postgresql/src/backend/libpq/auth-scram.c
Tom Lane f47f314801 Minor cleanup/future-proofing for pg_saslprep().
Ensure that pg_saslprep() initializes its output argument to NULL in
all failure paths, and then remove the redundant initialization that
some (not all) of its callers did.  This does not fix any live bug,
but it reduces the odds of future bugs of omission.

Also add a comment about why the existing failure-path coding is
adequate.

Back-patch so as to keep the function's API consistent across branches,
again to forestall future bug introduction.

Patch by me, reviewed by Michael Paquier

Discussion: https://postgr.es/m/16558.1536407783@sss.pgh.pa.us
2018-09-08 18:20:36 -04:00

1357 lines
40 KiB
C

/*-------------------------------------------------------------------------
*
* auth-scram.c
* Server-side implementation of the SASL SCRAM-SHA-256 mechanism.
*
* See the following RFCs for more details:
* - RFC 5802: https://tools.ietf.org/html/rfc5802
* - RFC 5803: https://tools.ietf.org/html/rfc5803
* - RFC 7677: https://tools.ietf.org/html/rfc7677
*
* Here are some differences:
*
* - Username from the authentication exchange is not used. The client
* should send an empty string as the username.
*
* - If the password isn't valid UTF-8, or contains characters prohibited
* by the SASLprep profile, we skip the SASLprep pre-processing and use
* the raw bytes in calculating the hash.
*
* - If channel binding is used, the channel binding type is always
* "tls-server-end-point". The spec says the default is "tls-unique"
* (RFC 5802, section 6.1. Default Channel Binding), but there are some
* problems with that. Firstly, not all SSL libraries provide an API to
* get the TLS Finished message, required to use "tls-unique". Secondly,
* "tls-unique" is not specified for TLS v1.3, and as of this writing,
* it's not clear if there will be a replacement. We could support both
* "tls-server-end-point" and "tls-unique", but for our use case,
* "tls-unique" doesn't really have any advantages. The main advantage
* of "tls-unique" would be that it works even if the server doesn't
* have a certificate, but PostgreSQL requires a server certificate
* whenever SSL is used, anyway.
*
*
* The password stored in pg_authid consists of the iteration count, salt,
* StoredKey and ServerKey.
*
* SASLprep usage
* --------------
*
* One notable difference to the SCRAM specification is that while the
* specification dictates that the password is in UTF-8, and prohibits
* certain characters, we are more lenient. If the password isn't a valid
* UTF-8 string, or contains prohibited characters, the raw bytes are used
* to calculate the hash instead, without SASLprep processing. This is
* because PostgreSQL supports other encodings too, and the encoding being
* used during authentication is undefined (client_encoding isn't set until
* after authentication). In effect, we try to interpret the password as
* UTF-8 and apply SASLprep processing, but if it looks invalid, we assume
* that it's in some other encoding.
*
* In the worst case, we misinterpret a password that's in a different
* encoding as being Unicode, because it happens to consists entirely of
* valid UTF-8 bytes, and we apply Unicode normalization to it. As long
* as we do that consistently, that will not lead to failed logins.
* Fortunately, the UTF-8 byte sequences that are ignored by SASLprep
* don't correspond to any commonly used characters in any of the other
* supported encodings, so it should not lead to any significant loss in
* entropy, even if the normalization is incorrectly applied to a
* non-UTF-8 password.
*
* Error handling
* --------------
*
* Don't reveal user information to an unauthenticated client. We don't
* want an attacker to be able to probe whether a particular username is
* valid. In SCRAM, the server has to read the salt and iteration count
* from the user's password verifier, and send it to the client. To avoid
* revealing whether a user exists, when the client tries to authenticate
* with a username that doesn't exist, or doesn't have a valid SCRAM
* verifier in pg_authid, we create a fake salt and iteration count
* on-the-fly, and proceed with the authentication with that. In the end,
* we'll reject the attempt, as if an incorrect password was given. When
* we are performing a "mock" authentication, the 'doomed' flag in
* scram_state is set.
*
* In the error messages, avoid printing strings from the client, unless
* you check that they are pure ASCII. We don't want an unauthenticated
* attacker to be able to spam the logs with characters that are not valid
* to the encoding being used, whatever that is. We cannot avoid that in
* general, after logging in, but let's do what we can here.
*
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/backend/libpq/auth-scram.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <unistd.h>
#include "access/xlog.h"
#include "catalog/pg_authid.h"
#include "catalog/pg_control.h"
#include "common/base64.h"
#include "common/saslprep.h"
#include "common/scram-common.h"
#include "common/sha2.h"
#include "libpq/auth.h"
#include "libpq/crypt.h"
#include "libpq/scram.h"
#include "miscadmin.h"
#include "utils/backend_random.h"
#include "utils/builtins.h"
#include "utils/timestamp.h"
/*
* Status data for a SCRAM authentication exchange. This should be kept
* internal to this file.
*/
typedef enum
{
SCRAM_AUTH_INIT,
SCRAM_AUTH_SALT_SENT,
SCRAM_AUTH_FINISHED
} scram_state_enum;
typedef struct
{
scram_state_enum state;
const char *username; /* username from startup packet */
Port *port;
bool channel_binding_in_use;
int iterations;
char *salt; /* base64-encoded */
uint8 StoredKey[SCRAM_KEY_LEN];
uint8 ServerKey[SCRAM_KEY_LEN];
/* Fields of the first message from client */
char cbind_flag;
char *client_first_message_bare;
char *client_username;
char *client_nonce;
/* Fields from the last message from client */
char *client_final_message_without_proof;
char *client_final_nonce;
char ClientProof[SCRAM_KEY_LEN];
/* Fields generated in the server */
char *server_first_message;
char *server_nonce;
/*
* If something goes wrong during the authentication, or we are performing
* a "mock" authentication (see comments at top of file), the 'doomed'
* flag is set. A reason for the failure, for the server log, is put in
* 'logdetail'.
*/
bool doomed;
char *logdetail;
} scram_state;
static void read_client_first_message(scram_state *state, char *input);
static void read_client_final_message(scram_state *state, char *input);
static char *build_server_first_message(scram_state *state);
static char *build_server_final_message(scram_state *state);
static bool verify_client_proof(scram_state *state);
static bool verify_final_nonce(scram_state *state);
static bool parse_scram_verifier(const char *verifier, int *iterations,
char **salt, uint8 *stored_key, uint8 *server_key);
static void mock_scram_verifier(const char *username, int *iterations,
char **salt, uint8 *stored_key, uint8 *server_key);
static bool is_scram_printable(char *p);
static char *sanitize_char(char c);
static char *sanitize_str(const char *s);
static char *scram_mock_salt(const char *username);
/*
* pg_be_scram_get_mechanisms
*
* Get a list of SASL mechanisms that this module supports.
*
* For the convenience of building the FE/BE packet that lists the
* mechanisms, the names are appended to the given StringInfo buffer,
* separated by '\0' bytes.
*/
void
pg_be_scram_get_mechanisms(Port *port, StringInfo buf)
{
/*
* Advertise the mechanisms in decreasing order of importance. So the
* channel-binding variants go first, if they are supported. Channel
* binding is only supported with SSL, and only if the SSL implementation
* has a function to get the certificate's hash.
*/
#ifdef HAVE_BE_TLS_GET_CERTIFICATE_HASH
if (port->ssl_in_use)
{
appendStringInfoString(buf, SCRAM_SHA_256_PLUS_NAME);
appendStringInfoChar(buf, '\0');
}
#endif
appendStringInfoString(buf, SCRAM_SHA_256_NAME);
appendStringInfoChar(buf, '\0');
}
/*
* pg_be_scram_init
*
* Initialize a new SCRAM authentication exchange status tracker. This
* needs to be called before doing any exchange. It will be filled later
* after the beginning of the exchange with verifier data.
*
* 'selected_mech' identifies the SASL mechanism that the client selected.
* It should be one of the mechanisms that we support, as returned by
* pg_be_scram_get_mechanisms().
*
* 'shadow_pass' is the role's password verifier, from pg_authid.rolpassword.
* The username was provided by the client in the startup message, and is
* available in port->user_name. If 'shadow_pass' is NULL, we still perform
* an authentication exchange, but it will fail, as if an incorrect password
* was given.
*/
void *
pg_be_scram_init(Port *port,
const char *selected_mech,
const char *shadow_pass)
{
scram_state *state;
bool got_verifier;
state = (scram_state *) palloc0(sizeof(scram_state));
state->port = port;
state->state = SCRAM_AUTH_INIT;
/*
* Parse the selected mechanism.
*
* Note that if we don't support channel binding, either because the SSL
* implementation doesn't support it or we're not using SSL at all, we
* would not have advertised the PLUS variant in the first place. If the
* client nevertheless tries to select it, it's a protocol violation like
* selecting any other SASL mechanism we don't support.
*/
#ifdef HAVE_BE_TLS_GET_CERTIFICATE_HASH
if (strcmp(selected_mech, SCRAM_SHA_256_PLUS_NAME) == 0 && port->ssl_in_use)
state->channel_binding_in_use = true;
else
#endif
if (strcmp(selected_mech, SCRAM_SHA_256_NAME) == 0)
state->channel_binding_in_use = false;
else
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("client selected an invalid SASL authentication mechanism")));
/*
* Parse the stored password verifier.
*/
if (shadow_pass)
{
int password_type = get_password_type(shadow_pass);
if (password_type == PASSWORD_TYPE_SCRAM_SHA_256)
{
if (parse_scram_verifier(shadow_pass, &state->iterations, &state->salt,
state->StoredKey, state->ServerKey))
got_verifier = true;
else
{
/*
* The password looked like a SCRAM verifier, but could not be
* parsed.
*/
ereport(LOG,
(errmsg("invalid SCRAM verifier for user \"%s\"",
state->port->user_name)));
got_verifier = false;
}
}
else
{
/*
* The user doesn't have SCRAM verifier. (You cannot do SCRAM
* authentication with an MD5 hash.)
*/
state->logdetail = psprintf(_("User \"%s\" does not have a valid SCRAM verifier."),
state->port->user_name);
got_verifier = false;
}
}
else
{
/*
* The caller requested us to perform a dummy authentication. This is
* considered normal, since the caller requested it, so don't set log
* detail.
*/
got_verifier = false;
}
/*
* If the user did not have a valid SCRAM verifier, we still go through
* the motions with a mock one, and fail as if the client supplied an
* incorrect password. This is to avoid revealing information to an
* attacker.
*/
if (!got_verifier)
{
mock_scram_verifier(state->port->user_name, &state->iterations,
&state->salt, state->StoredKey, state->ServerKey);
state->doomed = true;
}
return state;
}
/*
* Continue a SCRAM authentication exchange.
*
* 'input' is the SCRAM payload sent by the client. On the first call,
* 'input' contains the "Initial Client Response" that the client sent as
* part of the SASLInitialResponse message, or NULL if no Initial Client
* Response was given. (The SASL specification distinguishes between an
* empty response and non-existing one.) On subsequent calls, 'input'
* cannot be NULL. For convenience in this function, the caller must
* ensure that there is a null terminator at input[inputlen].
*
* The next message to send to client is saved in 'output', for a length
* of 'outputlen'. In the case of an error, optionally store a palloc'd
* string at *logdetail that will be sent to the postmaster log (but not
* the client).
*/
int
pg_be_scram_exchange(void *opaq, char *input, int inputlen,
char **output, int *outputlen, char **logdetail)
{
scram_state *state = (scram_state *) opaq;
int result;
*output = NULL;
/*
* If the client didn't include an "Initial Client Response" in the
* SASLInitialResponse message, send an empty challenge, to which the
* client will respond with the same data that usually comes in the
* Initial Client Response.
*/
if (input == NULL)
{
Assert(state->state == SCRAM_AUTH_INIT);
*output = pstrdup("");
*outputlen = 0;
return SASL_EXCHANGE_CONTINUE;
}
/*
* Check that the input length agrees with the string length of the input.
* We can ignore inputlen after this.
*/
if (inputlen == 0)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("The message is empty.")));
if (inputlen != strlen(input))
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Message length does not match input length.")));
switch (state->state)
{
case SCRAM_AUTH_INIT:
/*
* Initialization phase. Receive the first message from client
* and be sure that it parsed correctly. Then send the challenge
* to the client.
*/
read_client_first_message(state, input);
/* prepare message to send challenge */
*output = build_server_first_message(state);
state->state = SCRAM_AUTH_SALT_SENT;
result = SASL_EXCHANGE_CONTINUE;
break;
case SCRAM_AUTH_SALT_SENT:
/*
* Final phase for the server. Receive the response to the
* challenge previously sent, verify, and let the client know that
* everything went well (or not).
*/
read_client_final_message(state, input);
if (!verify_final_nonce(state))
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("invalid SCRAM response"),
errdetail("Nonce does not match.")));
/*
* Now check the final nonce and the client proof.
*
* If we performed a "mock" authentication that we knew would fail
* from the get go, this is where we fail.
*
* The SCRAM specification includes an error code,
* "invalid-proof", for authentication failure, but it also allows
* erroring out in an application-specific way. We choose to do
* the latter, so that the error message for invalid password is
* the same for all authentication methods. The caller will call
* ereport(), when we return SASL_EXCHANGE_FAILURE with no output.
*
* NB: the order of these checks is intentional. We calculate the
* client proof even in a mock authentication, even though it's
* bound to fail, to thwart timing attacks to determine if a role
* with the given name exists or not.
*/
if (!verify_client_proof(state) || state->doomed)
{
result = SASL_EXCHANGE_FAILURE;
break;
}
/* Build final message for client */
*output = build_server_final_message(state);
/* Success! */
result = SASL_EXCHANGE_SUCCESS;
state->state = SCRAM_AUTH_FINISHED;
break;
default:
elog(ERROR, "invalid SCRAM exchange state");
result = SASL_EXCHANGE_FAILURE;
}
if (result == SASL_EXCHANGE_FAILURE && state->logdetail && logdetail)
*logdetail = state->logdetail;
if (*output)
*outputlen = strlen(*output);
return result;
}
/*
* Construct a verifier string for SCRAM, stored in pg_authid.rolpassword.
*
* The result is palloc'd, so caller is responsible for freeing it.
*/
char *
pg_be_scram_build_verifier(const char *password)
{
char *prep_password;
pg_saslprep_rc rc;
char saltbuf[SCRAM_DEFAULT_SALT_LEN];
char *result;
/*
* Normalize the password with SASLprep. If that doesn't work, because
* the password isn't valid UTF-8 or contains prohibited characters, just
* proceed with the original password. (See comments at top of file.)
*/
rc = pg_saslprep(password, &prep_password);
if (rc == SASLPREP_SUCCESS)
password = (const char *) prep_password;
/* Generate random salt */
if (!pg_backend_random(saltbuf, SCRAM_DEFAULT_SALT_LEN))
ereport(ERROR,
(errcode(ERRCODE_INTERNAL_ERROR),
errmsg("could not generate random salt")));
result = scram_build_verifier(saltbuf, SCRAM_DEFAULT_SALT_LEN,
SCRAM_DEFAULT_ITERATIONS, password);
if (prep_password)
pfree(prep_password);
return result;
}
/*
* Verify a plaintext password against a SCRAM verifier. This is used when
* performing plaintext password authentication for a user that has a SCRAM
* verifier stored in pg_authid.
*/
bool
scram_verify_plain_password(const char *username, const char *password,
const char *verifier)
{
char *encoded_salt;
char *salt;
int saltlen;
int iterations;
uint8 salted_password[SCRAM_KEY_LEN];
uint8 stored_key[SCRAM_KEY_LEN];
uint8 server_key[SCRAM_KEY_LEN];
uint8 computed_key[SCRAM_KEY_LEN];
char *prep_password;
pg_saslprep_rc rc;
if (!parse_scram_verifier(verifier, &iterations, &encoded_salt,
stored_key, server_key))
{
/*
* The password looked like a SCRAM verifier, but could not be parsed.
*/
ereport(LOG,
(errmsg("invalid SCRAM verifier for user \"%s\"", username)));
return false;
}
salt = palloc(pg_b64_dec_len(strlen(encoded_salt)));
saltlen = pg_b64_decode(encoded_salt, strlen(encoded_salt), salt);
if (saltlen == -1)
{
ereport(LOG,
(errmsg("invalid SCRAM verifier for user \"%s\"", username)));
return false;
}
/* Normalize the password */
rc = pg_saslprep(password, &prep_password);
if (rc == SASLPREP_SUCCESS)
password = prep_password;
/* Compute Server Key based on the user-supplied plaintext password */
scram_SaltedPassword(password, salt, saltlen, iterations, salted_password);
scram_ServerKey(salted_password, computed_key);
if (prep_password)
pfree(prep_password);
/*
* Compare the verifier's Server Key with the one computed from the
* user-supplied password.
*/
return memcmp(computed_key, server_key, SCRAM_KEY_LEN) == 0;
}
/*
* Parse and validate format of given SCRAM verifier.
*
* Returns true if the SCRAM verifier has been parsed, and false otherwise.
*/
static bool
parse_scram_verifier(const char *verifier, int *iterations, char **salt,
uint8 *stored_key, uint8 *server_key)
{
char *v;
char *p;
char *scheme_str;
char *salt_str;
char *iterations_str;
char *storedkey_str;
char *serverkey_str;
int decoded_len;
char *decoded_salt_buf;
/*
* The verifier is of form:
*
* SCRAM-SHA-256$<iterations>:<salt>$<storedkey>:<serverkey>
*/
v = pstrdup(verifier);
if ((scheme_str = strtok(v, "$")) == NULL)
goto invalid_verifier;
if ((iterations_str = strtok(NULL, ":")) == NULL)
goto invalid_verifier;
if ((salt_str = strtok(NULL, "$")) == NULL)
goto invalid_verifier;
if ((storedkey_str = strtok(NULL, ":")) == NULL)
goto invalid_verifier;
if ((serverkey_str = strtok(NULL, "")) == NULL)
goto invalid_verifier;
/* Parse the fields */
if (strcmp(scheme_str, "SCRAM-SHA-256") != 0)
goto invalid_verifier;
errno = 0;
*iterations = strtol(iterations_str, &p, 10);
if (*p || errno != 0)
goto invalid_verifier;
/*
* Verify that the salt is in Base64-encoded format, by decoding it,
* although we return the encoded version to the caller.
*/
decoded_salt_buf = palloc(pg_b64_dec_len(strlen(salt_str)));
decoded_len = pg_b64_decode(salt_str, strlen(salt_str), decoded_salt_buf);
if (decoded_len < 0)
goto invalid_verifier;
*salt = pstrdup(salt_str);
/*
* Decode StoredKey and ServerKey.
*/
if (pg_b64_dec_len(strlen(storedkey_str) != SCRAM_KEY_LEN))
goto invalid_verifier;
decoded_len = pg_b64_decode(storedkey_str, strlen(storedkey_str),
(char *) stored_key);
if (decoded_len != SCRAM_KEY_LEN)
goto invalid_verifier;
if (pg_b64_dec_len(strlen(serverkey_str) != SCRAM_KEY_LEN))
goto invalid_verifier;
decoded_len = pg_b64_decode(serverkey_str, strlen(serverkey_str),
(char *) server_key);
if (decoded_len != SCRAM_KEY_LEN)
goto invalid_verifier;
return true;
invalid_verifier:
pfree(v);
*salt = NULL;
return false;
}
static void
mock_scram_verifier(const char *username, int *iterations, char **salt,
uint8 *stored_key, uint8 *server_key)
{
char *raw_salt;
char *encoded_salt;
int encoded_len;
/* Generate deterministic salt */
raw_salt = scram_mock_salt(username);
encoded_salt = (char *) palloc(pg_b64_enc_len(SCRAM_DEFAULT_SALT_LEN) + 1);
encoded_len = pg_b64_encode(raw_salt, SCRAM_DEFAULT_SALT_LEN, encoded_salt);
encoded_salt[encoded_len] = '\0';
*salt = encoded_salt;
*iterations = SCRAM_DEFAULT_ITERATIONS;
/* StoredKey and ServerKey are not used in a doomed authentication */
memset(stored_key, 0, SCRAM_KEY_LEN);
memset(server_key, 0, SCRAM_KEY_LEN);
}
/*
* Read the value in a given SCRAM exchange message for given attribute.
*/
static char *
read_attr_value(char **input, char attr)
{
char *begin = *input;
char *end;
if (*begin != attr)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Expected attribute \"%c\" but found \"%s\".",
attr, sanitize_char(*begin))));
begin++;
if (*begin != '=')
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Expected character \"=\" for attribute \"%c\".", attr)));
begin++;
end = begin;
while (*end && *end != ',')
end++;
if (*end)
{
*end = '\0';
*input = end + 1;
}
else
*input = end;
return begin;
}
static bool
is_scram_printable(char *p)
{
/*------
* Printable characters, as defined by SCRAM spec: (RFC 5802)
*
* printable = %x21-2B / %x2D-7E
* ;; Printable ASCII except ",".
* ;; Note that any "printable" is also
* ;; a valid "value".
*------
*/
for (; *p; p++)
{
if (*p < 0x21 || *p > 0x7E || *p == 0x2C /* comma */ )
return false;
}
return true;
}
/*
* Convert an arbitrary byte to printable form. For error messages.
*
* If it's a printable ASCII character, print it as a single character.
* otherwise, print it in hex.
*
* The returned pointer points to a static buffer.
*/
static char *
sanitize_char(char c)
{
static char buf[5];
if (c >= 0x21 && c <= 0x7E)
snprintf(buf, sizeof(buf), "'%c'", c);
else
snprintf(buf, sizeof(buf), "0x%02x", (unsigned char) c);
return buf;
}
/*
* Convert an arbitrary string to printable form, for error messages.
*
* Anything that's not a printable ASCII character is replaced with
* '?', and the string is truncated at 30 characters.
*
* The returned pointer points to a static buffer.
*/
static char *
sanitize_str(const char *s)
{
static char buf[30 + 1];
int i;
for (i = 0; i < sizeof(buf) - 1; i++)
{
char c = s[i];
if (c == '\0')
break;
if (c >= 0x21 && c <= 0x7E)
buf[i] = c;
else
buf[i] = '?';
}
buf[i] = '\0';
return buf;
}
/*
* Read the next attribute and value in a SCRAM exchange message.
*
* Returns NULL if there is attribute.
*/
static char *
read_any_attr(char **input, char *attr_p)
{
char *begin = *input;
char *end;
char attr = *begin;
/*------
* attr-val = ALPHA "=" value
* ;; Generic syntax of any attribute sent
* ;; by server or client
*------
*/
if (!((attr >= 'A' && attr <= 'Z') ||
(attr >= 'a' && attr <= 'z')))
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Attribute expected, but found invalid character \"%s\".",
sanitize_char(attr))));
if (attr_p)
*attr_p = attr;
begin++;
if (*begin != '=')
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Expected character \"=\" for attribute \"%c\".", attr)));
begin++;
end = begin;
while (*end && *end != ',')
end++;
if (*end)
{
*end = '\0';
*input = end + 1;
}
else
*input = end;
return begin;
}
/*
* Read and parse the first message from client in the context of a SCRAM
* authentication exchange message.
*
* At this stage, any errors will be reported directly with ereport(ERROR).
*/
static void
read_client_first_message(scram_state *state, char *input)
{
char *channel_binding_type;
input = pstrdup(input);
/*------
* The syntax for the client-first-message is: (RFC 5802)
*
* saslname = 1*(value-safe-char / "=2C" / "=3D")
* ;; Conforms to <value>.
*
* authzid = "a=" saslname
* ;; Protocol specific.
*
* cb-name = 1*(ALPHA / DIGIT / "." / "-")
* ;; See RFC 5056, Section 7.
* ;; E.g., "tls-server-end-point" or
* ;; "tls-unique".
*
* gs2-cbind-flag = ("p=" cb-name) / "n" / "y"
* ;; "n" -> client doesn't support channel binding.
* ;; "y" -> client does support channel binding
* ;; but thinks the server does not.
* ;; "p" -> client requires channel binding.
* ;; The selected channel binding follows "p=".
*
* gs2-header = gs2-cbind-flag "," [ authzid ] ","
* ;; GS2 header for SCRAM
* ;; (the actual GS2 header includes an optional
* ;; flag to indicate that the GSS mechanism is not
* ;; "standard", but since SCRAM is "standard", we
* ;; don't include that flag).
*
* username = "n=" saslname
* ;; Usernames are prepared using SASLprep.
*
* reserved-mext = "m=" 1*(value-char)
* ;; Reserved for signaling mandatory extensions.
* ;; The exact syntax will be defined in
* ;; the future.
*
* nonce = "r=" c-nonce [s-nonce]
* ;; Second part provided by server.
*
* c-nonce = printable
*
* client-first-message-bare =
* [reserved-mext ","]
* username "," nonce ["," extensions]
*
* client-first-message =
* gs2-header client-first-message-bare
*
* For example:
* n,,n=user,r=fyko+d2lbbFgONRv9qkxdawL
*
* The "n,," in the beginning means that the client doesn't support
* channel binding, and no authzid is given. "n=user" is the username.
* However, in PostgreSQL the username is sent in the startup packet, and
* the username in the SCRAM exchange is ignored. libpq always sends it
* as an empty string. The last part, "r=fyko+d2lbbFgONRv9qkxdawL" is
* the client nonce.
*------
*/
/*
* Read gs2-cbind-flag. (For details see also RFC 5802 Section 6 "Channel
* Binding".)
*/
state->cbind_flag = *input;
switch (*input)
{
case 'n':
/*
* The client does not support channel binding or has simply
* decided to not use it. In that case just let it go.
*/
if (state->channel_binding_in_use)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("The client selected SCRAM-SHA-256-PLUS, but the SCRAM message does not include channel binding data.")));
input++;
if (*input != ',')
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Comma expected, but found character \"%s\".",
sanitize_char(*input))));
input++;
break;
case 'y':
/*
* The client supports channel binding and thinks that the server
* does not. In this case, the server must fail authentication if
* it supports channel binding.
*/
if (state->channel_binding_in_use)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("The client selected SCRAM-SHA-256-PLUS, but the SCRAM message does not include channel binding data.")));
#ifdef HAVE_BE_TLS_GET_CERTIFICATE_HASH
if (state->port->ssl_in_use)
ereport(ERROR,
(errcode(ERRCODE_INVALID_AUTHORIZATION_SPECIFICATION),
errmsg("SCRAM channel binding negotiation error"),
errdetail("The client supports SCRAM channel binding but thinks the server does not. "
"However, this server does support channel binding.")));
#endif
input++;
if (*input != ',')
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Comma expected, but found character \"%s\".",
sanitize_char(*input))));
input++;
break;
case 'p':
/*
* The client requires channel binding. Channel binding type
* follows, e.g., "p=tls-server-end-point".
*/
if (!state->channel_binding_in_use)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("The client selected SCRAM-SHA-256 without channel binding, but the SCRAM message includes channel binding data.")));
channel_binding_type = read_attr_value(&input, 'p');
/*
* The only channel binding type we support is
* tls-server-end-point.
*/
if (strcmp(channel_binding_type, "tls-server-end-point") != 0)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
(errmsg("unsupported SCRAM channel-binding type \"%s\"",
sanitize_str(channel_binding_type)))));
break;
default:
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Unexpected channel-binding flag \"%s\".",
sanitize_char(*input))));
}
/*
* Forbid optional authzid (authorization identity). We don't support it.
*/
if (*input == 'a')
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("client uses authorization identity, but it is not supported")));
if (*input != ',')
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Unexpected attribute \"%s\" in client-first-message.",
sanitize_char(*input))));
input++;
state->client_first_message_bare = pstrdup(input);
/*
* Any mandatory extensions would go here. We don't support any.
*
* RFC 5802 specifies error code "e=extensions-not-supported" for this,
* but it can only be sent in the server-final message. We prefer to fail
* immediately (which the RFC also allows).
*/
if (*input == 'm')
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("client requires an unsupported SCRAM extension")));
/*
* Read username. Note: this is ignored. We use the username from the
* startup message instead, still it is kept around if provided as it
* proves to be useful for debugging purposes.
*/
state->client_username = read_attr_value(&input, 'n');
/* read nonce and check that it is made of only printable characters */
state->client_nonce = read_attr_value(&input, 'r');
if (!is_scram_printable(state->client_nonce))
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("non-printable characters in SCRAM nonce")));
/*
* There can be any number of optional extensions after this. We don't
* support any extensions, so ignore them.
*/
while (*input != '\0')
read_any_attr(&input, NULL);
/* success! */
}
/*
* Verify the final nonce contained in the last message received from
* client in an exchange.
*/
static bool
verify_final_nonce(scram_state *state)
{
int client_nonce_len = strlen(state->client_nonce);
int server_nonce_len = strlen(state->server_nonce);
int final_nonce_len = strlen(state->client_final_nonce);
if (final_nonce_len != client_nonce_len + server_nonce_len)
return false;
if (memcmp(state->client_final_nonce, state->client_nonce, client_nonce_len) != 0)
return false;
if (memcmp(state->client_final_nonce + client_nonce_len, state->server_nonce, server_nonce_len) != 0)
return false;
return true;
}
/*
* Verify the client proof contained in the last message received from
* client in an exchange.
*/
static bool
verify_client_proof(scram_state *state)
{
uint8 ClientSignature[SCRAM_KEY_LEN];
uint8 ClientKey[SCRAM_KEY_LEN];
uint8 client_StoredKey[SCRAM_KEY_LEN];
scram_HMAC_ctx ctx;
int i;
/* calculate ClientSignature */
scram_HMAC_init(&ctx, state->StoredKey, SCRAM_KEY_LEN);
scram_HMAC_update(&ctx,
state->client_first_message_bare,
strlen(state->client_first_message_bare));
scram_HMAC_update(&ctx, ",", 1);
scram_HMAC_update(&ctx,
state->server_first_message,
strlen(state->server_first_message));
scram_HMAC_update(&ctx, ",", 1);
scram_HMAC_update(&ctx,
state->client_final_message_without_proof,
strlen(state->client_final_message_without_proof));
scram_HMAC_final(ClientSignature, &ctx);
/* Extract the ClientKey that the client calculated from the proof */
for (i = 0; i < SCRAM_KEY_LEN; i++)
ClientKey[i] = state->ClientProof[i] ^ ClientSignature[i];
/* Hash it one more time, and compare with StoredKey */
scram_H(ClientKey, SCRAM_KEY_LEN, client_StoredKey);
if (memcmp(client_StoredKey, state->StoredKey, SCRAM_KEY_LEN) != 0)
return false;
return true;
}
/*
* Build the first server-side message sent to the client in a SCRAM
* communication exchange.
*/
static char *
build_server_first_message(scram_state *state)
{
/*------
* The syntax for the server-first-message is: (RFC 5802)
*
* server-first-message =
* [reserved-mext ","] nonce "," salt ","
* iteration-count ["," extensions]
*
* nonce = "r=" c-nonce [s-nonce]
* ;; Second part provided by server.
*
* c-nonce = printable
*
* s-nonce = printable
*
* salt = "s=" base64
*
* iteration-count = "i=" posit-number
* ;; A positive number.
*
* Example:
*
* r=fyko+d2lbbFgONRv9qkxdawL3rfcNHYJY1ZVvWVs7j,s=QSXCR+Q6sek8bf92,i=4096
*------
*/
/*
* Per the spec, the nonce may consist of any printable ASCII characters.
* For convenience, however, we don't use the whole range available,
* rather, we generate some random bytes, and base64 encode them.
*/
char raw_nonce[SCRAM_RAW_NONCE_LEN];
int encoded_len;
if (!pg_backend_random(raw_nonce, SCRAM_RAW_NONCE_LEN))
ereport(ERROR,
(errcode(ERRCODE_INTERNAL_ERROR),
errmsg("could not generate random nonce")));
state->server_nonce = palloc(pg_b64_enc_len(SCRAM_RAW_NONCE_LEN) + 1);
encoded_len = pg_b64_encode(raw_nonce, SCRAM_RAW_NONCE_LEN, state->server_nonce);
state->server_nonce[encoded_len] = '\0';
state->server_first_message =
psprintf("r=%s%s,s=%s,i=%u",
state->client_nonce, state->server_nonce,
state->salt, state->iterations);
return pstrdup(state->server_first_message);
}
/*
* Read and parse the final message received from client.
*/
static void
read_client_final_message(scram_state *state, char *input)
{
char attr;
char *channel_binding;
char *value;
char *begin,
*proof;
char *p;
char *client_proof;
begin = p = pstrdup(input);
/*------
* The syntax for the server-first-message is: (RFC 5802)
*
* gs2-header = gs2-cbind-flag "," [ authzid ] ","
* ;; GS2 header for SCRAM
* ;; (the actual GS2 header includes an optional
* ;; flag to indicate that the GSS mechanism is not
* ;; "standard", but since SCRAM is "standard", we
* ;; don't include that flag).
*
* cbind-input = gs2-header [ cbind-data ]
* ;; cbind-data MUST be present for
* ;; gs2-cbind-flag of "p" and MUST be absent
* ;; for "y" or "n".
*
* channel-binding = "c=" base64
* ;; base64 encoding of cbind-input.
*
* proof = "p=" base64
*
* client-final-message-without-proof =
* channel-binding "," nonce [","
* extensions]
*
* client-final-message =
* client-final-message-without-proof "," proof
*------
*/
/*
* Read channel binding. This repeats the channel-binding flags and is
* then followed by the actual binding data depending on the type.
*/
channel_binding = read_attr_value(&p, 'c');
if (state->channel_binding_in_use)
{
#ifdef HAVE_BE_TLS_GET_CERTIFICATE_HASH
const char *cbind_data = NULL;
size_t cbind_data_len = 0;
size_t cbind_header_len;
char *cbind_input;
size_t cbind_input_len;
char *b64_message;
int b64_message_len;
Assert(state->cbind_flag == 'p');
/* Fetch hash data of server's SSL certificate */
cbind_data = be_tls_get_certificate_hash(state->port,
&cbind_data_len);
/* should not happen */
if (cbind_data == NULL || cbind_data_len == 0)
elog(ERROR, "could not get server certificate hash");
cbind_header_len = strlen("p=tls-server-end-point,,"); /* p=type,, */
cbind_input_len = cbind_header_len + cbind_data_len;
cbind_input = palloc(cbind_input_len);
snprintf(cbind_input, cbind_input_len, "p=tls-server-end-point,,");
memcpy(cbind_input + cbind_header_len, cbind_data, cbind_data_len);
b64_message = palloc(pg_b64_enc_len(cbind_input_len) + 1);
b64_message_len = pg_b64_encode(cbind_input, cbind_input_len,
b64_message);
b64_message[b64_message_len] = '\0';
/*
* Compare the value sent by the client with the value expected by the
* server.
*/
if (strcmp(channel_binding, b64_message) != 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_AUTHORIZATION_SPECIFICATION),
(errmsg("SCRAM channel binding check failed"))));
#else
/* shouldn't happen, because we checked this earlier already */
elog(ERROR, "channel binding not supported by this build");
#endif
}
else
{
/*
* If we are not using channel binding, the binding data is expected
* to always be "biws", which is "n,," base64-encoded, or "eSws",
* which is "y,,". We also have to check whether the flag is the same
* one that the client originally sent.
*/
if (!(strcmp(channel_binding, "biws") == 0 && state->cbind_flag == 'n') &&
!(strcmp(channel_binding, "eSws") == 0 && state->cbind_flag == 'y'))
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
(errmsg("unexpected SCRAM channel-binding attribute in client-final-message"))));
}
state->client_final_nonce = read_attr_value(&p, 'r');
/* ignore optional extensions */
do
{
proof = p - 1;
value = read_any_attr(&p, &attr);
} while (attr != 'p');
client_proof = palloc(pg_b64_dec_len(strlen(value)));
if (pg_b64_decode(value, strlen(value), client_proof) != SCRAM_KEY_LEN)
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Malformed proof in client-final-message.")));
memcpy(state->ClientProof, client_proof, SCRAM_KEY_LEN);
pfree(client_proof);
if (*p != '\0')
ereport(ERROR,
(errcode(ERRCODE_PROTOCOL_VIOLATION),
errmsg("malformed SCRAM message"),
errdetail("Garbage found at the end of client-final-message.")));
state->client_final_message_without_proof = palloc(proof - begin + 1);
memcpy(state->client_final_message_without_proof, input, proof - begin);
state->client_final_message_without_proof[proof - begin] = '\0';
}
/*
* Build the final server-side message of an exchange.
*/
static char *
build_server_final_message(scram_state *state)
{
uint8 ServerSignature[SCRAM_KEY_LEN];
char *server_signature_base64;
int siglen;
scram_HMAC_ctx ctx;
/* calculate ServerSignature */
scram_HMAC_init(&ctx, state->ServerKey, SCRAM_KEY_LEN);
scram_HMAC_update(&ctx,
state->client_first_message_bare,
strlen(state->client_first_message_bare));
scram_HMAC_update(&ctx, ",", 1);
scram_HMAC_update(&ctx,
state->server_first_message,
strlen(state->server_first_message));
scram_HMAC_update(&ctx, ",", 1);
scram_HMAC_update(&ctx,
state->client_final_message_without_proof,
strlen(state->client_final_message_without_proof));
scram_HMAC_final(ServerSignature, &ctx);
server_signature_base64 = palloc(pg_b64_enc_len(SCRAM_KEY_LEN) + 1);
siglen = pg_b64_encode((const char *) ServerSignature,
SCRAM_KEY_LEN, server_signature_base64);
server_signature_base64[siglen] = '\0';
/*------
* The syntax for the server-final-message is: (RFC 5802)
*
* verifier = "v=" base64
* ;; base-64 encoded ServerSignature.
*
* server-final-message = (server-error / verifier)
* ["," extensions]
*
*------
*/
return psprintf("v=%s", server_signature_base64);
}
/*
* Deterministically generate salt for mock authentication, using a SHA256
* hash based on the username and a cluster-level secret key. Returns a
* pointer to a static buffer of size SCRAM_DEFAULT_SALT_LEN.
*/
static char *
scram_mock_salt(const char *username)
{
pg_sha256_ctx ctx;
static uint8 sha_digest[PG_SHA256_DIGEST_LENGTH];
char *mock_auth_nonce = GetMockAuthenticationNonce();
/*
* Generate salt using a SHA256 hash of the username and the cluster's
* mock authentication nonce. (This works as long as the salt length is
* not larger the SHA256 digest length. If the salt is smaller, the caller
* will just ignore the extra data.)
*/
StaticAssertStmt(PG_SHA256_DIGEST_LENGTH >= SCRAM_DEFAULT_SALT_LEN,
"salt length greater than SHA256 digest length");
pg_sha256_init(&ctx);
pg_sha256_update(&ctx, (uint8 *) username, strlen(username));
pg_sha256_update(&ctx, (uint8 *) mock_auth_nonce, MOCK_AUTH_NONCE_LEN);
pg_sha256_final(&ctx, sha_digest);
return (char *) sha_digest;
}