postgresql/src/common/scram-common.c
Bruce Momjian 7559d8ebfa Update copyrights for 2020
Backpatch-through: update all files in master, backpatch legal files through 9.4
2020-01-01 12:21:45 -05:00

292 lines
6.7 KiB
C

/*-------------------------------------------------------------------------
* scram-common.c
* Shared frontend/backend code for SCRAM authentication
*
* This contains the common low-level functions needed in both frontend and
* backend, for implement the Salted Challenge Response Authentication
* Mechanism (SCRAM), per IETF's RFC 5802.
*
* Portions Copyright (c) 2017-2020, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/common/scram-common.c
*
*-------------------------------------------------------------------------
*/
#ifndef FRONTEND
#include "postgres.h"
#else
#include "postgres_fe.h"
#endif
#include "common/base64.h"
#include "common/scram-common.h"
#include "port/pg_bswap.h"
#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5C
/*
* Calculate HMAC per RFC2104.
*
* The hash function used is SHA-256.
*/
void
scram_HMAC_init(scram_HMAC_ctx *ctx, const uint8 *key, int keylen)
{
uint8 k_ipad[SHA256_HMAC_B];
int i;
uint8 keybuf[SCRAM_KEY_LEN];
/*
* If the key is longer than the block size (64 bytes for SHA-256), pass
* it through SHA-256 once to shrink it down.
*/
if (keylen > SHA256_HMAC_B)
{
pg_sha256_ctx sha256_ctx;
pg_sha256_init(&sha256_ctx);
pg_sha256_update(&sha256_ctx, key, keylen);
pg_sha256_final(&sha256_ctx, keybuf);
key = keybuf;
keylen = SCRAM_KEY_LEN;
}
memset(k_ipad, HMAC_IPAD, SHA256_HMAC_B);
memset(ctx->k_opad, HMAC_OPAD, SHA256_HMAC_B);
for (i = 0; i < keylen; i++)
{
k_ipad[i] ^= key[i];
ctx->k_opad[i] ^= key[i];
}
/* tmp = H(K XOR ipad, text) */
pg_sha256_init(&ctx->sha256ctx);
pg_sha256_update(&ctx->sha256ctx, k_ipad, SHA256_HMAC_B);
}
/*
* Update HMAC calculation
* The hash function used is SHA-256.
*/
void
scram_HMAC_update(scram_HMAC_ctx *ctx, const char *str, int slen)
{
pg_sha256_update(&ctx->sha256ctx, (const uint8 *) str, slen);
}
/*
* Finalize HMAC calculation.
* The hash function used is SHA-256.
*/
void
scram_HMAC_final(uint8 *result, scram_HMAC_ctx *ctx)
{
uint8 h[SCRAM_KEY_LEN];
pg_sha256_final(&ctx->sha256ctx, h);
/* H(K XOR opad, tmp) */
pg_sha256_init(&ctx->sha256ctx);
pg_sha256_update(&ctx->sha256ctx, ctx->k_opad, SHA256_HMAC_B);
pg_sha256_update(&ctx->sha256ctx, h, SCRAM_KEY_LEN);
pg_sha256_final(&ctx->sha256ctx, result);
}
/*
* Calculate SaltedPassword.
*
* The password should already be normalized by SASLprep.
*/
void
scram_SaltedPassword(const char *password,
const char *salt, int saltlen, int iterations,
uint8 *result)
{
int password_len = strlen(password);
uint32 one = pg_hton32(1);
int i,
j;
uint8 Ui[SCRAM_KEY_LEN];
uint8 Ui_prev[SCRAM_KEY_LEN];
scram_HMAC_ctx hmac_ctx;
/*
* Iterate hash calculation of HMAC entry using given salt. This is
* essentially PBKDF2 (see RFC2898) with HMAC() as the pseudorandom
* function.
*/
/* First iteration */
scram_HMAC_init(&hmac_ctx, (uint8 *) password, password_len);
scram_HMAC_update(&hmac_ctx, salt, saltlen);
scram_HMAC_update(&hmac_ctx, (char *) &one, sizeof(uint32));
scram_HMAC_final(Ui_prev, &hmac_ctx);
memcpy(result, Ui_prev, SCRAM_KEY_LEN);
/* Subsequent iterations */
for (i = 2; i <= iterations; i++)
{
scram_HMAC_init(&hmac_ctx, (uint8 *) password, password_len);
scram_HMAC_update(&hmac_ctx, (const char *) Ui_prev, SCRAM_KEY_LEN);
scram_HMAC_final(Ui, &hmac_ctx);
for (j = 0; j < SCRAM_KEY_LEN; j++)
result[j] ^= Ui[j];
memcpy(Ui_prev, Ui, SCRAM_KEY_LEN);
}
}
/*
* Calculate SHA-256 hash for a NULL-terminated string. (The NULL terminator is
* not included in the hash).
*/
void
scram_H(const uint8 *input, int len, uint8 *result)
{
pg_sha256_ctx ctx;
pg_sha256_init(&ctx);
pg_sha256_update(&ctx, input, len);
pg_sha256_final(&ctx, result);
}
/*
* Calculate ClientKey.
*/
void
scram_ClientKey(const uint8 *salted_password, uint8 *result)
{
scram_HMAC_ctx ctx;
scram_HMAC_init(&ctx, salted_password, SCRAM_KEY_LEN);
scram_HMAC_update(&ctx, "Client Key", strlen("Client Key"));
scram_HMAC_final(result, &ctx);
}
/*
* Calculate ServerKey.
*/
void
scram_ServerKey(const uint8 *salted_password, uint8 *result)
{
scram_HMAC_ctx ctx;
scram_HMAC_init(&ctx, salted_password, SCRAM_KEY_LEN);
scram_HMAC_update(&ctx, "Server Key", strlen("Server Key"));
scram_HMAC_final(result, &ctx);
}
/*
* Construct a SCRAM secret, for storing in pg_authid.rolpassword.
*
* The password should already have been processed with SASLprep, if necessary!
*
* If iterations is 0, default number of iterations is used. The result is
* palloc'd or malloc'd, so caller is responsible for freeing it.
*/
char *
scram_build_secret(const char *salt, int saltlen, int iterations,
const char *password)
{
uint8 salted_password[SCRAM_KEY_LEN];
uint8 stored_key[SCRAM_KEY_LEN];
uint8 server_key[SCRAM_KEY_LEN];
char *result;
char *p;
int maxlen;
int encoded_salt_len;
int encoded_stored_len;
int encoded_server_len;
int encoded_result;
if (iterations <= 0)
iterations = SCRAM_DEFAULT_ITERATIONS;
/* Calculate StoredKey and ServerKey */
scram_SaltedPassword(password, salt, saltlen, iterations,
salted_password);
scram_ClientKey(salted_password, stored_key);
scram_H(stored_key, SCRAM_KEY_LEN, stored_key);
scram_ServerKey(salted_password, server_key);
/*----------
* The format is:
* SCRAM-SHA-256$<iteration count>:<salt>$<StoredKey>:<ServerKey>
*----------
*/
encoded_salt_len = pg_b64_enc_len(saltlen);
encoded_stored_len = pg_b64_enc_len(SCRAM_KEY_LEN);
encoded_server_len = pg_b64_enc_len(SCRAM_KEY_LEN);
maxlen = strlen("SCRAM-SHA-256") + 1
+ 10 + 1 /* iteration count */
+ encoded_salt_len + 1 /* Base64-encoded salt */
+ encoded_stored_len + 1 /* Base64-encoded StoredKey */
+ encoded_server_len + 1; /* Base64-encoded ServerKey */
#ifdef FRONTEND
result = malloc(maxlen);
if (!result)
return NULL;
#else
result = palloc(maxlen);
#endif
p = result + sprintf(result, "SCRAM-SHA-256$%d:", iterations);
/* salt */
encoded_result = pg_b64_encode(salt, saltlen, p, encoded_salt_len);
if (encoded_result < 0)
{
#ifdef FRONTEND
free(result);
return NULL;
#else
elog(ERROR, "could not encode salt");
#endif
}
p += encoded_result;
*(p++) = '$';
/* stored key */
encoded_result = pg_b64_encode((char *) stored_key, SCRAM_KEY_LEN, p,
encoded_stored_len);
if (encoded_result < 0)
{
#ifdef FRONTEND
free(result);
return NULL;
#else
elog(ERROR, "could not encode stored key");
#endif
}
p += encoded_result;
*(p++) = ':';
/* server key */
encoded_result = pg_b64_encode((char *) server_key, SCRAM_KEY_LEN, p,
encoded_server_len);
if (encoded_result < 0)
{
#ifdef FRONTEND
free(result);
return NULL;
#else
elog(ERROR, "could not encode server key");
#endif
}
p += encoded_result;
*(p++) = '\0';
Assert(p - result <= maxlen);
return result;
}