof(PartClauseInfo));
partclause->keyno = partkeyidx;
/* Do pruning with the Boolean equality operator. */
partclause->opno = BooleanEqualOperator;
partclause->op_is_ne = false;
partclause->expr = expr;
/* We know that expr is of Boolean type. */
partclause->cmpfn = part_scheme->partsupfunc[partkeyidx].fn_oid;
partclause->op_strategy = InvalidStrategy;
*pc = partclause;
return PARTCLAUSE_MATCH_CLAUSE;
}
else if (IsA(clause, OpExpr) &&
list_length(((OpExpr *) clause)->args) == 2)
{
OpExpr *opclause = (OpExpr *) clause;
Expr *leftop,
*rightop;
Oid opno,
op_lefttype,
op_righttype,
negator = InvalidOid;
Oid cmpfn;
int op_strategy;
bool is_opne_listp = false;
PartClauseInfo *partclause;
leftop = (Expr *) get_leftop(clause);
if (IsA(leftop, RelabelType))
leftop = ((RelabelType *) leftop)->arg;
rightop = (Expr *) get_rightop(clause);
if (IsA(rightop, RelabelType))
rightop = ((RelabelType *) rightop)->arg;
opno = opclause->opno;
/* check if the clause matches this partition key */
if (equal(leftop, partkey))
expr = rightop;
else if (equal(rightop, partkey))
{
/*
* It's only useful if we can commute the operator to put the
* partkey on the left. If we can't, the clause can be deemed
* UNSUPPORTED. Even if its leftop matches some later partkey, we
* now know it has Vars on the right, so it's no use.
*/
opno = get_commutator(opno);
if (!OidIsValid(opno))
return PARTCLAUSE_UNSUPPORTED;
expr = leftop;
}
else
/* clause does not match this partition key, but perhaps next. */
return PARTCLAUSE_NOMATCH;
/*
* Partition key match also requires collation match. There may be
* multiple partkeys with the same expression but different
* collations, so failure is NOMATCH.
*/
if (!PartCollMatchesExprColl(partcoll, opclause->inputcollid))
return PARTCLAUSE_NOMATCH;
/*
* See if the operator is relevant to the partitioning opfamily.
*
* Normally we only care about operators that are listed as being part
* of the partitioning operator family. But there is one exception:
* the not-equals operators are not listed in any operator family
* whatsoever, but their negators (equality) are. We can use one of
* those if we find it, but only for list partitioning.
*
* Note: we report NOMATCH on failure, in case a later partkey has the
* same expression but different opfamily. That's unlikely, but not
* much more so than duplicate expressions with different collations.
*/
if (op_in_opfamily(opno, partopfamily))
{
get_op_opfamily_properties(opno, partopfamily, false,
&op_strategy, &op_lefttype,
&op_righttype);
}
else
{
if (part_scheme->strategy != PARTITION_STRATEGY_LIST)
return PARTCLAUSE_NOMATCH;
/* See if the negator is equality */
negator = get_negator(opno);
if (OidIsValid(negator) && op_in_opfamily(negator, partopfamily))
{
get_op_opfamily_properties(negator, partopfamily, false,
&op_strategy, &op_lefttype,
&op_righttype);
if (op_strategy == BTEqualStrategyNumber)
is_opne_listp = true; /* bingo */
}
/* Nope, it's not <> either. */
if (!is_opne_listp)
return PARTCLAUSE_NOMATCH;
}
/*
* Only allow strict operators. This will guarantee nulls are
* filtered. (This test is likely useless, since btree and hash
* comparison operators are generally strict.)
*/
if (!op_strict(opno))
return PARTCLAUSE_UNSUPPORTED;
/*
* OK, we have a match to the partition key and a suitable operator.
* Examine the other argument to see if it's usable for pruning.
*
* In most of these cases, we can return UNSUPPORTED because the same
* failure would occur no matter which partkey it's matched to. (In
* particular, now that we've successfully matched one side of the
* opclause to a partkey, there is no chance that matching the other
* side to another partkey will produce a usable result, since that'd
* mean there are Vars on both sides.)
*
* Also, if we reject an argument for a target-dependent reason, set
* appropriate fields of *context to report that. We postpone these
* tests until after matching the partkey and the operator, so as to
* reduce the odds of setting the context fields for clauses that do
* not end up contributing to pruning steps.
*
* First, check for non-Const argument. (We assume that any immutable
* subexpression will have been folded to a Const already.)
*/
if (!IsA(expr, Const))
{
Bitmapset *paramids;
/*
* When pruning in the planner, we only support pruning using
* comparisons to constants. We cannot prune on the basis of
* anything that's not immutable. (Note that has_mutable_arg and
* has_exec_param do not get set for this target value.)
*/
if (context->target == PARTTARGET_PLANNER)
return PARTCLAUSE_UNSUPPORTED;
/*
* We can never prune using an expression that contains Vars.
*/
if (contain_var_clause((Node *) expr))
return PARTCLAUSE_UNSUPPORTED;
/*
* And we must reject anything containing a volatile function.
* Stable functions are OK though.
*/
if (contain_volatile_functions((Node *) expr))
return PARTCLAUSE_UNSUPPORTED;
/*
* See if there are any exec Params. If so, we can only use this
* expression during per-scan pruning.
*/
paramids = pull_exec_paramids(expr);
if (!bms_is_empty(paramids))
{
context->has_exec_param = true;
if (context->target != PARTTARGET_EXEC)
return PARTCLAUSE_UNSUPPORTED;
}
else
{
/* It's potentially usable, but mutable */
context->has_mutable_arg = true;
}
}
/*
* Check whether the comparison operator itself is immutable. (We
* assume anything that's in a btree or hash opclass is at least
* stable, but we need to check for immutability.)
*/
if (op_volatile(opno) != PROVOLATILE_IMMUTABLE)
{
context->has_mutable_op = true;
/*
* When pruning in the planner, we cannot prune with mutable
* operators.
*/
if (context->target == PARTTARGET_PLANNER)
return PARTCLAUSE_UNSUPPORTED;
}
/*
* Now find the procedure to use, based on the types. If the clause's
* other argument is of the same type as the partitioning opclass's
* declared input type, we can use the procedure cached in
* PartitionKey. If not, search for a cross-type one in the same
* opfamily; if one doesn't exist, report no match.
*/
if (op_righttype == part_scheme->partopcintype[partkeyidx])
cmpfn = part_scheme->partsupfunc[partkeyidx].fn_oid;
else
{
switch (part_scheme->strategy)
{
/*
* For range and list partitioning, we need the ordering
* procedure with lefttype being the partition key's type,
* and righttype the clause's operator's right type.
*/
case PARTITION_STRATEGY_LIST:
case PARTITION_STRATEGY_RANGE:
cmpfn =
get_opfamily_proc(part_scheme->partopfamily[partkeyidx],
part_scheme->partopcintype[partkeyidx],
op_righttype, BTORDER_PROC);
break;
/*
* For hash partitioning, we need the hashing procedure
* for the clause's type.
*/
case PARTITION_STRATEGY_HASH:
cmpfn =
get_opfamily_proc(part_scheme->partopfamily[partkeyidx],
op_righttype, op_righttype,
HASHEXTENDED_PROC);
break;
default:
elog(ERROR, "invalid partition strategy: %c",
part_scheme->strategy);
cmpfn = InvalidOid; /* keep compiler quiet */
break;
}
if (!OidIsValid(cmpfn))
return PARTCLAUSE_NOMATCH;
}
/*
* Build the clause, passing the negator if applicable.
*/
partclause = (PartClauseInfo *) palloc(sizeof(PartClauseInfo));
partclause->keyno = partkeyidx;
if (is_opne_listp)
{
Assert(OidIsValid(negator));
partclause->opno = negator;
partclause->op_is_ne = true;
partclause->op_strategy = InvalidStrategy;
}
else
{
partclause->opno = opno;
partclause->op_is_ne = false;
partclause->op_strategy = op_strategy;
}
partclause->expr = expr;
partclause->cmpfn = cmpfn;
*pc = partclause;
return PARTCLAUSE_MATCH_CLAUSE;
}
else if (IsA(clause, ScalarArrayOpExpr))
{
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
Oid saop_op = saop->opno;
Oid saop_coll = saop->inputcollid;
Expr *leftop = (Expr *) linitial(saop->args),
*rightop = (Expr *) lsecond(saop->args);
List *elem_exprs,
*elem_clauses;
ListCell *lc1;
if (IsA(leftop, RelabelType))
leftop = ((RelabelType *) leftop)->arg;
/* check if the LHS matches this partition key */
if (!equal(leftop, partkey) ||
!PartCollMatchesExprColl(partcoll, saop->inputcollid))
return PARTCLAUSE_NOMATCH;
/*
* See if the operator is relevant to the partitioning opfamily.
*
* In case of NOT IN (..), we get a '<>', which we handle if list
* partitioning is in use and we're able to confirm that it's negator
* is a btree equality operator belonging to the partitioning operator
* family. As above, report NOMATCH for non-matching operator.
*/
if (!op_in_opfamily(saop_op, partopfamily))
{
Oid negator;
if (part_scheme->strategy != PARTITION_STRATEGY_LIST)
return PARTCLAUSE_NOMATCH;
negator = get_negator(saop_op);
if (OidIsValid(negator) && op_in_opfamily(negator, partopfamily))
{
int strategy;
Oid lefttype,
righttype;
get_op_opfamily_properties(negator, partopfamily,
false, &strategy,
&lefttype, &righttype);
if (strategy != BTEqualStrategyNumber)
return PARTCLAUSE_NOMATCH;
}
else
return PARTCLAUSE_NOMATCH; /* no useful negator */
}
/*
* Only allow strict operators. This will guarantee nulls are
* filtered. (This test is likely useless, since btree and hash
* comparison operators are generally strict.)
*/
if (!op_strict(saop_op))
return PARTCLAUSE_UNSUPPORTED;
/*
* OK, we have a match to the partition key and a suitable operator.
* Examine the array argument to see if it's usable for pruning. This
* is identical to the logic for a plain OpExpr.
*/
if (!IsA(rightop, Const))
{
Bitmapset *paramids;
/*
* When pruning in the planner, we only support pruning using
* comparisons to constants. We cannot prune on the basis of
* anything that's not immutable. (Note that has_mutable_arg and
* has_exec_param do not get set for this target value.)
*/
if (context->target == PARTTARGET_PLANNER)
return PARTCLAUSE_UNSUPPORTED;
/*
* We can never prune using an expression that contains Vars.
*/
if (contain_var_clause((Node *) rightop))
return PARTCLAUSE_UNSUPPORTED;
/*
* And we must reject anything containing a volatile function.
* Stable functions are OK though.
*/
if (contain_volatile_functions((Node *) rightop))
return PARTCLAUSE_UNSUPPORTED;
/*
* See if there are any exec Params. If so, we can only use this
* expression during per-scan pruning.
*/
paramids = pull_exec_paramids(rightop);
if (!bms_is_empty(paramids))
{
context->has_exec_param = true;
if (context->target != PARTTARGET_EXEC)
return PARTCLAUSE_UNSUPPORTED;
}
else
{
/* It's potentially usable, but mutable */
context->has_mutable_arg = true;
}
}
/*
* Check whether the comparison operator itself is immutable. (We
* assume anything that's in a btree or hash opclass is at least
* stable, but we need to check for immutability.)
*/
if (op_volatile(saop_op) != PROVOLATILE_IMMUTABLE)
{
context->has_mutable_op = true;
/*
* When pruning in the planner, we cannot prune with mutable
* operators.
*/
if (context->target == PARTTARGET_PLANNER)
return PARTCLAUSE_UNSUPPORTED;
}
/*
* Examine the contents of the array argument.
*/
elem_exprs = NIL;
if (IsA(rightop, Const))
{
/*
* For a constant array, convert the elements to a list of Const
* nodes, one for each array element (excepting nulls).
*/
Const *arr = (Const *) rightop;
ArrayType *arrval;
int16 elemlen;
bool elembyval;
char elemalign;
Datum *elem_values;
bool *elem_nulls;
int num_elems,
i;
/* If the array itself is null, the saop returns null */
if (arr->constisnull)
return PARTCLAUSE_MATCH_CONTRADICT;
arrval = DatumGetArrayTypeP(arr->constvalue);
get_typlenbyvalalign(ARR_ELEMTYPE(arrval),
&elemlen, &elembyval, &elemalign);
deconstruct_array(arrval,
ARR_ELEMTYPE(arrval),
elemlen, elembyval, elemalign,
&elem_values, &elem_nulls,
&num_elems);
for (i = 0; i < num_elems; i++)
{
Const *elem_expr;
/*
* A null array element must lead to a null comparison result,
* since saop_op is known strict. We can ignore it in the
* useOr case, but otherwise it implies self-contradiction.
*/
if (elem_nulls[i])
{
if (saop->useOr)
continue;
return PARTCLAUSE_MATCH_CONTRADICT;
}
elem_expr = makeConst(ARR_ELEMTYPE(arrval), -1,
arr->constcollid, elemlen,
elem_values[i], false, elembyval);
elem_exprs = lappend(elem_exprs, elem_expr);
}
}
else if (IsA(rightop, ArrayExpr))
{
ArrayExpr *arrexpr = castNode(ArrayExpr, rightop);
/*
* For a nested ArrayExpr, we don't know how to get the actual
* scalar values out into a flat list, so we give up doing
* anything with this ScalarArrayOpExpr.
*/
if (arrexpr->multidims)
return PARTCLAUSE_UNSUPPORTED;
/*
* Otherwise, we can just use the list of element values.
*/
elem_exprs = arrexpr->elements;
}
else
{
/* Give up on any other clause types. */
return PARTCLAUSE_UNSUPPORTED;
}
/*
* Now generate a list of clauses, one for each array element, of the
* form leftop saop_op elem_expr
*/
elem_clauses = NIL;
foreach(lc1, elem_exprs)
{
Expr *rightop = (Expr *) lfirst(lc1),
*elem_clause;
elem_clause = make_opclause(saop_op, BOOLOID, false,
leftop, rightop,
InvalidOid, saop_coll);
elem_clauses = lappend(elem_clauses, elem_clause);
}
/*
* If we have an ANY clause and multiple elements, now turn the list
* of clauses into an OR expression.
*/
if (saop->useOr && list_length(elem_clauses) > 1)
elem_clauses = list_make1(makeBoolExpr(OR_EXPR, elem_clauses, -1));
/* Finally, generate steps */
*clause_steps = gen_partprune_steps_internal(context, elem_clauses);
if (context->contradictory)
return PARTCLAUSE_MATCH_CONTRADICT;
else if (*clause_steps == NIL)
return PARTCLAUSE_UNSUPPORTED; /* step generation failed */
return PARTCLAUSE_MATCH_STEPS;
}
else if (IsA(clause, NullTest))
{
NullTest *nulltest = (NullTest *) clause;
Expr *arg = nulltest->arg;
if (IsA(arg, RelabelType))
arg = ((RelabelType *) arg)->arg;
/* Does arg match with this partition key column? */
if (!equal(arg, partkey))
return PARTCLAUSE_NOMATCH;
*clause_is_not_null = (nulltest->nulltesttype == IS_NOT_NULL);
return PARTCLAUSE_MATCH_NULLNESS;
}
/*
* If we get here then the return value depends on the result of the
* match_boolean_partition_clause call above. If the call returned
* PARTCLAUSE_UNSUPPORTED then we're either not dealing with a bool qual
* or the bool qual is not suitable for pruning. Since the qual didn't
* match up to any of the other qual types supported here, then trying to
* match it against any other partition key is a waste of time, so just
* return PARTCLAUSE_UNSUPPORTED. If the qual just couldn't be matched to
* this partition key, then it may match another, so return
* PARTCLAUSE_NOMATCH. The only other value that
* match_boolean_partition_clause can return is PARTCLAUSE_MATCH_CLAUSE,
* and since that value was already dealt with above, then we can just
* return boolmatchstatus.
*/
return boolmatchstatus;
}
/*
* get_steps_using_prefix
* Generate list of PartitionPruneStepOp steps each consisting of given
* opstrategy
*
* To generate steps, step_lastexpr and step_lastcmpfn are appended to
* expressions and cmpfns, respectively, extracted from the clauses in
* 'prefix'. Actually, since 'prefix' may contain multiple clauses for the
* same partition key column, we must generate steps for various combinations
* of the clauses of different keys.
*
* For list/range partitioning, callers must ensure that step_nullkeys is
* NULL, and that prefix contains at least one clause for each of the
* partition keys earlier than one specified in step_lastkeyno if it's
* greater than zero. For hash partitioning, step_nullkeys is allowed to be
* non-NULL, but they must ensure that prefix contains at least one clause
* for each of the partition keys other than those specified in step_nullkeys
* and step_lastkeyno.
*
* For both cases, callers must also ensure that clauses in prefix are sorted
* in ascending order of their partition key numbers.
*/
static List *
get_steps_using_prefix(GeneratePruningStepsContext *context,
StrategyNumber step_opstrategy,
bool step_op_is_ne,
Expr *step_lastexpr,
Oid step_lastcmpfn,
int step_lastkeyno,
Bitmapset *step_nullkeys,
List *prefix)
{
Assert(step_nullkeys == NULL ||
context->rel->part_scheme->strategy == PARTITION_STRATEGY_HASH);
/* Quick exit if there are no values to prefix with. */
if (list_length(prefix) == 0)
{
PartitionPruneStep *step;
step = gen_prune_step_op(context,
step_opstrategy,
step_op_is_ne,
list_make1(step_lastexpr),
list_make1_oid(step_lastcmpfn),
step_nullkeys);
return list_make1(step);
}
/* Recurse to generate steps for various combinations. */
return get_steps_using_prefix_recurse(context,
step_opstrategy,
step_op_is_ne,
step_lastexpr,
step_lastcmpfn,
step_lastkeyno,
step_nullkeys,
prefix,
list_head(prefix),
NIL, NIL);
}
/*
* get_steps_using_prefix_recurse
* Recursively generate combinations of clauses for different partition
* keys and start generating steps upon reaching clauses for the greatest
* column that is less than the one for which we're currently generating
* steps (that is, step_lastkeyno)
*
* 'prefix' is the list of PartClauseInfos.
* 'start' is where we should start iterating for the current invocation.
* 'step_exprs' and 'step_cmpfns' each contains the expressions and cmpfns
* we've generated so far from the clauses for the previous part keys.
*/
static List *
get_steps_using_prefix_recurse(GeneratePruningStepsContext *context,
StrategyNumber step_opstrategy,
bool step_op_is_ne,
Expr *step_lastexpr,
Oid step_lastcmpfn,
int step_lastkeyno,
Bitmapset *step_nullkeys,
List *prefix,
ListCell *start,
List *step_exprs,
List *step_cmpfns)
{
List *result = NIL;
ListCell *lc;
int cur_keyno;
/* Actually, recursion would be limited by PARTITION_MAX_KEYS. */
check_stack_depth();
/* Check if we need to recurse. */
Assert(start != NULL);
cur_keyno = ((PartClauseInfo *) lfirst(start))->keyno;
if (cur_keyno < step_lastkeyno - 1)
{
PartClauseInfo *pc;
ListCell *next_start;
/*
* For each clause with cur_keyno, add its expr and cmpfn to
* step_exprs and step_cmpfns, respectively, and recurse after setting
* next_start to the ListCell of the first clause for the next
* partition key.
*/
for_each_cell(lc, prefix, start)
{
pc = lfirst(lc);
if (pc->keyno > cur_keyno)
break;
}
next_start = lc;
for_each_cell(lc, prefix, start)
{
List *moresteps;
List *step_exprs1,
*step_cmpfns1;
pc = lfirst(lc);
if (pc->keyno == cur_keyno)
{
/* Leave the original step_exprs unmodified. */
step_exprs1 = list_copy(step_exprs);
step_exprs1 = lappend(step_exprs1, pc->expr);
/* Leave the original step_cmpfns unmodified. */
step_cmpfns1 = list_copy(step_cmpfns);
step_cmpfns1 = lappend_oid(step_cmpfns1, pc->cmpfn);
}
else
{
Assert(pc->keyno > cur_keyno);
break;
}
moresteps = get_steps_using_prefix_recurse(context,
step_opstrategy,
step_op_is_ne,
step_lastexpr,
step_lastcmpfn,
step_lastkeyno,
step_nullkeys,
prefix,
next_start,
step_exprs1,
step_cmpfns1);
result = list_concat(result, moresteps);
list_free(step_exprs1);
list_free(step_cmpfns1);
}
}
else
{
/*
* End the current recursion cycle and start generating steps, one for
* each clause with cur_keyno, which is all clauses from here onward
* till the end of the list. Note that for hash partitioning,
* step_nullkeys is allowed to be non-empty, in which case step_exprs
* would only contain expressions for the earlier partition keys that
* are not specified in step_nullkeys.
*/
Assert(list_length(step_exprs) == cur_keyno ||
!bms_is_empty(step_nullkeys));
/*
* Note also that for hash partitioning, each partition key should
* have either equality clauses or an IS NULL clause, so if a
* partition key doesn't have an expression, it would be specified
* in step_nullkeys.
*/
Assert(context->rel->part_scheme->strategy
!= PARTITION_STRATEGY_HASH ||
list_length(step_exprs) + 2 + bms_num_members(step_nullkeys) ==
context->rel->part_scheme->partnatts);
for_each_cell(lc, prefix, start)
{
PartClauseInfo *pc = lfirst(lc);
PartitionPruneStep *step;
List *step_exprs1,
*step_cmpfns1;
Assert(pc->keyno == cur_keyno);
/* Leave the original step_exprs unmodified. */
step_exprs1 = list_copy(step_exprs);
step_exprs1 = lappend(step_exprs1, pc->expr);
step_exprs1 = lappend(step_exprs1, step_lastexpr);
/* Leave the original step_cmpfns unmodified. */
step_cmpfns1 = list_copy(step_cmpfns);
step_cmpfns1 = lappend_oid(step_cmpfns1, pc->cmpfn);
step_cmpfns1 = lappend_oid(step_cmpfns1, step_lastcmpfn);
step = gen_prune_step_op(context,
step_opstrategy, step_op_is_ne,
step_exprs1, step_cmpfns1,
step_nullkeys);
result = lappend(result, step);
}
}
return result;
}
/*
* get_matching_hash_bounds
* Determine offset of the hash bound matching the specified values,
* considering that all the non-null values come from clauses containing
* a compatible hash equality operator and any keys that are null come
* from an IS NULL clause.
*
* Generally this function will return a single matching bound offset,
* although if a partition has not been setup for a given modulus then we may
* return no matches. If the number of clauses found don't cover the entire
* partition key, then we'll need to return all offsets.
*
* 'opstrategy' if non-zero must be HTEqualStrategyNumber.
*
* 'values' contains Datums indexed by the partition key to use for pruning.
*
* 'nvalues', the number of Datums in the 'values' array.
*
* 'partsupfunc' contains partition hashing functions that can produce correct
* hash for the type of the values contained in 'values'.
*
* 'nullkeys' is the set of partition keys that are null.
*/
static PruneStepResult *
get_matching_hash_bounds(PartitionPruneContext *context,
StrategyNumber opstrategy, Datum *values, int nvalues,
FmgrInfo *partsupfunc, Bitmapset *nullkeys)
{
PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
PartitionBoundInfo boundinfo = context->boundinfo;
int *partindices = boundinfo->indexes;
int partnatts = context->partnatts;
bool isnull[PARTITION_MAX_KEYS];
int i;
uint64 rowHash;
int greatest_modulus;
Oid *partcollation = context->partcollation;
Assert(context->strategy == PARTITION_STRATEGY_HASH);
/*
* For hash partitioning we can only perform pruning based on equality
* clauses to the partition key or IS NULL clauses. We also can only
* prune if we got values for all keys.
*/
if (nvalues + bms_num_members(nullkeys) == partnatts)
{
/*
* If there are any values, they must have come from clauses
* containing an equality operator compatible with hash partitioning.
*/
Assert(opstrategy == HTEqualStrategyNumber || nvalues == 0);
for (i = 0; i < partnatts; i++)
isnull[i] = bms_is_member(i, nullkeys);
rowHash = compute_partition_hash_value(partnatts, partsupfunc, partcollation,
values, isnull);
greatest_modulus = boundinfo->nindexes;
if (partindices[rowHash % greatest_modulus] >= 0)
result->bound_offsets =
bms_make_singleton(rowHash % greatest_modulus);
}
else
{
/* Report all valid offsets into the boundinfo->indexes array. */
result->bound_offsets = bms_add_range(NULL, 0,
boundinfo->nindexes - 1);
}
/*
* There is neither a special hash null partition or the default hash
* partition.
*/
result->scan_null = result->scan_default = false;
return result;
}
/*
* get_matching_list_bounds
* Determine the offsets of list bounds matching the specified value,
* according to the semantics of the given operator strategy
*
* scan_default will be set in the returned struct, if the default partition
* needs to be scanned, provided one exists at all. scan_null will be set if
* the special null-accepting partition needs to be scanned.
*
* 'opstrategy' if non-zero must be a btree strategy number.
*
* 'value' contains the value to use for pruning.
*
* 'nvalues', if non-zero, should be exactly 1, because of list partitioning.
*
* 'partsupfunc' contains the list partitioning comparison function to be used
* to perform partition_list_bsearch
*
* 'nullkeys' is the set of partition keys that are null.
*/
static PruneStepResult *
get_matching_list_bounds(PartitionPruneContext *context,
StrategyNumber opstrategy, Datum value, int nvalues,
FmgrInfo *partsupfunc, Bitmapset *nullkeys)
{
PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
PartitionBoundInfo boundinfo = context->boundinfo;
int off,
minoff,
maxoff;
bool is_equal;
bool inclusive = false;
Oid *partcollation = context->partcollation;
Assert(context->strategy == PARTITION_STRATEGY_LIST);
Assert(context->partnatts == 1);
result->scan_null = result->scan_default = false;
if (!bms_is_empty(nullkeys))
{
/*
* Nulls may exist in only one partition - the partition whose
* accepted set of values includes null or the default partition if
* the former doesn't exist.
*/
if (partition_bound_accepts_nulls(boundinfo))
result->scan_null = true;
else
result->scan_default = partition_bound_has_default(boundinfo);
return result;
}
/*
* If there are no datums to compare keys with, but there are partitions,
* just return the default partition if one exists.
*/
if (boundinfo->ndatums == 0)
{
result->scan_default = partition_bound_has_default(boundinfo);
return result;
}
minoff = 0;
maxoff = boundinfo->ndatums - 1;
/*
* If there are no values to compare with the datums in boundinfo, it
* means the caller asked for partitions for all non-null datums. Add
* indexes of *all* partitions, including the default if any.
*/
if (nvalues == 0)
{
Assert(boundinfo->ndatums > 0);
result->bound_offsets = bms_add_range(NULL, 0,
boundinfo->ndatums - 1);
result->scan_default = partition_bound_has_default(boundinfo);
return result;
}
/* Special case handling of values coming from a <> operator clause. */
if (opstrategy == InvalidStrategy)
{
/*
* First match to all bounds. We'll remove any matching datums below.
*/
Assert(boundinfo->ndatums > 0);
result->bound_offsets = bms_add_range(NULL, 0,
boundinfo->ndatums - 1);
off = partition_list_bsearch(partsupfunc, partcollation, boundinfo,
value, &is_equal);
if (off >= 0 && is_equal)
{
/* We have a match. Remove from the result. */
Assert(boundinfo->indexes[off] >= 0);
result->bound_offsets = bms_del_member(result->bound_offsets,
off);
}
/* Always include the default partition if any. */
result->scan_default = partition_bound_has_default(boundinfo);
return result;
}
/*
* With range queries, always include the default list partition, because
* list partitions divide the key space in a discontinuous manner, not all
* values in the given range will have a partition assigned. This may not
* technically be true for some data types (e.g. integer types), however,
* we currently lack any sort of infrastructure to provide us with proofs
* that would allow us to do anything smarter here.
*/
if (opstrategy != BTEqualStrategyNumber)
result->scan_default = partition_bound_has_default(boundinfo);
switch (opstrategy)
{
case BTEqualStrategyNumber:
off = partition_list_bsearch(partsupfunc,
partcollation,
boundinfo, value,
&is_equal);
if (off >= 0 && is_equal)
{
Assert(boundinfo->indexes[off] >= 0);
result->bound_offsets = bms_make_singleton(off);
}
else
result->scan_default = partition_bound_has_default(boundinfo);
return result;
case BTGreaterEqualStrategyNumber:
inclusive = true;
/* fall through */
case BTGreaterStrategyNumber:
off = partition_list_bsearch(partsupfunc,
partcollation,
boundinfo, value,
&is_equal);
if (off >= 0)
{
/* We don't want the matched datum to be in the result. */
if (!is_equal || !inclusive)
off++;
}
else
{
/*
* This case means all partition bounds are greater, which in
* turn means that all partitions satisfy this key.
*/
off = 0;
}
/*
* off is greater than the numbers of datums we have partitions
* for. The only possible partition that could contain a match is
* the default partition, but we must've set context->scan_default
* above anyway if one exists.
*/
if (off > boundinfo->ndatums - 1)
return result;
minoff = off;
break;
case BTLessEqualStrategyNumber:
inclusive = true;
/* fall through */
case BTLessStrategyNumber:
off = partition_list_bsearch(partsupfunc,
partcollation,
boundinfo, value,
&is_equal);
if (off >= 0 && is_equal && !inclusive)
off--;
/*
* off is smaller than the datums of all non-default partitions.
* The only possible partition that could contain a match is the
* default partition, but we must've set context->scan_default
* above anyway if one exists.
*/
if (off < 0)
return result;
maxoff = off;
break;
default:
elog(ERROR, "invalid strategy number %d", opstrategy);
break;
}
Assert(minoff >= 0 && maxoff >= 0);
result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
return result;
}
/*
* get_matching_range_bounds
* Determine the offsets of range bounds matching the specified values,
* according to the semantics of the given operator strategy
*
* Each datum whose offset is in result is to be treated as the upper bound of
* the partition that will contain the desired values.
*
* scan_default is set in the returned struct if a default partition exists
* and we're absolutely certain that it needs to be scanned. We do *not* set
* it just because values match portions of the key space uncovered by
* partitions other than default (space which we normally assume to belong to
* the default partition): the final set of bounds obtained after combining
* multiple pruning steps might exclude it, so we infer its inclusion
* elsewhere.
*
* 'opstrategy' if non-zero must be a btree strategy number.
*
* 'values' contains Datums indexed by the partition key to use for pruning.
*
* 'nvalues', number of Datums in 'values' array. Must be <= context->partnatts.
*
* 'partsupfunc' contains the range partitioning comparison functions to be
* used to perform partition_range_datum_bsearch or partition_rbound_datum_cmp
* using.
*
* 'nullkeys' is the set of partition keys that are null.
*/
static PruneStepResult *
get_matching_range_bounds(PartitionPruneContext *context,
StrategyNumber opstrategy, Datum *values, int nvalues,
FmgrInfo *partsupfunc, Bitmapset *nullkeys)
{
PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
PartitionBoundInfo boundinfo = context->boundinfo;
Oid *partcollation = context->partcollation;
int partnatts = context->partnatts;
int *partindices = boundinfo->indexes;
int off,
minoff,
maxoff;
bool is_equal;
bool inclusive = false;
Assert(context->strategy == PARTITION_STRATEGY_RANGE);
Assert(nvalues <= partnatts);
result->scan_null = result->scan_default = false;
/*
* If there are no datums to compare keys with, or if we got an IS NULL
* clause just return the default partition, if it exists.
*/
if (boundinfo->ndatums == 0 || !bms_is_empty(nullkeys))
{
result->scan_default = partition_bound_has_default(boundinfo);
return result;
}
minoff = 0;
maxoff = boundinfo->ndatums;
/*
* If there are no values to compare with the datums in boundinfo, it
* means the caller asked for partitions for all non-null datums. Add
* indexes of *all* partitions, including the default partition if one
* exists.
*/
if (nvalues == 0)
{
/* ignore key space not covered by any partitions */
if (partindices[minoff] < 0)
minoff++;
if (partindices[maxoff] < 0)
maxoff--;
result->scan_default = partition_bound_has_default(boundinfo);
Assert(partindices[minoff] >= 0 &&
partindices[maxoff] >= 0);
result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
return result;
}
/*
* If the query does not constrain all key columns, we'll need to scan the
* default partition, if any.
*/
if (nvalues < partnatts)
result->scan_default = partition_bound_has_default(boundinfo);
switch (opstrategy)
{
case BTEqualStrategyNumber:
/* Look for the smallest bound that is = lookup value. */
off = partition_range_datum_bsearch(partsupfunc,
partcollation,
boundinfo,
nvalues, values,
&is_equal);
if (off >= 0 && is_equal)
{
if (nvalues == partnatts)
{
/* There can only be zero or one matching partition. */
result->bound_offsets = bms_make_singleton(off + 1);
return result;
}
else
{
int saved_off = off;
/*
* Since the lookup value contains only a prefix of keys,
* we must find other bounds that may also match the
* prefix. partition_range_datum_bsearch() returns the
* offset of one of them, find others by checking adjacent
* bounds.
*/
/*
* First find greatest bound that's smaller than the
* lookup value.
*/
while (off >= 1)
{
int32 cmpval;
cmpval =
partition_rbound_datum_cmp(partsupfunc,
partcollation,
boundinfo->datums[off - 1],
boundinfo->kind[off - 1],
values, nvalues);
if (cmpval != 0)
break;
off--;
}
Assert(0 ==
partition_rbound_datum_cmp(partsupfunc,
partcollation,
boundinfo->datums[off],
boundinfo->kind[off],
values, nvalues));
/*
* We can treat 'off' as the offset of the smallest bound
* to be included in the result, if we know it is the
* upper bound of the partition in which the lookup value
* could possibly exist. One case it couldn't is if the
* bound, or precisely the matched portion of its prefix,
* is not inclusive.
*/
if (boundinfo->kind[off][nvalues] ==
PARTITION_RANGE_DATUM_MINVALUE)
off++;
minoff = off;
/*
* Now find smallest bound that's greater than the lookup
* value.
*/
off = saved_off;
while (off < boundinfo->ndatums - 1)
{
int32 cmpval;
cmpval = partition_rbound_datum_cmp(partsupfunc,
partcollation,
boundinfo->datums[off + 1],
boundinfo->kind[off + 1],
values, nvalues);
if (cmpval != 0)
break;
off++;
}
Assert(0 ==
partition_rbound_datum_cmp(partsupfunc,
partcollation,
boundinfo->datums[off],
boundinfo->kind[off],
values, nvalues));
/*
* off + 1, then would be the offset of the greatest bound
* to be included in the result.
*/
maxoff = off + 1;
}
Assert(minoff >= 0 && maxoff >= 0);
result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
}
else
{
/*
* The lookup value falls in the range between some bounds in
* boundinfo. 'off' would be the offset of the greatest bound
* that is <= lookup value, so add off + 1 to the result
* instead as the offset of the upper bound of the only
* partition that may contain the lookup value. If 'off' is
* -1 indicating that all bounds are greater, then we simply
* end up adding the first bound's offset, that is, 0.
*/
result->bound_offsets = bms_make_singleton(off + 1);
}
return result;
case BTGreaterEqualStrategyNumber:
inclusive = true;
/* fall through */
case BTGreaterStrategyNumber:
/*
* Look for the smallest bound that is > or >= lookup value and
* set minoff to its offset.
*/
off = partition_range_datum_bsearch(partsupfunc,
partcollation,
boundinfo,
nvalues, values,
&is_equal);
if (off < 0)
{
/*
* All bounds are greater than the lookup value, so include
* all of them in the result.
*/
minoff = 0;
}
else
{
if (is_equal && nvalues < partnatts)
{
/*
* Since the lookup value contains only a prefix of keys,
* we must find other bounds that may also match the
* prefix. partition_range_datum_bsearch() returns the
* offset of one of them, find others by checking adjacent
* bounds.
*
* Based on whether the lookup values are inclusive or
* not, we must either include the indexes of all such
* bounds in the result (that is, set minoff to the index
* of smallest such bound) or find the smallest one that's
* greater than the lookup values and set minoff to that.
*/
while (off >= 1 && off < boundinfo->ndatums - 1)
{
int32 cmpval;
int nextoff;
nextoff = inclusive ? off - 1 : off + 1;
cmpval =
partition_rbound_datum_cmp(partsupfunc,
partcollation,
boundinfo->datums[nextoff],
boundinfo->kind[nextoff],
values, nvalues);
if (cmpval != 0)
break;
off = nextoff;
}
Assert(0 ==
partition_rbound_datum_cmp(partsupfunc,
partcollation,
boundinfo->datums[off],
boundinfo->kind[off],
values, nvalues));
minoff = inclusive ? off : off + 1;
}
else
{
/*
* lookup value falls in the range between some bounds in
* boundinfo. off would be the offset of the greatest
* bound that is <= lookup value, so add off + 1 to the
* result instead as the offset of the upper bound of the
* smallest partition that may contain the lookup value.
*/
minoff = off + 1;
}
}
break;
case BTLessEqualStrategyNumber:
inclusive = true;
/* fall through */
case BTLessStrategyNumber:
/*
* Look for the greatest bound that is < or <= lookup value and
* set maxoff to its offset.
*/
off = partition_range_datum_bsearch(partsupfunc,
partcollation,
boundinfo,
nvalues, values,
&is_equal);
if (off >= 0)
{
/*
* See the comment above.
*/
if (is_equal && nvalues < partnatts)
{
while (off >= 1 && off < boundinfo->ndatums - 1)
{
int32 cmpval;
int nextoff;
nextoff = inclusive ? off + 1 : off - 1;
cmpval = partition_rbound_datum_cmp(partsupfunc,
partcollation,
boundinfo->datums[nextoff],
boundinfo->kind[nextoff],
values, nvalues);
if (cmpval != 0)
break;
off = nextoff;
}
Assert(0 ==
partition_rbound_datum_cmp(partsupfunc,
partcollation,
boundinfo->datums[off],
boundinfo->kind[off],
values, nvalues));
maxoff = inclusive ? off + 1 : off;
}
/*
* The lookup value falls in the range between some bounds in
* boundinfo. 'off' would be the offset of the greatest bound
* that is <= lookup value, so add off + 1 to the result
* instead as the offset of the upper bound of the greatest
* partition that may contain lookup value. If the lookup
* value had exactly matched the bound, but it isn't
* inclusive, no need add the adjacent partition.
*/
else if (!is_equal || inclusive)
maxoff = off + 1;
else
maxoff = off;
}
else
{
/*
* 'off' is -1 indicating that all bounds are greater, so just
* set the first bound's offset as maxoff.
*/
maxoff = off + 1;
}
break;
default:
elog(ERROR, "invalid strategy number %d", opstrategy);
break;
}
Assert(minoff >= 0 && minoff <= boundinfo->ndatums);
Assert(maxoff >= 0 && maxoff <= boundinfo->ndatums);
/*
* If the smallest partition to return has MINVALUE (negative infinity) as
* its lower bound, increment it to point to the next finite bound
* (supposedly its upper bound), so that we don't inadvertently end up
* scanning the default partition.
*/
if (minoff < boundinfo->ndatums && partindices[minoff] < 0)
{
int lastkey = nvalues - 1;
if (boundinfo->kind[minoff][lastkey] ==
PARTITION_RANGE_DATUM_MINVALUE)
{
minoff++;
Assert(boundinfo->indexes[minoff] >= 0);
}
}
/*
* If the previous greatest partition has MAXVALUE (positive infinity) as
* its upper bound (something only possible to do with multi-column range
* partitioning), we scan switch to it as the greatest partition to
* return. Again, so that we don't inadvertently end up scanning the
* default partition.
*/
if (maxoff >= 1 && partindices[maxoff] < 0)
{
int lastkey = nvalues - 1;
if (boundinfo->kind[maxoff - 1][lastkey] ==
PARTITION_RANGE_DATUM_MAXVALUE)
{
maxoff--;
Assert(boundinfo->indexes[maxoff] >= 0);
}
}
Assert(minoff >= 0 && maxoff >= 0);
if (minoff <= maxoff)
result->bound_offsets = bms_add_range(NULL, minoff, maxoff);
return result;
}
/*
* pull_exec_paramids
* Returns a Bitmapset containing the paramids of all Params with
* paramkind = PARAM_EXEC in 'expr'.
*/
static Bitmapset *
pull_exec_paramids(Expr *expr)
{
Bitmapset *result = NULL;
(void) pull_exec_paramids_walker((Node *) expr, &result);
return result;
}
static bool
pull_exec_paramids_walker(Node *node, Bitmapset **context)
{
if (node == NULL)
return false;
if (IsA(node, Param))
{
Param *param = (Param *) node;
if (param->paramkind == PARAM_EXEC)
*context = bms_add_member(*context, param->paramid);
return false;
}
return expression_tree_walker(node, pull_exec_paramids_walker,
(void *) context);
}
/*
* get_partkey_exec_paramids
* Loop through given pruning steps and find out which exec Params
* are used.
*
* Returns a Bitmapset of Param IDs.
*/
static Bitmapset *
get_partkey_exec_paramids(List *steps)
{
Bitmapset *execparamids = NULL;
ListCell *lc;
foreach(lc, steps)
{
PartitionPruneStepOp *step = (PartitionPruneStepOp *) lfirst(lc);
ListCell *lc2;
if (!IsA(step, PartitionPruneStepOp))
continue;
foreach(lc2, step->exprs)
{
Expr *expr = lfirst(lc2);
/* We can be quick for plain Consts */
if (!IsA(expr, Const))
execparamids = bms_join(execparamids,
pull_exec_paramids(expr));
}
}
return execparamids;
}
/*
* perform_pruning_base_step
* Determines the indexes of datums that satisfy conditions specified in
* 'opstep'.
*
* Result also contains whether special null-accepting and/or default
* partition need to be scanned.
*/
static PruneStepResult *
perform_pruning_base_step(PartitionPruneContext *context,
PartitionPruneStepOp *opstep)
{
ListCell *lc1,
*lc2;
int keyno,
nvalues;
Datum values[PARTITION_MAX_KEYS];
FmgrInfo *partsupfunc;
int stateidx;
/*
* There better be the same number of expressions and compare functions.
*/
Assert(list_length(opstep->exprs) == list_length(opstep->cmpfns));
nvalues = 0;
lc1 = list_head(opstep->exprs);
lc2 = list_head(opstep->cmpfns);
/*
* Generate the partition lookup key that will be used by one of the
* get_matching_*_bounds functions called below.
*/
for (keyno = 0; keyno < context->partnatts; keyno++)
{
/*
* For hash partitioning, it is possible that values of some keys are
* not provided in operator clauses, but instead the planner found
* that they appeared in a IS NULL clause.
*/
if (bms_is_member(keyno, opstep->nullkeys))
continue;
/*
* For range partitioning, we must only perform pruning with values
* for either all partition keys or a prefix thereof.
*/
if (keyno > nvalues && context->strategy == PARTITION_STRATEGY_RANGE)
break;
if (lc1 != NULL)
{
Expr *expr;
Datum datum;
bool isnull;
Oid cmpfn;
expr = lfirst(lc1);
stateidx = PruneCxtStateIdx(context->partnatts,
opstep->step.step_id, keyno);
partkey_datum_from_expr(context, expr, stateidx,
&datum, &isnull);
/*
* Since we only allow strict operators in pruning steps, any
* null-valued comparison value must cause the comparison to fail,
* so that no partitions could match.
*/
if (isnull)
{
PruneStepResult *result;
result = (PruneStepResult *) palloc(sizeof(PruneStepResult));
result->bound_offsets = NULL;
result->scan_default = false;
result->scan_null = false;
return result;
}
/* Set up the stepcmpfuncs entry, unless we already did */
cmpfn = lfirst_oid(lc2);
Assert(OidIsValid(cmpfn));
if (cmpfn != context->stepcmpfuncs[stateidx].fn_oid)
{
/*
* If the needed support function is the same one cached in
* the relation's partition key, copy the cached FmgrInfo.
* Otherwise (i.e., when we have a cross-type comparison), an
* actual lookup is required.
*/
if (cmpfn == context->partsupfunc[keyno].fn_oid)
fmgr_info_copy(&context->stepcmpfuncs[stateidx],
&context->partsupfunc[keyno],
context->ppccontext);
else
fmgr_info_cxt(cmpfn, &context->stepcmpfuncs[stateidx],
context->ppccontext);
}
values[keyno] = datum;
nvalues++;
lc1 = lnext(opstep->exprs, lc1);
lc2 = lnext(opstep->cmpfns, lc2);
}
}
/*
* Point partsupfunc to the entry for the 0th key of this step; the
* additional support functions, if any, follow consecutively.
*/
stateidx = PruneCxtStateIdx(context->partnatts, opstep->step.step_id, 0);
partsupfunc = &context->stepcmpfuncs[stateidx];
switch (context->strategy)
{
case PARTITION_STRATEGY_HASH:
return get_matching_hash_bounds(context,
opstep->opstrategy,
values, nvalues,
partsupfunc,
opstep->nullkeys);
case PARTITION_STRATEGY_LIST:
return get_matching_list_bounds(context,
opstep->opstrategy,
values[0], nvalues,
&partsupfunc[0],
opstep->nullkeys);
case PARTITION_STRATEGY_RANGE:
return get_matching_range_bounds(context,
opstep->opstrategy,
values, nvalues,
partsupfunc,
opstep->nullkeys);
default:
elog(ERROR, "unexpected partition strategy: %d",
(int) context->strategy);
break;
}
return NULL;
}
/*
* perform_pruning_combine_step
* Determines the indexes of datums obtained by combining those given
* by the steps identified by cstep->source_stepids using the specified
* combination method
*
* Since cstep may refer to the result of earlier steps, we also receive
* step_results here.
*/
static PruneStepResult *
perform_pruning_combine_step(PartitionPruneContext *context,
PartitionPruneStepCombine *cstep,
PruneStepResult **step_results)
{
PruneStepResult *result = (PruneStepResult *) palloc0(sizeof(PruneStepResult));
bool firststep;
ListCell *lc1;
/*
* A combine step without any source steps is an indication to not perform
* any partition pruning. Return all datum indexes in that case.
*/
if (cstep->source_stepids == NIL)
{
PartitionBoundInfo boundinfo = context->boundinfo;
result->bound_offsets =
bms_add_range(NULL, 0, boundinfo->nindexes - 1);
result->scan_default = partition_bound_has_default(boundinfo);
result->scan_null = partition_bound_accepts_nulls(boundinfo);
return result;
}
switch (cstep->combineOp)
{
case PARTPRUNE_COMBINE_UNION:
foreach(lc1, cstep->source_stepids)
{
int step_id = lfirst_int(lc1);
PruneStepResult *step_result;
/*
* step_results[step_id] must contain a valid result, which is
* confirmed by the fact that cstep's step_id is greater than
* step_id and the fact that results of the individual steps
* are evaluated in sequence of their step_ids.
*/
if (step_id >= cstep->step.step_id)
elog(ERROR, "invalid pruning combine step argument");
step_result = step_results[step_id];
Assert(step_result != NULL);
/* Record any additional datum indexes from this step */
result->bound_offsets = bms_add_members(result->bound_offsets,
step_result->bound_offsets);
/* Update whether to scan null and default partitions. */
if (!result->scan_null)
result->scan_null = step_result->scan_null;
if (!result->scan_default)
result->scan_default = step_result->scan_default;
}
break;
case PARTPRUNE_COMBINE_INTERSECT:
firststep = true;
foreach(lc1, cstep->source_stepids)
{
int step_id = lfirst_int(lc1);
PruneStepResult *step_result;
if (step_id >= cstep->step.step_id)
elog(ERROR, "invalid pruning combine step argument");
step_result = step_results[step_id];
Assert(step_result != NULL);
if (firststep)
{
/* Copy step's result the first time. */
result->bound_offsets =
bms_copy(step_result->bound_offsets);
result->scan_null = step_result->scan_null;
result->scan_default = step_result->scan_default;
firststep = false;
}
else
{
/* Record datum indexes common to both steps */
result->bound_offsets =
bms_int_members(result->bound_offsets,
step_result->bound_offsets);
/* Update whether to scan null and default partitions. */
if (result->scan_null)
result->scan_null = step_result->scan_null;
if (result->scan_default)
result->scan_default = step_result->scan_default;
}
}
break;
}
return result;
}
/*
* match_boolean_partition_clause
*
* If we're able to match the clause to the partition key as specially-shaped
* boolean clause, set *outconst to a Const containing a true or false value
* and return PARTCLAUSE_MATCH_CLAUSE. Returns PARTCLAUSE_UNSUPPORTED if the
* clause is not a boolean clause or if the boolean clause is unsuitable for
* partition pruning. Returns PARTCLAUSE_NOMATCH if it's a bool quals but
* just does not match this partition key. *outconst is set to NULL in the
* latter two cases.
*/
static PartClauseMatchStatus
match_boolean_partition_clause(Oid partopfamily, Expr *clause, Expr *partkey,
Expr **outconst)
{
Expr *leftop;
*outconst = NULL;
if (!IsBooleanOpfamily(partopfamily))
return PARTCLAUSE_UNSUPPORTED;
if (IsA(clause, BooleanTest))
{
BooleanTest *btest = (BooleanTest *) clause;
/* Only IS [NOT] TRUE/FALSE are any good to us */
if (btest->booltesttype == IS_UNKNOWN ||
btest->booltesttype == IS_NOT_UNKNOWN)
return PARTCLAUSE_UNSUPPORTED;
leftop = btest->arg;
if (IsA(leftop, RelabelType))
leftop = ((RelabelType *) leftop)->arg;
if (equal(leftop, partkey))
*outconst = (btest->booltesttype == IS_TRUE ||
btest->booltesttype == IS_NOT_FALSE)
? (Expr *) makeBoolConst(true, false)
: (Expr *) makeBoolConst(false, false);
if (*outconst)
return PARTCLAUSE_MATCH_CLAUSE;
}
else
{
bool is_not_clause = is_notclause(clause);
leftop = is_not_clause ? get_notclausearg(clause) : clause;
if (IsA(leftop, RelabelType))
leftop = ((RelabelType *) leftop)->arg;
/* Compare to the partition key, and make up a clause ... */
if (equal(leftop, partkey))
*outconst = is_not_clause ?
(Expr *) makeBoolConst(false, false) :
(Expr *) makeBoolConst(true, false);
else if (equal(negate_clause((Node *) leftop), partkey))
*outconst = (Expr *) makeBoolConst(false, false);
if (*outconst)
return PARTCLAUSE_MATCH_CLAUSE;
}
return PARTCLAUSE_NOMATCH;
}
/*
* partkey_datum_from_expr
* Evaluate expression for potential partition pruning
*
* Evaluate 'expr'; set *value and *isnull to the resulting Datum and nullflag.
*
* If expr isn't a Const, its ExprState is in stateidx of the context
* exprstate array.
*
* Note that the evaluated result may be in the per-tuple memory context of
* context->planstate->ps_ExprContext, and we may have leaked other memory
* there too. This memory must be recovered by resetting that ExprContext
* after we're done with the pruning operation (see execPartition.c).
*/
static void
partkey_datum_from_expr(PartitionPruneContext *context,
Expr *expr, int stateidx,
Datum *value, bool *isnull)
{
if (IsA(expr, Const))
{
/* We can always determine the value of a constant */
Const *con = (Const *) expr;
*value = con->constvalue;
*isnull = con->constisnull;
}
else
{
ExprState *exprstate;
ExprContext *ectx;
/*
* We should never see a non-Const in a step unless we're running in
* the executor.
*/
Assert(context->planstate != NULL);
exprstate = context->exprstates[stateidx];
ectx = context->planstate->ps_ExprContext;
*value = ExecEvalExprSwitchContext(exprstate, ectx, isnull);
}
}