postgresql/src/backend/commands/vacuum.c
Tom Lane 09d3670df3 Change the relation_open protocol so that we obtain lock on a relation
(table or index) before trying to open its relcache entry.  This fixes
race conditions in which someone else commits a change to the relation's
catalog entries while we are in process of doing relcache load.  Problems
of that ilk have been reported sporadically for years, but it was not
really practical to fix until recently --- for instance, the recent
addition of WAL-log support for in-place updates helped.

Along the way, remove pg_am.amconcurrent: all AMs are now expected to support
concurrent update.
2006-07-31 20:09:10 +00:00

3605 lines
105 KiB
C

/*-------------------------------------------------------------------------
*
* vacuum.c
* The postgres vacuum cleaner.
*
* This file includes the "full" version of VACUUM, as well as control code
* used by all three of full VACUUM, lazy VACUUM, and ANALYZE. See
* vacuumlazy.c and analyze.c for the rest of the code for the latter two.
*
*
* Portions Copyright (c) 1996-2006, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/commands/vacuum.c,v 1.337 2006/07/31 20:09:00 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <sys/time.h>
#include <unistd.h>
#include "access/clog.h"
#include "access/genam.h"
#include "access/heapam.h"
#include "access/multixact.h"
#include "access/transam.h"
#include "access/xact.h"
#include "catalog/namespace.h"
#include "catalog/pg_database.h"
#include "commands/dbcommands.h"
#include "commands/vacuum.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "postmaster/autovacuum.h"
#include "storage/freespace.h"
#include "storage/pmsignal.h"
#include "storage/proc.h"
#include "storage/procarray.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/flatfiles.h"
#include "utils/fmgroids.h"
#include "utils/inval.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/pg_rusage.h"
#include "utils/relcache.h"
#include "utils/syscache.h"
#include "pgstat.h"
/*
* VacPage structures keep track of each page on which we find useful
* amounts of free space.
*/
typedef struct VacPageData
{
BlockNumber blkno; /* BlockNumber of this Page */
Size free; /* FreeSpace on this Page */
uint16 offsets_used; /* Number of OffNums used by vacuum */
uint16 offsets_free; /* Number of OffNums free or to be free */
OffsetNumber offsets[1]; /* Array of free OffNums */
} VacPageData;
typedef VacPageData *VacPage;
typedef struct VacPageListData
{
BlockNumber empty_end_pages; /* Number of "empty" end-pages */
int num_pages; /* Number of pages in pagedesc */
int num_allocated_pages; /* Number of allocated pages in
* pagedesc */
VacPage *pagedesc; /* Descriptions of pages */
} VacPageListData;
typedef VacPageListData *VacPageList;
/*
* The "vtlinks" array keeps information about each recently-updated tuple
* ("recent" meaning its XMAX is too new to let us recycle the tuple).
* We store the tuple's own TID as well as its t_ctid (its link to the next
* newer tuple version). Searching in this array allows us to follow update
* chains backwards from newer to older tuples. When we move a member of an
* update chain, we must move *all* the live members of the chain, so that we
* can maintain their t_ctid link relationships (we must not just overwrite
* t_ctid in an existing tuple).
*
* Note: because t_ctid links can be stale (this would only occur if a prior
* VACUUM crashed partway through), it is possible that new_tid points to an
* empty slot or unrelated tuple. We have to check the linkage as we follow
* it, just as is done in EvalPlanQual.
*/
typedef struct VTupleLinkData
{
ItemPointerData new_tid; /* t_ctid of an updated tuple */
ItemPointerData this_tid; /* t_self of the tuple */
} VTupleLinkData;
typedef VTupleLinkData *VTupleLink;
/*
* We use an array of VTupleMoveData to plan a chain tuple move fully
* before we do it.
*/
typedef struct VTupleMoveData
{
ItemPointerData tid; /* tuple ID */
VacPage vacpage; /* where to move it to */
bool cleanVpd; /* clean vacpage before using? */
} VTupleMoveData;
typedef VTupleMoveData *VTupleMove;
/*
* VRelStats contains the data acquired by scan_heap for use later
*/
typedef struct VRelStats
{
/* miscellaneous statistics */
BlockNumber rel_pages;
double rel_tuples;
Size min_tlen;
Size max_tlen;
bool hasindex;
TransactionId minxid; /* Minimum Xid present anywhere on table */
/* vtlinks array for tuple chain following - sorted by new_tid */
int num_vtlinks;
VTupleLink vtlinks;
} VRelStats;
/*----------------------------------------------------------------------
* ExecContext:
*
* As these variables always appear together, we put them into one struct
* and pull initialization and cleanup into separate routines.
* ExecContext is used by repair_frag() and move_xxx_tuple(). More
* accurately: It is *used* only in move_xxx_tuple(), but because this
* routine is called many times, we initialize the struct just once in
* repair_frag() and pass it on to move_xxx_tuple().
*/
typedef struct ExecContextData
{
ResultRelInfo *resultRelInfo;
EState *estate;
TupleTableSlot *slot;
} ExecContextData;
typedef ExecContextData *ExecContext;
static void
ExecContext_Init(ExecContext ec, Relation rel)
{
TupleDesc tupdesc = RelationGetDescr(rel);
/*
* We need a ResultRelInfo and an EState so we can use the regular
* executor's index-entry-making machinery.
*/
ec->estate = CreateExecutorState();
ec->resultRelInfo = makeNode(ResultRelInfo);
ec->resultRelInfo->ri_RangeTableIndex = 1; /* dummy */
ec->resultRelInfo->ri_RelationDesc = rel;
ec->resultRelInfo->ri_TrigDesc = NULL; /* we don't fire triggers */
ExecOpenIndices(ec->resultRelInfo);
ec->estate->es_result_relations = ec->resultRelInfo;
ec->estate->es_num_result_relations = 1;
ec->estate->es_result_relation_info = ec->resultRelInfo;
/* Set up a tuple slot too */
ec->slot = MakeSingleTupleTableSlot(tupdesc);
}
static void
ExecContext_Finish(ExecContext ec)
{
ExecDropSingleTupleTableSlot(ec->slot);
ExecCloseIndices(ec->resultRelInfo);
FreeExecutorState(ec->estate);
}
/*
* End of ExecContext Implementation
*----------------------------------------------------------------------
*/
static MemoryContext vac_context = NULL;
static int elevel = -1;
/* non-export function prototypes */
static List *get_rel_oids(List *relids, const RangeVar *vacrel,
const char *stmttype);
static void vac_update_dbminxid(Oid dbid,
TransactionId *minxid,
TransactionId *vacuumxid);
static void vac_truncate_clog(TransactionId myminxid, TransactionId myvacxid);
static void vacuum_rel(Oid relid, VacuumStmt *vacstmt, char expected_relkind);
static void full_vacuum_rel(Relation onerel, VacuumStmt *vacstmt);
static void scan_heap(VRelStats *vacrelstats, Relation onerel,
VacPageList vacuum_pages, VacPageList fraged_pages,
TransactionId FreezeLimit, TransactionId OldestXmin);
static void repair_frag(VRelStats *vacrelstats, Relation onerel,
VacPageList vacuum_pages, VacPageList fraged_pages,
int nindexes, Relation *Irel, TransactionId OldestXmin);
static void move_chain_tuple(Relation rel,
Buffer old_buf, Page old_page, HeapTuple old_tup,
Buffer dst_buf, Page dst_page, VacPage dst_vacpage,
ExecContext ec, ItemPointer ctid, bool cleanVpd);
static void move_plain_tuple(Relation rel,
Buffer old_buf, Page old_page, HeapTuple old_tup,
Buffer dst_buf, Page dst_page, VacPage dst_vacpage,
ExecContext ec);
static void update_hint_bits(Relation rel, VacPageList fraged_pages,
int num_fraged_pages, BlockNumber last_move_dest_block,
int num_moved);
static void vacuum_heap(VRelStats *vacrelstats, Relation onerel,
VacPageList vacpagelist);
static void vacuum_page(Relation onerel, Buffer buffer, VacPage vacpage);
static void vacuum_index(VacPageList vacpagelist, Relation indrel,
double num_tuples, int keep_tuples);
static void scan_index(Relation indrel, double num_tuples);
static bool tid_reaped(ItemPointer itemptr, void *state);
static void vac_update_fsm(Relation onerel, VacPageList fraged_pages,
BlockNumber rel_pages);
static VacPage copy_vac_page(VacPage vacpage);
static void vpage_insert(VacPageList vacpagelist, VacPage vpnew);
static void *vac_bsearch(const void *key, const void *base,
size_t nelem, size_t size,
int (*compar) (const void *, const void *));
static int vac_cmp_blk(const void *left, const void *right);
static int vac_cmp_offno(const void *left, const void *right);
static int vac_cmp_vtlinks(const void *left, const void *right);
static bool enough_space(VacPage vacpage, Size len);
static Size PageGetFreeSpaceWithFillFactor(Relation relation, Page page);
/****************************************************************************
* *
* Code common to all flavors of VACUUM and ANALYZE *
* *
****************************************************************************
*/
/*
* Primary entry point for VACUUM and ANALYZE commands.
*
* relids is normally NIL; if it is not, then it provides the list of
* relation OIDs to be processed, and vacstmt->relation is ignored.
* (The non-NIL case is currently only used by autovacuum.)
*
* It is the caller's responsibility that both vacstmt and relids
* (if given) be allocated in a memory context that won't disappear
* at transaction commit. In fact this context must be QueryContext
* to avoid complaints from PreventTransactionChain.
*/
void
vacuum(VacuumStmt *vacstmt, List *relids)
{
const char *stmttype = vacstmt->vacuum ? "VACUUM" : "ANALYZE";
volatile MemoryContext anl_context = NULL;
volatile bool all_rels,
in_outer_xact,
use_own_xacts;
List *relations;
if (vacstmt->verbose)
elevel = INFO;
else
elevel = DEBUG2;
/*
* We cannot run VACUUM inside a user transaction block; if we were inside
* a transaction, then our commit- and start-transaction-command calls
* would not have the intended effect! Furthermore, the forced commit that
* occurs before truncating the relation's file would have the effect of
* committing the rest of the user's transaction too, which would
* certainly not be the desired behavior. (This only applies to VACUUM
* FULL, though. We could in theory run lazy VACUUM inside a transaction
* block, but we choose to disallow that case because we'd rather commit
* as soon as possible after finishing the vacuum. This is mainly so that
* we can let go the AccessExclusiveLock that we may be holding.)
*
* ANALYZE (without VACUUM) can run either way.
*/
if (vacstmt->vacuum)
{
PreventTransactionChain((void *) vacstmt, stmttype);
in_outer_xact = false;
}
else
in_outer_xact = IsInTransactionChain((void *) vacstmt);
/*
* Disallow the combination VACUUM FULL FREEZE; although it would mostly
* work, VACUUM FULL's ability to move tuples around means that it is
* injecting its own XID into tuple visibility checks. We'd have to
* guarantee that every moved tuple is properly marked XMIN_COMMITTED or
* XMIN_INVALID before the end of the operation. There are corner cases
* where this does not happen, and getting rid of them all seems hard (not
* to mention fragile to maintain). On the whole it's not worth it
* compared to telling people to use two operations. See pgsql-hackers
* discussion of 27-Nov-2004, and comments below for update_hint_bits().
*
* Note: this is enforced here, and not in the grammar, since (a) we can
* give a better error message, and (b) we might want to allow it again
* someday.
*/
if (vacstmt->vacuum && vacstmt->full && vacstmt->freeze)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("VACUUM FULL FREEZE is not supported"),
errhint("Use VACUUM FULL, then VACUUM FREEZE.")));
/*
* Send info about dead objects to the statistics collector, unless
* we are in autovacuum --- autovacuum.c does this for itself.
*/
if (vacstmt->vacuum && !IsAutoVacuumProcess())
pgstat_vacuum_tabstat();
/*
* Create special memory context for cross-transaction storage.
*
* Since it is a child of PortalContext, it will go away eventually even
* if we suffer an error; there's no need for special abort cleanup logic.
*/
vac_context = AllocSetContextCreate(PortalContext,
"Vacuum",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
/* Remember whether we are processing everything in the DB */
all_rels = (relids == NIL && vacstmt->relation == NULL);
/*
* Build list of relations to process, unless caller gave us one. (If we
* build one, we put it in vac_context for safekeeping.)
*/
relations = get_rel_oids(relids, vacstmt->relation, stmttype);
/*
* Decide whether we need to start/commit our own transactions.
*
* For VACUUM (with or without ANALYZE): always do so, so that we can
* release locks as soon as possible. (We could possibly use the outer
* transaction for a one-table VACUUM, but handling TOAST tables would be
* problematic.)
*
* For ANALYZE (no VACUUM): if inside a transaction block, we cannot
* start/commit our own transactions. Also, there's no need to do so if
* only processing one relation. For multiple relations when not within a
* transaction block, use own transactions so we can release locks sooner.
*/
if (vacstmt->vacuum)
use_own_xacts = true;
else
{
Assert(vacstmt->analyze);
if (in_outer_xact)
use_own_xacts = false;
else if (list_length(relations) > 1)
use_own_xacts = true;
else
use_own_xacts = false;
}
/*
* If we are running ANALYZE without per-table transactions, we'll need a
* memory context with table lifetime.
*/
if (!use_own_xacts)
anl_context = AllocSetContextCreate(PortalContext,
"Analyze",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
/*
* vacuum_rel expects to be entered with no transaction active; it will
* start and commit its own transaction. But we are called by an SQL
* command, and so we are executing inside a transaction already. We
* commit the transaction started in PostgresMain() here, and start
* another one before exiting to match the commit waiting for us back in
* PostgresMain().
*/
if (use_own_xacts)
{
/* matches the StartTransaction in PostgresMain() */
CommitTransactionCommand();
}
/* Turn vacuum cost accounting on or off */
PG_TRY();
{
ListCell *cur;
VacuumCostActive = (VacuumCostDelay > 0);
VacuumCostBalance = 0;
/*
* Loop to process each selected relation.
*/
foreach(cur, relations)
{
Oid relid = lfirst_oid(cur);
if (vacstmt->vacuum)
vacuum_rel(relid, vacstmt, RELKIND_RELATION);
if (vacstmt->analyze)
{
MemoryContext old_context = NULL;
/*
* If using separate xacts, start one for analyze. Otherwise,
* we can use the outer transaction, but we still need to call
* analyze_rel in a memory context that will be cleaned up on
* return (else we leak memory while processing multiple
* tables).
*/
if (use_own_xacts)
{
StartTransactionCommand();
/* functions in indexes may want a snapshot set */
ActiveSnapshot = CopySnapshot(GetTransactionSnapshot());
}
else
old_context = MemoryContextSwitchTo(anl_context);
/*
* Tell the buffer replacement strategy that vacuum is causing
* the IO
*/
StrategyHintVacuum(true);
analyze_rel(relid, vacstmt);
StrategyHintVacuum(false);
if (use_own_xacts)
CommitTransactionCommand();
else
{
MemoryContextSwitchTo(old_context);
MemoryContextResetAndDeleteChildren(anl_context);
}
}
}
}
PG_CATCH();
{
/* Make sure cost accounting is turned off after error */
VacuumCostActive = false;
PG_RE_THROW();
}
PG_END_TRY();
/* Turn off vacuum cost accounting */
VacuumCostActive = false;
/*
* Finish up processing.
*/
if (use_own_xacts)
{
/* here, we are not in a transaction */
/*
* This matches the CommitTransaction waiting for us in
* PostgresMain().
*/
StartTransactionCommand();
/*
* Re-establish the transaction snapshot. This is wasted effort
* when we are called as a normal utility command, because the
* new transaction will be dropped immediately by PostgresMain();
* but it's necessary if we are called from autovacuum because
* autovacuum might continue on to do an ANALYZE-only call.
*/
ActiveSnapshot = CopySnapshot(GetTransactionSnapshot());
}
if (vacstmt->vacuum)
{
TransactionId minxid,
vacuumxid;
/*
* If it was a database-wide VACUUM, print FSM usage statistics (we
* don't make you be superuser to see these).
*/
if (all_rels)
PrintFreeSpaceMapStatistics(elevel);
/* Update pg_database.datminxid and datvacuumxid */
vac_update_dbminxid(MyDatabaseId, &minxid, &vacuumxid);
/* Try to truncate pg_clog. */
vac_truncate_clog(minxid, vacuumxid);
}
/*
* Clean up working storage --- note we must do this after
* StartTransactionCommand, else we might be trying to delete the active
* context!
*/
MemoryContextDelete(vac_context);
vac_context = NULL;
if (anl_context)
MemoryContextDelete(anl_context);
}
/*
* Build a list of Oids for each relation to be processed
*
* The list is built in vac_context so that it will survive across our
* per-relation transactions.
*/
static List *
get_rel_oids(List *relids, const RangeVar *vacrel, const char *stmttype)
{
List *oid_list = NIL;
MemoryContext oldcontext;
/* List supplied by VACUUM's caller? */
if (relids)
return relids;
if (vacrel)
{
/* Process a specific relation */
Oid relid;
relid = RangeVarGetRelid(vacrel, false);
/* Make a relation list entry for this guy */
oldcontext = MemoryContextSwitchTo(vac_context);
oid_list = lappend_oid(oid_list, relid);
MemoryContextSwitchTo(oldcontext);
}
else
{
/* Process all plain relations listed in pg_class */
Relation pgclass;
HeapScanDesc scan;
HeapTuple tuple;
ScanKeyData key;
ScanKeyInit(&key,
Anum_pg_class_relkind,
BTEqualStrategyNumber, F_CHAREQ,
CharGetDatum(RELKIND_RELATION));
pgclass = heap_open(RelationRelationId, AccessShareLock);
scan = heap_beginscan(pgclass, SnapshotNow, 1, &key);
while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
{
/* Make a relation list entry for this guy */
oldcontext = MemoryContextSwitchTo(vac_context);
oid_list = lappend_oid(oid_list, HeapTupleGetOid(tuple));
MemoryContextSwitchTo(oldcontext);
}
heap_endscan(scan);
heap_close(pgclass, AccessShareLock);
}
return oid_list;
}
/*
* vacuum_set_xid_limits() -- compute oldest-Xmin and freeze cutoff points
*/
void
vacuum_set_xid_limits(VacuumStmt *vacstmt, bool sharedRel,
TransactionId *oldestXmin,
TransactionId *freezeLimit)
{
TransactionId limit;
/*
* We can always ignore processes running lazy vacuum. This is because we
* use these values only for deciding which tuples we must keep in the
* tables. Since lazy vacuum doesn't write its xid to the table, it's
* safe to ignore it. In theory it could be problematic to ignore lazy
* vacuums on a full vacuum, but keep in mind that only one vacuum process
* can be working on a particular table at any time, and that each vacuum
* is always an independent transaction.
*/
*oldestXmin = GetOldestXmin(sharedRel, true);
Assert(TransactionIdIsNormal(*oldestXmin));
if (vacstmt->freeze)
{
/* FREEZE option: use oldest Xmin as freeze cutoff too */
limit = *oldestXmin;
}
else
{
/*
* Normal case: freeze cutoff is well in the past, to wit, about
* halfway to the wrap horizon
*/
limit = GetCurrentTransactionId() - (MaxTransactionId >> 2);
}
/*
* Be careful not to generate a "permanent" XID
*/
if (!TransactionIdIsNormal(limit))
limit = FirstNormalTransactionId;
/*
* Ensure sane relationship of limits
*/
if (TransactionIdFollows(limit, *oldestXmin))
{
ereport(WARNING,
(errmsg("oldest xmin is far in the past"),
errhint("Close open transactions soon to avoid wraparound problems.")));
limit = *oldestXmin;
}
*freezeLimit = limit;
}
/*
* vac_update_relstats() -- update statistics for one relation
*
* Update the whole-relation statistics that are kept in its pg_class
* row. There are additional stats that will be updated if we are
* doing ANALYZE, but we always update these stats. This routine works
* for both index and heap relation entries in pg_class.
*
* We violate transaction semantics here by overwriting the rel's
* existing pg_class tuple with the new values. This is reasonably
* safe since the new values are correct whether or not this transaction
* commits. The reason for this is that if we updated these tuples in
* the usual way, vacuuming pg_class itself wouldn't work very well ---
* by the time we got done with a vacuum cycle, most of the tuples in
* pg_class would've been obsoleted. Of course, this only works for
* fixed-size never-null columns, but these are.
*
* Another reason for doing it this way is that when we are in a lazy
* VACUUM and have inVacuum set, we mustn't do any updates --- somebody
* vacuuming pg_class might think they could delete a tuple marked with
* xmin = our xid.
*
* This routine is shared by full VACUUM, lazy VACUUM, and stand-alone
* ANALYZE.
*/
void
vac_update_relstats(Oid relid, BlockNumber num_pages, double num_tuples,
bool hasindex, TransactionId minxid,
TransactionId vacuumxid)
{
Relation rd;
HeapTuple ctup;
Form_pg_class pgcform;
bool dirty;
rd = heap_open(RelationRelationId, RowExclusiveLock);
/* Fetch a copy of the tuple to scribble on */
ctup = SearchSysCacheCopy(RELOID,
ObjectIdGetDatum(relid),
0, 0, 0);
if (!HeapTupleIsValid(ctup))
elog(ERROR, "pg_class entry for relid %u vanished during vacuuming",
relid);
pgcform = (Form_pg_class) GETSTRUCT(ctup);
/* Apply required updates, if any, to copied tuple */
dirty = false;
if (pgcform->relpages != (int32) num_pages)
{
pgcform->relpages = (int32) num_pages;
dirty = true;
}
if (pgcform->reltuples != (float4) num_tuples)
{
pgcform->reltuples = (float4) num_tuples;
dirty = true;
}
if (pgcform->relhasindex != hasindex)
{
pgcform->relhasindex = hasindex;
dirty = true;
}
/*
* If we have discovered that there are no indexes, then there's no
* primary key either. This could be done more thoroughly...
*/
if (!hasindex)
{
if (pgcform->relhaspkey)
{
pgcform->relhaspkey = false;
dirty = true;
}
}
if (TransactionIdIsValid(minxid) && pgcform->relminxid != minxid)
{
pgcform->relminxid = minxid;
dirty = true;
}
if (TransactionIdIsValid(vacuumxid) && pgcform->relvacuumxid != vacuumxid)
{
pgcform->relvacuumxid = vacuumxid;
dirty = true;
}
/*
* If anything changed, write out the tuple
*/
if (dirty)
heap_inplace_update(rd, ctup);
heap_close(rd, RowExclusiveLock);
}
/*
* vac_update_dbminxid() -- update the minimum Xid present in one database
*
* Update pg_database's datminxid and datvacuumxid, and the flat-file copy
* of it. datminxid is updated to the minimum of all relminxid found in
* pg_class. datvacuumxid is updated to the minimum of all relvacuumxid
* found in pg_class. The values are also returned in minxid and
* vacuumxid, respectively.
*
* We violate transaction semantics here by overwriting the database's
* existing pg_database tuple with the new values. This is reasonably
* safe since the new values are correct whether or not this transaction
* commits. As with vac_update_relstats, this avoids leaving dead tuples
* behind after a VACUUM.
*
* This routine is shared by full and lazy VACUUM.
*/
static void
vac_update_dbminxid(Oid dbid, TransactionId *minxid, TransactionId *vacuumxid)
{
HeapTuple tuple;
Form_pg_database dbform;
Relation relation;
SysScanDesc scan;
HeapTuple classTup;
TransactionId newMinXid = InvalidTransactionId;
TransactionId newVacXid = InvalidTransactionId;
bool dirty = false;
/*
* We must seqscan pg_class to find the minimum Xid, because there
* is no index that can help us here.
*/
relation = heap_open(RelationRelationId, AccessShareLock);
scan = systable_beginscan(relation, InvalidOid, false,
SnapshotNow, 0, NULL);
while ((classTup = systable_getnext(scan)) != NULL)
{
Form_pg_class classForm;
classForm = (Form_pg_class) GETSTRUCT(classTup);
/*
* Only consider heap and TOAST tables (anything else should have
* InvalidTransactionId in both fields anyway.)
*/
if (classForm->relkind != RELKIND_RELATION &&
classForm->relkind != RELKIND_TOASTVALUE)
continue;
Assert(TransactionIdIsNormal(classForm->relminxid));
Assert(TransactionIdIsNormal(classForm->relvacuumxid));
/*
* Compute the minimum relminxid in all the tables in the database.
*/
if ((!TransactionIdIsValid(newMinXid) ||
TransactionIdPrecedes(classForm->relminxid, newMinXid)))
newMinXid = classForm->relminxid;
/* ditto, for relvacuumxid */
if ((!TransactionIdIsValid(newVacXid) ||
TransactionIdPrecedes(classForm->relvacuumxid, newVacXid)))
newVacXid = classForm->relvacuumxid;
}
/* we're done with pg_class */
systable_endscan(scan);
heap_close(relation, AccessShareLock);
Assert(TransactionIdIsNormal(newMinXid));
Assert(TransactionIdIsNormal(newVacXid));
/* Now fetch the pg_database tuple we need to update. */
relation = heap_open(DatabaseRelationId, RowExclusiveLock);
/* Fetch a copy of the tuple to scribble on */
tuple = SearchSysCacheCopy(DATABASEOID,
ObjectIdGetDatum(dbid),
0, 0, 0);
if (!HeapTupleIsValid(tuple))
elog(ERROR, "could not find tuple for database %u", dbid);
dbform = (Form_pg_database) GETSTRUCT(tuple);
if (TransactionIdPrecedes(dbform->datminxid, newMinXid))
{
dbform->datminxid = newMinXid;
dirty = true;
}
if (TransactionIdPrecedes(dbform->datvacuumxid, newVacXid))
{
dbform->datvacuumxid = newVacXid;
dirty = true;
}
if (dirty)
heap_inplace_update(relation, tuple);
heap_freetuple(tuple);
heap_close(relation, RowExclusiveLock);
/* set return values */
*minxid = newMinXid;
*vacuumxid = newVacXid;
/* Mark the flat-file copy of pg_database for update at commit */
database_file_update_needed();
}
/*
* vac_truncate_clog() -- attempt to truncate the commit log
*
* Scan pg_database to determine the system-wide oldest datvacuumxid,
* and use it to truncate the transaction commit log (pg_clog).
* Also update the XID wrap limit point maintained by varsup.c.
*
* We also generate a warning if the system-wide oldest datfrozenxid
* seems to be in danger of wrapping around. This is a long-in-advance
* warning; if we start getting uncomfortably close, GetNewTransactionId
* will generate more-annoying warnings, and ultimately refuse to issue
* any more new XIDs.
*
* The passed XIDs are simply the ones I just wrote into my pg_database
* entry. They're used to initialize the "min" calculations.
*
* This routine is shared by full and lazy VACUUM. Note that it is only
* applied after a database-wide VACUUM operation.
*/
static void
vac_truncate_clog(TransactionId myminxid, TransactionId myvacxid)
{
TransactionId myXID = GetCurrentTransactionId();
TransactionId minXID;
TransactionId vacuumXID;
Relation relation;
HeapScanDesc scan;
HeapTuple tuple;
int32 age;
NameData oldest_datname;
bool vacuumAlreadyWrapped = false;
bool minAlreadyWrapped = false;
/* Initialize the minimum values. */
minXID = myminxid;
vacuumXID = myvacxid;
namestrcpy(&oldest_datname, get_database_name(MyDatabaseId));
/*
* Note: the "already wrapped" cases should now be impossible due to the
* defenses in GetNewTransactionId, but we keep them anyway.
*/
relation = heap_open(DatabaseRelationId, AccessShareLock);
scan = heap_beginscan(relation, SnapshotNow, 0, NULL);
while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
{
Form_pg_database dbform = (Form_pg_database) GETSTRUCT(tuple);
Assert(TransactionIdIsNormal(dbform->datvacuumxid));
Assert(TransactionIdIsNormal(dbform->datminxid));
if (TransactionIdPrecedes(myXID, dbform->datvacuumxid))
vacuumAlreadyWrapped = true;
else if (TransactionIdPrecedes(dbform->datvacuumxid, vacuumXID))
vacuumXID = dbform->datvacuumxid;
if (TransactionIdPrecedes(myXID, dbform->datminxid))
minAlreadyWrapped = true;
else if (TransactionIdPrecedes(dbform->datminxid, minXID))
{
minXID = dbform->datminxid;
namecpy(&oldest_datname, &dbform->datname);
}
}
heap_endscan(scan);
heap_close(relation, AccessShareLock);
/*
* Do not truncate CLOG if we seem to have suffered wraparound already;
* the computed minimum XID might be bogus.
*/
if (vacuumAlreadyWrapped)
{
ereport(WARNING,
(errmsg("some databases have not been vacuumed in over 2 billion transactions"),
errdetail("You may have already suffered transaction-wraparound data loss.")));
return;
}
/* Truncate CLOG to the oldest vacuumxid */
TruncateCLOG(vacuumXID);
/*
* Do not update varsup.c if we seem to have suffered wraparound already;
* the computed XID might be bogus.
*/
if (minAlreadyWrapped)
{
ereport(WARNING,
(errmsg("some databases have not been vacuumed in over 1 billion transactions"),
errhint("Better vacuum them soon, or you may have a wraparound failure.")));
return;
}
/* Update the wrap limit for GetNewTransactionId */
SetTransactionIdLimit(minXID, &oldest_datname);
/* Give warning about impending wraparound problems */
age = (int32) (myXID - minXID);
if (age > (int32) ((MaxTransactionId >> 3) * 3))
ereport(WARNING,
(errmsg("database \"%s\" must be vacuumed within %u transactions",
NameStr(oldest_datname),
(MaxTransactionId >> 1) - age),
errhint("To avoid a database shutdown, execute a full-database VACUUM in \"%s\".",
NameStr(oldest_datname))));
/*
* Have the postmaster start an autovacuum iteration. If the user has
* autovacuum configured, this is not needed; otherwise, we need to make
* sure we have some mechanism to cope with transaction Id wraparound.
* Ideally this would only be needed for template databases, because all
* other databases should be kept nicely pruned by regular vacuuming.
*
* XXX -- the test we use here is fairly arbitrary. Note that in the
* autovacuum database-wide code, a template database is always processed
* with VACUUM FREEZE, so we can be sure that it will be truly frozen so
* it won't be need to be processed here again soon.
*
* FIXME -- here we could get into a kind of loop if the database being
* chosen is not actually a template database, because we'll not freeze
* it, so its age may not really decrease if there are any live
* non-freezable tuples. Consider forcing a vacuum freeze if autovacuum
* is invoked by a backend. On the other hand, forcing a vacuum freeze
* on a user database may not a be a very polite thing to do.
*/
if (!AutoVacuumingActive() && age > (int32) ((MaxTransactionId >> 3) * 3))
SendPostmasterSignal(PMSIGNAL_START_AUTOVAC);
}
/****************************************************************************
* *
* Code common to both flavors of VACUUM *
* *
****************************************************************************
*/
/*
* vacuum_rel() -- vacuum one heap relation
*
* Doing one heap at a time incurs extra overhead, since we need to
* check that the heap exists again just before we vacuum it. The
* reason that we do this is so that vacuuming can be spread across
* many small transactions. Otherwise, two-phase locking would require
* us to lock the entire database during one pass of the vacuum cleaner.
*
* At entry and exit, we are not inside a transaction.
*/
static void
vacuum_rel(Oid relid, VacuumStmt *vacstmt, char expected_relkind)
{
LOCKMODE lmode;
Relation onerel;
LockRelId onerelid;
Oid toast_relid;
/* Begin a transaction for vacuuming this relation */
StartTransactionCommand();
if (vacstmt->full)
{
/* functions in indexes may want a snapshot set */
ActiveSnapshot = CopySnapshot(GetTransactionSnapshot());
}
else
{
/*
* During a lazy VACUUM we do not run any user-supplied functions,
* and so it should be safe to not create a transaction snapshot.
*
* We can furthermore set the inVacuum flag, which lets other
* concurrent VACUUMs know that they can ignore this one while
* determining their OldestXmin. (The reason we don't set inVacuum
* during a full VACUUM is exactly that we may have to run user-
* defined functions for functional indexes, and we want to make
* sure that if they use the snapshot set above, any tuples it
* requires can't get removed from other tables. An index function
* that depends on the contents of other tables is arguably broken,
* but we won't break it here by violating transaction semantics.)
*
* Note: the inVacuum flag remains set until CommitTransaction or
* AbortTransaction. We don't want to clear it until we reset
* MyProc->xid/xmin, else OldestXmin might appear to go backwards,
* which is probably Not Good.
*/
MyProc->inVacuum = true;
}
/*
* Tell the cache replacement strategy that vacuum is causing all
* following IO
*/
StrategyHintVacuum(true);
/*
* Check for user-requested abort. Note we want this to be inside a
* transaction, so xact.c doesn't issue useless WARNING.
*/
CHECK_FOR_INTERRUPTS();
/*
* Race condition -- if the pg_class tuple has gone away since the last
* time we saw it, we don't need to vacuum it.
*/
if (!SearchSysCacheExists(RELOID,
ObjectIdGetDatum(relid),
0, 0, 0))
{
StrategyHintVacuum(false);
CommitTransactionCommand();
return;
}
/*
* Determine the type of lock we want --- hard exclusive lock for a FULL
* vacuum, but just ShareUpdateExclusiveLock for concurrent vacuum. Either
* way, we can be sure that no other backend is vacuuming the same table.
*/
lmode = vacstmt->full ? AccessExclusiveLock : ShareUpdateExclusiveLock;
/*
* Open the class, get an appropriate lock on it, and check permissions.
*
* We allow the user to vacuum a table if he is superuser, the table
* owner, or the database owner (but in the latter case, only if it's not
* a shared relation). pg_class_ownercheck includes the superuser case.
*
* Note we choose to treat permissions failure as a WARNING and keep
* trying to vacuum the rest of the DB --- is this appropriate?
*/
onerel = relation_open(relid, lmode);
if (!(pg_class_ownercheck(RelationGetRelid(onerel), GetUserId()) ||
(pg_database_ownercheck(MyDatabaseId, GetUserId()) && !onerel->rd_rel->relisshared)))
{
ereport(WARNING,
(errmsg("skipping \"%s\" --- only table or database owner can vacuum it",
RelationGetRelationName(onerel))));
relation_close(onerel, lmode);
StrategyHintVacuum(false);
CommitTransactionCommand();
return;
}
/*
* Check that it's a plain table; we used to do this in get_rel_oids() but
* seems safer to check after we've locked the relation.
*/
if (onerel->rd_rel->relkind != expected_relkind)
{
ereport(WARNING,
(errmsg("skipping \"%s\" --- cannot vacuum indexes, views, or special system tables",
RelationGetRelationName(onerel))));
relation_close(onerel, lmode);
StrategyHintVacuum(false);
CommitTransactionCommand();
return;
}
/*
* Silently ignore tables that are temp tables of other backends ---
* trying to vacuum these will lead to great unhappiness, since their
* contents are probably not up-to-date on disk. (We don't throw a
* warning here; it would just lead to chatter during a database-wide
* VACUUM.)
*/
if (isOtherTempNamespace(RelationGetNamespace(onerel)))
{
relation_close(onerel, lmode);
StrategyHintVacuum(false);
CommitTransactionCommand();
return; /* assume no long-lived data in temp tables */
}
/*
* Get a session-level lock too. This will protect our access to the
* relation across multiple transactions, so that we can vacuum the
* relation's TOAST table (if any) secure in the knowledge that no one is
* deleting the parent relation.
*
* NOTE: this cannot block, even if someone else is waiting for access,
* because the lock manager knows that both lock requests are from the
* same process.
*/
onerelid = onerel->rd_lockInfo.lockRelId;
LockRelationIdForSession(&onerelid, lmode);
/*
* Remember the relation's TOAST relation for later
*/
toast_relid = onerel->rd_rel->reltoastrelid;
/*
* Do the actual work --- either FULL or "lazy" vacuum
*/
if (vacstmt->full)
full_vacuum_rel(onerel, vacstmt);
else
lazy_vacuum_rel(onerel, vacstmt);
/* all done with this class, but hold lock until commit */
relation_close(onerel, NoLock);
/*
* Complete the transaction and free all temporary memory used.
*/
StrategyHintVacuum(false);
CommitTransactionCommand();
/*
* If the relation has a secondary toast rel, vacuum that too while we
* still hold the session lock on the master table. Note however that
* "analyze" will not get done on the toast table. This is good, because
* the toaster always uses hardcoded index access and statistics are
* totally unimportant for toast relations.
*/
if (toast_relid != InvalidOid)
vacuum_rel(toast_relid, vacstmt, RELKIND_TOASTVALUE);
/*
* Now release the session-level lock on the master table.
*/
UnlockRelationIdForSession(&onerelid, lmode);
return;
}
/****************************************************************************
* *
* Code for VACUUM FULL (only) *
* *
****************************************************************************
*/
/*
* full_vacuum_rel() -- perform FULL VACUUM for one heap relation
*
* This routine vacuums a single heap, cleans out its indexes, and
* updates its num_pages and num_tuples statistics.
*
* At entry, we have already established a transaction and opened
* and locked the relation.
*/
static void
full_vacuum_rel(Relation onerel, VacuumStmt *vacstmt)
{
VacPageListData vacuum_pages; /* List of pages to vacuum and/or
* clean indexes */
VacPageListData fraged_pages; /* List of pages with space enough for
* re-using */
Relation *Irel;
int nindexes,
i;
VRelStats *vacrelstats;
TransactionId FreezeLimit,
OldestXmin;
vacuum_set_xid_limits(vacstmt, onerel->rd_rel->relisshared,
&OldestXmin, &FreezeLimit);
/*
* Set up statistics-gathering machinery.
*/
vacrelstats = (VRelStats *) palloc(sizeof(VRelStats));
vacrelstats->rel_pages = 0;
vacrelstats->rel_tuples = 0;
vacrelstats->hasindex = false;
/*
* Set initial minimum Xid, which will be updated if a smaller Xid is found
* in the relation by scan_heap.
*
* We use RecentXmin here (the minimum Xid that belongs to a transaction
* that is still open according to our snapshot), because it is the
* earliest transaction that could insert new tuples in the table after our
* VACUUM is done.
*/
vacrelstats->minxid = RecentXmin;
/* scan the heap */
vacuum_pages.num_pages = fraged_pages.num_pages = 0;
scan_heap(vacrelstats, onerel, &vacuum_pages, &fraged_pages, FreezeLimit,
OldestXmin);
/* Now open all indexes of the relation */
vac_open_indexes(onerel, AccessExclusiveLock, &nindexes, &Irel);
if (nindexes > 0)
vacrelstats->hasindex = true;
/* Clean/scan index relation(s) */
if (Irel != NULL)
{
if (vacuum_pages.num_pages > 0)
{
for (i = 0; i < nindexes; i++)
vacuum_index(&vacuum_pages, Irel[i],
vacrelstats->rel_tuples, 0);
}
else
{
/* just scan indexes to update statistic */
for (i = 0; i < nindexes; i++)
scan_index(Irel[i], vacrelstats->rel_tuples);
}
}
if (fraged_pages.num_pages > 0)
{
/* Try to shrink heap */
repair_frag(vacrelstats, onerel, &vacuum_pages, &fraged_pages,
nindexes, Irel, OldestXmin);
vac_close_indexes(nindexes, Irel, NoLock);
}
else
{
vac_close_indexes(nindexes, Irel, NoLock);
if (vacuum_pages.num_pages > 0)
{
/* Clean pages from vacuum_pages list */
vacuum_heap(vacrelstats, onerel, &vacuum_pages);
}
}
/* update shared free space map with final free space info */
vac_update_fsm(onerel, &fraged_pages, vacrelstats->rel_pages);
/* update statistics in pg_class */
vac_update_relstats(RelationGetRelid(onerel), vacrelstats->rel_pages,
vacrelstats->rel_tuples, vacrelstats->hasindex,
vacrelstats->minxid, OldestXmin);
/* report results to the stats collector, too */
pgstat_report_vacuum(RelationGetRelid(onerel), onerel->rd_rel->relisshared,
vacstmt->analyze, vacrelstats->rel_tuples);
}
/*
* scan_heap() -- scan an open heap relation
*
* This routine sets commit status bits, constructs vacuum_pages (list
* of pages we need to compact free space on and/or clean indexes of
* deleted tuples), constructs fraged_pages (list of pages with free
* space that tuples could be moved into), and calculates statistics
* on the number of live tuples in the heap.
*
* It also updates the minimum Xid found anywhere on the table in
* vacrelstats->minxid, for later storing it in pg_class.relminxid.
*/
static void
scan_heap(VRelStats *vacrelstats, Relation onerel,
VacPageList vacuum_pages, VacPageList fraged_pages,
TransactionId FreezeLimit, TransactionId OldestXmin)
{
BlockNumber nblocks,
blkno;
char *relname;
VacPage vacpage;
BlockNumber empty_pages,
empty_end_pages;
double num_tuples,
tups_vacuumed,
nkeep,
nunused;
double free_space,
usable_free_space;
Size min_tlen = MaxTupleSize;
Size max_tlen = 0;
bool do_shrinking = true;
VTupleLink vtlinks = (VTupleLink) palloc(100 * sizeof(VTupleLinkData));
int num_vtlinks = 0;
int free_vtlinks = 100;
PGRUsage ru0;
pg_rusage_init(&ru0);
relname = RelationGetRelationName(onerel);
ereport(elevel,
(errmsg("vacuuming \"%s.%s\"",
get_namespace_name(RelationGetNamespace(onerel)),
relname)));
empty_pages = empty_end_pages = 0;
num_tuples = tups_vacuumed = nkeep = nunused = 0;
free_space = 0;
nblocks = RelationGetNumberOfBlocks(onerel);
/*
* We initially create each VacPage item in a maximal-sized workspace,
* then copy the workspace into a just-large-enough copy.
*/
vacpage = (VacPage) palloc(sizeof(VacPageData) + MaxOffsetNumber * sizeof(OffsetNumber));
for (blkno = 0; blkno < nblocks; blkno++)
{
Page page,
tempPage = NULL;
bool do_reap,
do_frag;
Buffer buf;
OffsetNumber offnum,
maxoff;
bool pgchanged,
notup;
vacuum_delay_point();
buf = ReadBuffer(onerel, blkno);
page = BufferGetPage(buf);
/*
* Since we are holding exclusive lock on the relation, no other
* backend can be accessing the page; however it is possible that the
* background writer will try to write the page if it's already marked
* dirty. To ensure that invalid data doesn't get written to disk, we
* must take exclusive buffer lock wherever we potentially modify
* pages.
*/
LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
vacpage->blkno = blkno;
vacpage->offsets_used = 0;
vacpage->offsets_free = 0;
if (PageIsNew(page))
{
VacPage vacpagecopy;
ereport(WARNING,
(errmsg("relation \"%s\" page %u is uninitialized --- fixing",
relname, blkno)));
PageInit(page, BufferGetPageSize(buf), 0);
MarkBufferDirty(buf);
vacpage->free = PageGetFreeSpaceWithFillFactor(onerel, page);
free_space += vacpage->free;
empty_pages++;
empty_end_pages++;
vacpagecopy = copy_vac_page(vacpage);
vpage_insert(vacuum_pages, vacpagecopy);
vpage_insert(fraged_pages, vacpagecopy);
UnlockReleaseBuffer(buf);
continue;
}
if (PageIsEmpty(page))
{
VacPage vacpagecopy;
vacpage->free = PageGetFreeSpaceWithFillFactor(onerel, page);
free_space += vacpage->free;
empty_pages++;
empty_end_pages++;
vacpagecopy = copy_vac_page(vacpage);
vpage_insert(vacuum_pages, vacpagecopy);
vpage_insert(fraged_pages, vacpagecopy);
UnlockReleaseBuffer(buf);
continue;
}
pgchanged = false;
notup = true;
maxoff = PageGetMaxOffsetNumber(page);
for (offnum = FirstOffsetNumber;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
ItemId itemid = PageGetItemId(page, offnum);
bool tupgone = false;
HeapTupleData tuple;
/*
* Collect un-used items too - it's possible to have indexes
* pointing here after crash.
*/
if (!ItemIdIsUsed(itemid))
{
vacpage->offsets[vacpage->offsets_free++] = offnum;
nunused += 1;
continue;
}
tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
tuple.t_len = ItemIdGetLength(itemid);
ItemPointerSet(&(tuple.t_self), blkno, offnum);
switch (HeapTupleSatisfiesVacuum(tuple.t_data, OldestXmin, buf))
{
case HEAPTUPLE_DEAD:
tupgone = true; /* we can delete the tuple */
break;
case HEAPTUPLE_LIVE:
/*
* Tuple is good. Consider whether to replace its xmin
* value with FrozenTransactionId.
*/
if (TransactionIdIsNormal(HeapTupleHeaderGetXmin(tuple.t_data)) &&
TransactionIdPrecedes(HeapTupleHeaderGetXmin(tuple.t_data),
FreezeLimit))
{
HeapTupleHeaderSetXmin(tuple.t_data, FrozenTransactionId);
/* infomask should be okay already */
Assert(tuple.t_data->t_infomask & HEAP_XMIN_COMMITTED);
pgchanged = true;
}
/*
* Other checks...
*/
if (onerel->rd_rel->relhasoids &&
!OidIsValid(HeapTupleGetOid(&tuple)))
elog(WARNING, "relation \"%s\" TID %u/%u: OID is invalid",
relname, blkno, offnum);
break;
case HEAPTUPLE_RECENTLY_DEAD:
/*
* If tuple is recently deleted then we must not remove it
* from relation.
*/
nkeep += 1;
/*
* If we do shrinking and this tuple is updated one then
* remember it to construct updated tuple dependencies.
*/
if (do_shrinking &&
!(ItemPointerEquals(&(tuple.t_self),
&(tuple.t_data->t_ctid))))
{
if (free_vtlinks == 0)
{
free_vtlinks = 1000;
vtlinks = (VTupleLink) repalloc(vtlinks,
(free_vtlinks + num_vtlinks) *
sizeof(VTupleLinkData));
}
vtlinks[num_vtlinks].new_tid = tuple.t_data->t_ctid;
vtlinks[num_vtlinks].this_tid = tuple.t_self;
free_vtlinks--;
num_vtlinks++;
}
break;
case HEAPTUPLE_INSERT_IN_PROGRESS:
/*
* This should not happen, since we hold exclusive lock on
* the relation; shouldn't we raise an error? (Actually,
* it can happen in system catalogs, since we tend to
* release write lock before commit there.)
*/
ereport(NOTICE,
(errmsg("relation \"%s\" TID %u/%u: InsertTransactionInProgress %u --- can't shrink relation",
relname, blkno, offnum, HeapTupleHeaderGetXmin(tuple.t_data))));
do_shrinking = false;
break;
case HEAPTUPLE_DELETE_IN_PROGRESS:
/*
* This should not happen, since we hold exclusive lock on
* the relation; shouldn't we raise an error? (Actually,
* it can happen in system catalogs, since we tend to
* release write lock before commit there.)
*/
ereport(NOTICE,
(errmsg("relation \"%s\" TID %u/%u: DeleteTransactionInProgress %u --- can't shrink relation",
relname, blkno, offnum, HeapTupleHeaderGetXmax(tuple.t_data))));
do_shrinking = false;
break;
default:
elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
break;
}
if (tupgone)
{
ItemId lpp;
/*
* Here we are building a temporary copy of the page with dead
* tuples removed. Below we will apply
* PageRepairFragmentation to the copy, so that we can
* determine how much space will be available after removal of
* dead tuples. But note we are NOT changing the real page
* yet...
*/
if (tempPage == NULL)
{
Size pageSize;
pageSize = PageGetPageSize(page);
tempPage = (Page) palloc(pageSize);
memcpy(tempPage, page, pageSize);
}
/* mark it unused on the temp page */
lpp = PageGetItemId(tempPage, offnum);
lpp->lp_flags &= ~LP_USED;
vacpage->offsets[vacpage->offsets_free++] = offnum;
tups_vacuumed += 1;
}
else
{
TransactionId min;
num_tuples += 1;
notup = false;
if (tuple.t_len < min_tlen)
min_tlen = tuple.t_len;
if (tuple.t_len > max_tlen)
max_tlen = tuple.t_len;
/*
* If the tuple is alive, we consider it for the "minxid"
* calculations.
*/
min = vactuple_get_minxid(&tuple);
if (TransactionIdIsValid(min) &&
TransactionIdPrecedes(min, vacrelstats->minxid))
vacrelstats->minxid = min;
}
} /* scan along page */
if (tempPage != NULL)
{
/* Some tuples are removable; figure free space after removal */
PageRepairFragmentation(tempPage, NULL);
vacpage->free = PageGetFreeSpaceWithFillFactor(onerel, tempPage);
pfree(tempPage);
do_reap = true;
}
else
{
/* Just use current available space */
vacpage->free = PageGetFreeSpaceWithFillFactor(onerel, page);
/* Need to reap the page if it has ~LP_USED line pointers */
do_reap = (vacpage->offsets_free > 0);
}
free_space += vacpage->free;
/*
* Add the page to fraged_pages if it has a useful amount of free
* space. "Useful" means enough for a minimal-sized tuple. But we
* don't know that accurately near the start of the relation, so add
* pages unconditionally if they have >= BLCKSZ/10 free space.
*/
do_frag = (vacpage->free >= min_tlen || vacpage->free >= BLCKSZ / 10);
if (do_reap || do_frag)
{
VacPage vacpagecopy = copy_vac_page(vacpage);
if (do_reap)
vpage_insert(vacuum_pages, vacpagecopy);
if (do_frag)
vpage_insert(fraged_pages, vacpagecopy);
}
/*
* Include the page in empty_end_pages if it will be empty after
* vacuuming; this is to keep us from using it as a move destination.
*/
if (notup)
{
empty_pages++;
empty_end_pages++;
}
else
empty_end_pages = 0;
if (pgchanged)
MarkBufferDirty(buf);
UnlockReleaseBuffer(buf);
}
pfree(vacpage);
/* save stats in the rel list for use later */
vacrelstats->rel_tuples = num_tuples;
vacrelstats->rel_pages = nblocks;
if (num_tuples == 0)
min_tlen = max_tlen = 0;
vacrelstats->min_tlen = min_tlen;
vacrelstats->max_tlen = max_tlen;
vacuum_pages->empty_end_pages = empty_end_pages;
fraged_pages->empty_end_pages = empty_end_pages;
/*
* Clear the fraged_pages list if we found we couldn't shrink. Else,
* remove any "empty" end-pages from the list, and compute usable free
* space = free space in remaining pages.
*/
if (do_shrinking)
{
int i;
Assert((BlockNumber) fraged_pages->num_pages >= empty_end_pages);
fraged_pages->num_pages -= empty_end_pages;
usable_free_space = 0;
for (i = 0; i < fraged_pages->num_pages; i++)
usable_free_space += fraged_pages->pagedesc[i]->free;
}
else
{
fraged_pages->num_pages = 0;
usable_free_space = 0;
}
/* don't bother to save vtlinks if we will not call repair_frag */
if (fraged_pages->num_pages > 0 && num_vtlinks > 0)
{
qsort((char *) vtlinks, num_vtlinks, sizeof(VTupleLinkData),
vac_cmp_vtlinks);
vacrelstats->vtlinks = vtlinks;
vacrelstats->num_vtlinks = num_vtlinks;
}
else
{
vacrelstats->vtlinks = NULL;
vacrelstats->num_vtlinks = 0;
pfree(vtlinks);
}
ereport(elevel,
(errmsg("\"%s\": found %.0f removable, %.0f nonremovable row versions in %u pages",
RelationGetRelationName(onerel),
tups_vacuumed, num_tuples, nblocks),
errdetail("%.0f dead row versions cannot be removed yet.\n"
"Nonremovable row versions range from %lu to %lu bytes long.\n"
"There were %.0f unused item pointers.\n"
"Total free space (including removable row versions) is %.0f bytes.\n"
"%u pages are or will become empty, including %u at the end of the table.\n"
"%u pages containing %.0f free bytes are potential move destinations.\n"
"%s.",
nkeep,
(unsigned long) min_tlen, (unsigned long) max_tlen,
nunused,
free_space,
empty_pages, empty_end_pages,
fraged_pages->num_pages, usable_free_space,
pg_rusage_show(&ru0))));
}
/*
* vactuple_get_minxid
*
* Get the minimum relevant Xid for a tuple, not considering FrozenXid.
* Return InvalidXid if none (i.e., xmin=FrozenXid, xmax=InvalidXid).
* This is for the purpose of calculating pg_class.relminxid for a table
* we're vacuuming.
*/
TransactionId
vactuple_get_minxid(HeapTuple tuple)
{
TransactionId min = InvalidTransactionId;
/*
* Initialize calculations with Xmin. NB -- may be FrozenXid and
* we don't want that one.
*/
if (TransactionIdIsNormal(HeapTupleHeaderGetXmin(tuple->t_data)))
min = HeapTupleHeaderGetXmin(tuple->t_data);
/*
* If Xmax is not marked INVALID, we assume it's valid without making
* further checks on it --- it must be recently obsoleted or still running,
* else HeapTupleSatisfiesVacuum would have deemed it removable.
*/
if (!(tuple->t_data->t_infomask | HEAP_XMAX_INVALID))
{
TransactionId xmax = HeapTupleHeaderGetXmax(tuple->t_data);
/* If xmax is a plain Xid, consider it by itself */
if (!(tuple->t_data->t_infomask | HEAP_XMAX_IS_MULTI))
{
if (!TransactionIdIsValid(min) ||
(TransactionIdIsNormal(xmax) &&
TransactionIdPrecedes(xmax, min)))
min = xmax;
}
else
{
/* If it's a MultiXactId, consider each of its members */
TransactionId *members;
int nmembers,
membno;
nmembers = GetMultiXactIdMembers(xmax, &members);
for (membno = 0; membno < nmembers; membno++)
{
if (!TransactionIdIsValid(min) ||
TransactionIdPrecedes(members[membno], min))
min = members[membno];
}
}
}
return min;
}
/*
* repair_frag() -- try to repair relation's fragmentation
*
* This routine marks dead tuples as unused and tries re-use dead space
* by moving tuples (and inserting indexes if needed). It constructs
* Nvacpagelist list of free-ed pages (moved tuples) and clean indexes
* for them after committing (in hack-manner - without losing locks
* and freeing memory!) current transaction. It truncates relation
* if some end-blocks are gone away.
*/
static void
repair_frag(VRelStats *vacrelstats, Relation onerel,
VacPageList vacuum_pages, VacPageList fraged_pages,
int nindexes, Relation *Irel, TransactionId OldestXmin)
{
TransactionId myXID = GetCurrentTransactionId();
Buffer dst_buffer = InvalidBuffer;
BlockNumber nblocks,
blkno;
BlockNumber last_move_dest_block = 0,
last_vacuum_block;
Page dst_page = NULL;
ExecContextData ec;
VacPageListData Nvacpagelist;
VacPage dst_vacpage = NULL,
last_vacuum_page,
vacpage,
*curpage;
int i;
int num_moved = 0,
num_fraged_pages,
vacuumed_pages;
int keep_tuples = 0;
PGRUsage ru0;
pg_rusage_init(&ru0);
ExecContext_Init(&ec, onerel);
Nvacpagelist.num_pages = 0;
num_fraged_pages = fraged_pages->num_pages;
Assert((BlockNumber) vacuum_pages->num_pages >= vacuum_pages->empty_end_pages);
vacuumed_pages = vacuum_pages->num_pages - vacuum_pages->empty_end_pages;
if (vacuumed_pages > 0)
{
/* get last reaped page from vacuum_pages */
last_vacuum_page = vacuum_pages->pagedesc[vacuumed_pages - 1];
last_vacuum_block = last_vacuum_page->blkno;
}
else
{
last_vacuum_page = NULL;
last_vacuum_block = InvalidBlockNumber;
}
vacpage = (VacPage) palloc(sizeof(VacPageData) + MaxOffsetNumber * sizeof(OffsetNumber));
vacpage->offsets_used = vacpage->offsets_free = 0;
/*
* Scan pages backwards from the last nonempty page, trying to move tuples
* down to lower pages. Quit when we reach a page that we have moved any
* tuples onto, or the first page if we haven't moved anything, or when we
* find a page we cannot completely empty (this last condition is handled
* by "break" statements within the loop).
*
* NB: this code depends on the vacuum_pages and fraged_pages lists being
* in order by blkno.
*/
nblocks = vacrelstats->rel_pages;
for (blkno = nblocks - vacuum_pages->empty_end_pages - 1;
blkno > last_move_dest_block;
blkno--)
{
Buffer buf;
Page page;
OffsetNumber offnum,
maxoff;
bool isempty,
chain_tuple_moved;
vacuum_delay_point();
/*
* Forget fraged_pages pages at or after this one; they're no longer
* useful as move targets, since we only want to move down. Note that
* since we stop the outer loop at last_move_dest_block, pages removed
* here cannot have had anything moved onto them already.
*
* Also note that we don't change the stored fraged_pages list, only
* our local variable num_fraged_pages; so the forgotten pages are
* still available to be loaded into the free space map later.
*/
while (num_fraged_pages > 0 &&
fraged_pages->pagedesc[num_fraged_pages - 1]->blkno >= blkno)
{
Assert(fraged_pages->pagedesc[num_fraged_pages - 1]->offsets_used == 0);
--num_fraged_pages;
}
/*
* Process this page of relation.
*/
buf = ReadBuffer(onerel, blkno);
page = BufferGetPage(buf);
vacpage->offsets_free = 0;
isempty = PageIsEmpty(page);
/* Is the page in the vacuum_pages list? */
if (blkno == last_vacuum_block)
{
if (last_vacuum_page->offsets_free > 0)
{
/* there are dead tuples on this page - clean them */
Assert(!isempty);
LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
vacuum_page(onerel, buf, last_vacuum_page);
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
}
else
Assert(isempty);
--vacuumed_pages;
if (vacuumed_pages > 0)
{
/* get prev reaped page from vacuum_pages */
last_vacuum_page = vacuum_pages->pagedesc[vacuumed_pages - 1];
last_vacuum_block = last_vacuum_page->blkno;
}
else
{
last_vacuum_page = NULL;
last_vacuum_block = InvalidBlockNumber;
}
if (isempty)
{
ReleaseBuffer(buf);
continue;
}
}
else
Assert(!isempty);
chain_tuple_moved = false; /* no one chain-tuple was moved off
* this page, yet */
vacpage->blkno = blkno;
maxoff = PageGetMaxOffsetNumber(page);
for (offnum = FirstOffsetNumber;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
Size tuple_len;
HeapTupleData tuple;
ItemId itemid = PageGetItemId(page, offnum);
if (!ItemIdIsUsed(itemid))
continue;
tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
tuple_len = tuple.t_len = ItemIdGetLength(itemid);
ItemPointerSet(&(tuple.t_self), blkno, offnum);
/* ---
* VACUUM FULL has an exclusive lock on the relation. So
* normally no other transaction can have pending INSERTs or
* DELETEs in this relation. A tuple is either:
* (a) a tuple in a system catalog, inserted or deleted
* by a not yet committed transaction
* (b) known dead (XMIN_INVALID, or XMAX_COMMITTED and xmax
* is visible to all active transactions)
* (c) inserted by a committed xact (XMIN_COMMITTED)
* (d) moved by the currently running VACUUM.
* (e) deleted (XMAX_COMMITTED) but at least one active
* transaction does not see the deleting transaction
* In case (a) we wouldn't be in repair_frag() at all.
* In case (b) we cannot be here, because scan_heap() has
* already marked the item as unused, see continue above. Case
* (c) is what normally is to be expected. Case (d) is only
* possible, if a whole tuple chain has been moved while
* processing this or a higher numbered block.
* ---
*/
if (!(tuple.t_data->t_infomask & HEAP_XMIN_COMMITTED))
{
if (tuple.t_data->t_infomask & HEAP_MOVED_IN)
elog(ERROR, "HEAP_MOVED_IN was not expected");
if (!(tuple.t_data->t_infomask & HEAP_MOVED_OFF))
elog(ERROR, "HEAP_MOVED_OFF was expected");
/*
* MOVED_OFF by another VACUUM would have caused the
* visibility check to set XMIN_COMMITTED or XMIN_INVALID.
*/
if (HeapTupleHeaderGetXvac(tuple.t_data) != myXID)
elog(ERROR, "invalid XVAC in tuple header");
/*
* If this (chain) tuple is moved by me already then I have to
* check is it in vacpage or not - i.e. is it moved while
* cleaning this page or some previous one.
*/
/* Can't we Assert(keep_tuples > 0) here? */
if (keep_tuples == 0)
continue;
if (chain_tuple_moved)
{
/* some chains were moved while cleaning this page */
Assert(vacpage->offsets_free > 0);
for (i = 0; i < vacpage->offsets_free; i++)
{
if (vacpage->offsets[i] == offnum)
break;
}
if (i >= vacpage->offsets_free) /* not found */
{
vacpage->offsets[vacpage->offsets_free++] = offnum;
keep_tuples--;
}
}
else
{
vacpage->offsets[vacpage->offsets_free++] = offnum;
keep_tuples--;
}
continue;
}
/*
* If this tuple is in a chain of tuples created in updates by
* "recent" transactions then we have to move the whole chain of
* tuples to other places, so that we can write new t_ctid links
* that preserve the chain relationship.
*
* This test is complicated. Read it as "if tuple is a recently
* created updated version, OR if it is an obsoleted version". (In
* the second half of the test, we needn't make any check on XMAX
* --- it must be recently obsoleted, else scan_heap would have
* deemed it removable.)
*
* NOTE: this test is not 100% accurate: it is possible for a
* tuple to be an updated one with recent xmin, and yet not match
* any new_tid entry in the vtlinks list. Presumably there was
* once a parent tuple with xmax matching the xmin, but it's
* possible that that tuple has been removed --- for example, if
* it had xmin = xmax and wasn't itself an updated version, then
* HeapTupleSatisfiesVacuum would deem it removable as soon as the
* xmin xact completes.
*
* To be on the safe side, we abandon the repair_frag process if
* we cannot find the parent tuple in vtlinks. This may be overly
* conservative; AFAICS it would be safe to move the chain.
*/
if (((tuple.t_data->t_infomask & HEAP_UPDATED) &&
!TransactionIdPrecedes(HeapTupleHeaderGetXmin(tuple.t_data),
OldestXmin)) ||
(!(tuple.t_data->t_infomask & (HEAP_XMAX_INVALID |
HEAP_IS_LOCKED)) &&
!(ItemPointerEquals(&(tuple.t_self),
&(tuple.t_data->t_ctid)))))
{
Buffer Cbuf = buf;
bool freeCbuf = false;
bool chain_move_failed = false;
ItemPointerData Ctid;
HeapTupleData tp = tuple;
Size tlen = tuple_len;
VTupleMove vtmove;
int num_vtmove;
int free_vtmove;
VacPage to_vacpage = NULL;
int to_item = 0;
int ti;
if (dst_buffer != InvalidBuffer)
{
ReleaseBuffer(dst_buffer);
dst_buffer = InvalidBuffer;
}
/* Quick exit if we have no vtlinks to search in */
if (vacrelstats->vtlinks == NULL)
{
elog(DEBUG2, "parent item in update-chain not found --- can't continue repair_frag");
break; /* out of walk-along-page loop */
}
/*
* If this tuple is in the begin/middle of the chain then we
* have to move to the end of chain. As with any t_ctid
* chase, we have to verify that each new tuple is really the
* descendant of the tuple we came from.
*/
while (!(tp.t_data->t_infomask & (HEAP_XMAX_INVALID |
HEAP_IS_LOCKED)) &&
!(ItemPointerEquals(&(tp.t_self),
&(tp.t_data->t_ctid))))
{
ItemPointerData nextTid;
TransactionId priorXmax;
Buffer nextBuf;
Page nextPage;
OffsetNumber nextOffnum;
ItemId nextItemid;
HeapTupleHeader nextTdata;
nextTid = tp.t_data->t_ctid;
priorXmax = HeapTupleHeaderGetXmax(tp.t_data);
/* assume block# is OK (see heap_fetch comments) */
nextBuf = ReadBuffer(onerel,
ItemPointerGetBlockNumber(&nextTid));
nextPage = BufferGetPage(nextBuf);
/* If bogus or unused slot, assume tp is end of chain */
nextOffnum = ItemPointerGetOffsetNumber(&nextTid);
if (nextOffnum < FirstOffsetNumber ||
nextOffnum > PageGetMaxOffsetNumber(nextPage))
{
ReleaseBuffer(nextBuf);
break;
}
nextItemid = PageGetItemId(nextPage, nextOffnum);
if (!ItemIdIsUsed(nextItemid))
{
ReleaseBuffer(nextBuf);
break;
}
/* if not matching XMIN, assume tp is end of chain */
nextTdata = (HeapTupleHeader) PageGetItem(nextPage,
nextItemid);
if (!TransactionIdEquals(HeapTupleHeaderGetXmin(nextTdata),
priorXmax))
{
ReleaseBuffer(nextBuf);
break;
}
/* OK, switch our attention to the next tuple in chain */
tp.t_data = nextTdata;
tp.t_self = nextTid;
tlen = tp.t_len = ItemIdGetLength(nextItemid);
if (freeCbuf)
ReleaseBuffer(Cbuf);
Cbuf = nextBuf;
freeCbuf = true;
}
/* Set up workspace for planning the chain move */
vtmove = (VTupleMove) palloc(100 * sizeof(VTupleMoveData));
num_vtmove = 0;
free_vtmove = 100;
/*
* Now, walk backwards up the chain (towards older tuples) and
* check if all items in chain can be moved. We record all
* the moves that need to be made in the vtmove array.
*/
for (;;)
{
Buffer Pbuf;
Page Ppage;
ItemId Pitemid;
HeapTupleHeader PTdata;
VTupleLinkData vtld,
*vtlp;
/* Identify a target page to move this tuple to */
if (to_vacpage == NULL ||
!enough_space(to_vacpage, tlen))
{
for (i = 0; i < num_fraged_pages; i++)
{
if (enough_space(fraged_pages->pagedesc[i], tlen))
break;
}
if (i == num_fraged_pages)
{
/* can't move item anywhere */
chain_move_failed = true;
break; /* out of check-all-items loop */
}
to_item = i;
to_vacpage = fraged_pages->pagedesc[to_item];
}
to_vacpage->free -= MAXALIGN(tlen);
if (to_vacpage->offsets_used >= to_vacpage->offsets_free)
to_vacpage->free -= sizeof(ItemIdData);
(to_vacpage->offsets_used)++;
/* Add an entry to vtmove list */
if (free_vtmove == 0)
{
free_vtmove = 1000;
vtmove = (VTupleMove)
repalloc(vtmove,
(free_vtmove + num_vtmove) *
sizeof(VTupleMoveData));
}
vtmove[num_vtmove].tid = tp.t_self;
vtmove[num_vtmove].vacpage = to_vacpage;
if (to_vacpage->offsets_used == 1)
vtmove[num_vtmove].cleanVpd = true;
else
vtmove[num_vtmove].cleanVpd = false;
free_vtmove--;
num_vtmove++;
/* Done if at beginning of chain */
if (!(tp.t_data->t_infomask & HEAP_UPDATED) ||
TransactionIdPrecedes(HeapTupleHeaderGetXmin(tp.t_data),
OldestXmin))
break; /* out of check-all-items loop */
/* Move to tuple with prior row version */
vtld.new_tid = tp.t_self;
vtlp = (VTupleLink)
vac_bsearch((void *) &vtld,
(void *) (vacrelstats->vtlinks),
vacrelstats->num_vtlinks,
sizeof(VTupleLinkData),
vac_cmp_vtlinks);
if (vtlp == NULL)
{
/* see discussion above */
elog(DEBUG2, "parent item in update-chain not found --- can't continue repair_frag");
chain_move_failed = true;
break; /* out of check-all-items loop */
}
tp.t_self = vtlp->this_tid;
Pbuf = ReadBuffer(onerel,
ItemPointerGetBlockNumber(&(tp.t_self)));
Ppage = BufferGetPage(Pbuf);
Pitemid = PageGetItemId(Ppage,
ItemPointerGetOffsetNumber(&(tp.t_self)));
/* this can't happen since we saw tuple earlier: */
if (!ItemIdIsUsed(Pitemid))
elog(ERROR, "parent itemid marked as unused");
PTdata = (HeapTupleHeader) PageGetItem(Ppage, Pitemid);
/* ctid should not have changed since we saved it */
Assert(ItemPointerEquals(&(vtld.new_tid),
&(PTdata->t_ctid)));
/*
* Read above about cases when !ItemIdIsUsed(nextItemid)
* (child item is removed)... Due to the fact that at the
* moment we don't remove unuseful part of update-chain,
* it's possible to get non-matching parent row here. Like
* as in the case which caused this problem, we stop
* shrinking here. I could try to find real parent row but
* want not to do it because of real solution will be
* implemented anyway, later, and we are too close to 6.5
* release. - vadim 06/11/99
*/
if ((PTdata->t_infomask & HEAP_XMAX_IS_MULTI) ||
!(TransactionIdEquals(HeapTupleHeaderGetXmax(PTdata),
HeapTupleHeaderGetXmin(tp.t_data))))
{
ReleaseBuffer(Pbuf);
elog(DEBUG2, "too old parent tuple found --- can't continue repair_frag");
chain_move_failed = true;
break; /* out of check-all-items loop */
}
tp.t_data = PTdata;
tlen = tp.t_len = ItemIdGetLength(Pitemid);
if (freeCbuf)
ReleaseBuffer(Cbuf);
Cbuf = Pbuf;
freeCbuf = true;
} /* end of check-all-items loop */
if (freeCbuf)
ReleaseBuffer(Cbuf);
freeCbuf = false;
if (chain_move_failed)
{
/*
* Undo changes to offsets_used state. We don't bother
* cleaning up the amount-free state, since we're not
* going to do any further tuple motion.
*/
for (i = 0; i < num_vtmove; i++)
{
Assert(vtmove[i].vacpage->offsets_used > 0);
(vtmove[i].vacpage->offsets_used)--;
}
pfree(vtmove);
break; /* out of walk-along-page loop */
}
/*
* Okay, move the whole tuple chain in reverse order.
*
* Ctid tracks the new location of the previously-moved tuple.
*/
ItemPointerSetInvalid(&Ctid);
for (ti = 0; ti < num_vtmove; ti++)
{
VacPage destvacpage = vtmove[ti].vacpage;
Page Cpage;
ItemId Citemid;
/* Get page to move from */
tuple.t_self = vtmove[ti].tid;
Cbuf = ReadBuffer(onerel,
ItemPointerGetBlockNumber(&(tuple.t_self)));
/* Get page to move to */
dst_buffer = ReadBuffer(onerel, destvacpage->blkno);
LockBuffer(dst_buffer, BUFFER_LOCK_EXCLUSIVE);
if (dst_buffer != Cbuf)
LockBuffer(Cbuf, BUFFER_LOCK_EXCLUSIVE);
dst_page = BufferGetPage(dst_buffer);
Cpage = BufferGetPage(Cbuf);
Citemid = PageGetItemId(Cpage,
ItemPointerGetOffsetNumber(&(tuple.t_self)));
tuple.t_data = (HeapTupleHeader) PageGetItem(Cpage, Citemid);
tuple_len = tuple.t_len = ItemIdGetLength(Citemid);
move_chain_tuple(onerel, Cbuf, Cpage, &tuple,
dst_buffer, dst_page, destvacpage,
&ec, &Ctid, vtmove[ti].cleanVpd);
num_moved++;
if (destvacpage->blkno > last_move_dest_block)
last_move_dest_block = destvacpage->blkno;
/*
* Remember that we moved tuple from the current page
* (corresponding index tuple will be cleaned).
*/
if (Cbuf == buf)
vacpage->offsets[vacpage->offsets_free++] =
ItemPointerGetOffsetNumber(&(tuple.t_self));
else
keep_tuples++;
ReleaseBuffer(dst_buffer);
ReleaseBuffer(Cbuf);
} /* end of move-the-tuple-chain loop */
dst_buffer = InvalidBuffer;
pfree(vtmove);
chain_tuple_moved = true;
/* advance to next tuple in walk-along-page loop */
continue;
} /* end of is-tuple-in-chain test */
/* try to find new page for this tuple */
if (dst_buffer == InvalidBuffer ||
!enough_space(dst_vacpage, tuple_len))
{
if (dst_buffer != InvalidBuffer)
{
ReleaseBuffer(dst_buffer);
dst_buffer = InvalidBuffer;
}
for (i = 0; i < num_fraged_pages; i++)
{
if (enough_space(fraged_pages->pagedesc[i], tuple_len))
break;
}
if (i == num_fraged_pages)
break; /* can't move item anywhere */
dst_vacpage = fraged_pages->pagedesc[i];
dst_buffer = ReadBuffer(onerel, dst_vacpage->blkno);
LockBuffer(dst_buffer, BUFFER_LOCK_EXCLUSIVE);
dst_page = BufferGetPage(dst_buffer);
/* if this page was not used before - clean it */
if (!PageIsEmpty(dst_page) && dst_vacpage->offsets_used == 0)
vacuum_page(onerel, dst_buffer, dst_vacpage);
}
else
LockBuffer(dst_buffer, BUFFER_LOCK_EXCLUSIVE);
LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
move_plain_tuple(onerel, buf, page, &tuple,
dst_buffer, dst_page, dst_vacpage, &ec);
num_moved++;
if (dst_vacpage->blkno > last_move_dest_block)
last_move_dest_block = dst_vacpage->blkno;
/*
* Remember that we moved tuple from the current page
* (corresponding index tuple will be cleaned).
*/
vacpage->offsets[vacpage->offsets_free++] = offnum;
} /* walk along page */
/*
* If we broke out of the walk-along-page loop early (ie, still have
* offnum <= maxoff), then we failed to move some tuple off this page.
* No point in shrinking any more, so clean up and exit the per-page
* loop.
*/
if (offnum < maxoff && keep_tuples > 0)
{
OffsetNumber off;
/*
* Fix vacpage state for any unvisited tuples remaining on page
*/
for (off = OffsetNumberNext(offnum);
off <= maxoff;
off = OffsetNumberNext(off))
{
ItemId itemid = PageGetItemId(page, off);
HeapTupleHeader htup;
if (!ItemIdIsUsed(itemid))
continue;
htup = (HeapTupleHeader) PageGetItem(page, itemid);
if (htup->t_infomask & HEAP_XMIN_COMMITTED)
continue;
/*
* See comments in the walk-along-page loop above about why
* only MOVED_OFF tuples should be found here.
*/
if (htup->t_infomask & HEAP_MOVED_IN)
elog(ERROR, "HEAP_MOVED_IN was not expected");
if (!(htup->t_infomask & HEAP_MOVED_OFF))
elog(ERROR, "HEAP_MOVED_OFF was expected");
if (HeapTupleHeaderGetXvac(htup) != myXID)
elog(ERROR, "invalid XVAC in tuple header");
if (chain_tuple_moved)
{
/* some chains were moved while cleaning this page */
Assert(vacpage->offsets_free > 0);
for (i = 0; i < vacpage->offsets_free; i++)
{
if (vacpage->offsets[i] == off)
break;
}
if (i >= vacpage->offsets_free) /* not found */
{
vacpage->offsets[vacpage->offsets_free++] = off;
Assert(keep_tuples > 0);
keep_tuples--;
}
}
else
{
vacpage->offsets[vacpage->offsets_free++] = off;
Assert(keep_tuples > 0);
keep_tuples--;
}
}
}
if (vacpage->offsets_free > 0) /* some tuples were moved */
{
if (chain_tuple_moved) /* else - they are ordered */
{
qsort((char *) (vacpage->offsets), vacpage->offsets_free,
sizeof(OffsetNumber), vac_cmp_offno);
}
vpage_insert(&Nvacpagelist, copy_vac_page(vacpage));
}
ReleaseBuffer(buf);
if (offnum <= maxoff)
break; /* had to quit early, see above note */
} /* walk along relation */
blkno++; /* new number of blocks */
if (dst_buffer != InvalidBuffer)
{
Assert(num_moved > 0);
ReleaseBuffer(dst_buffer);
}
if (num_moved > 0)
{
/*
* We have to commit our tuple movings before we truncate the
* relation. Ideally we should do Commit/StartTransactionCommand
* here, relying on the session-level table lock to protect our
* exclusive access to the relation. However, that would require a
* lot of extra code to close and re-open the relation, indexes, etc.
* For now, a quick hack: record status of current transaction as
* committed, and continue.
*/
RecordTransactionCommit();
}
/*
* We are not going to move any more tuples across pages, but we still
* need to apply vacuum_page to compact free space in the remaining pages
* in vacuum_pages list. Note that some of these pages may also be in the
* fraged_pages list, and may have had tuples moved onto them; if so, we
* already did vacuum_page and needn't do it again.
*/
for (i = 0, curpage = vacuum_pages->pagedesc;
i < vacuumed_pages;
i++, curpage++)
{
vacuum_delay_point();
Assert((*curpage)->blkno < blkno);
if ((*curpage)->offsets_used == 0)
{
Buffer buf;
Page page;
/* this page was not used as a move target, so must clean it */
buf = ReadBuffer(onerel, (*curpage)->blkno);
LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
page = BufferGetPage(buf);
if (!PageIsEmpty(page))
vacuum_page(onerel, buf, *curpage);
UnlockReleaseBuffer(buf);
}
}
/*
* Now scan all the pages that we moved tuples onto and update tuple
* status bits. This is not really necessary, but will save time for
* future transactions examining these tuples.
*/
update_hint_bits(onerel, fraged_pages, num_fraged_pages,
last_move_dest_block, num_moved);
/*
* It'd be cleaner to make this report at the bottom of this routine, but
* then the rusage would double-count the second pass of index vacuuming.
* So do it here and ignore the relatively small amount of processing that
* occurs below.
*/
ereport(elevel,
(errmsg("\"%s\": moved %u row versions, truncated %u to %u pages",
RelationGetRelationName(onerel),
num_moved, nblocks, blkno),
errdetail("%s.",
pg_rusage_show(&ru0))));
/*
* Reflect the motion of system tuples to catalog cache here.
*/
CommandCounterIncrement();
if (Nvacpagelist.num_pages > 0)
{
/* vacuum indexes again if needed */
if (Irel != NULL)
{
VacPage *vpleft,
*vpright,
vpsave;
/* re-sort Nvacpagelist.pagedesc */
for (vpleft = Nvacpagelist.pagedesc,
vpright = Nvacpagelist.pagedesc + Nvacpagelist.num_pages - 1;
vpleft < vpright; vpleft++, vpright--)
{
vpsave = *vpleft;
*vpleft = *vpright;
*vpright = vpsave;
}
/*
* keep_tuples is the number of tuples that have been moved off a
* page during chain moves but not been scanned over subsequently.
* The tuple ids of these tuples are not recorded as free offsets
* for any VacPage, so they will not be cleared from the indexes.
*/
Assert(keep_tuples >= 0);
for (i = 0; i < nindexes; i++)
vacuum_index(&Nvacpagelist, Irel[i],
vacrelstats->rel_tuples, keep_tuples);
}
/*
* Clean moved-off tuples from last page in Nvacpagelist list.
*
* We need only do this in this one page, because higher-numbered
* pages are going to be truncated from the relation entirely. But see
* comments for update_hint_bits().
*/
if (vacpage->blkno == (blkno - 1) &&
vacpage->offsets_free > 0)
{
Buffer buf;
Page page;
OffsetNumber unused[MaxOffsetNumber];
OffsetNumber offnum,
maxoff;
int uncnt;
int num_tuples = 0;
buf = ReadBuffer(onerel, vacpage->blkno);
LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
page = BufferGetPage(buf);
maxoff = PageGetMaxOffsetNumber(page);
for (offnum = FirstOffsetNumber;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
ItemId itemid = PageGetItemId(page, offnum);
HeapTupleHeader htup;
if (!ItemIdIsUsed(itemid))
continue;
htup = (HeapTupleHeader) PageGetItem(page, itemid);
if (htup->t_infomask & HEAP_XMIN_COMMITTED)
continue;
/*
* See comments in the walk-along-page loop above about why
* only MOVED_OFF tuples should be found here.
*/
if (htup->t_infomask & HEAP_MOVED_IN)
elog(ERROR, "HEAP_MOVED_IN was not expected");
if (!(htup->t_infomask & HEAP_MOVED_OFF))
elog(ERROR, "HEAP_MOVED_OFF was expected");
if (HeapTupleHeaderGetXvac(htup) != myXID)
elog(ERROR, "invalid XVAC in tuple header");
itemid->lp_flags &= ~LP_USED;
num_tuples++;
}
Assert(vacpage->offsets_free == num_tuples);
START_CRIT_SECTION();
uncnt = PageRepairFragmentation(page, unused);
MarkBufferDirty(buf);
/* XLOG stuff */
if (!onerel->rd_istemp)
{
XLogRecPtr recptr;
recptr = log_heap_clean(onerel, buf, unused, uncnt);
PageSetLSN(page, recptr);
PageSetTLI(page, ThisTimeLineID);
}
else
{
/*
* No XLOG record, but still need to flag that XID exists on
* disk
*/
MyXactMadeTempRelUpdate = true;
}
END_CRIT_SECTION();
UnlockReleaseBuffer(buf);
}
/* now - free new list of reaped pages */
curpage = Nvacpagelist.pagedesc;
for (i = 0; i < Nvacpagelist.num_pages; i++, curpage++)
pfree(*curpage);
pfree(Nvacpagelist.pagedesc);
}
/* Truncate relation, if needed */
if (blkno < nblocks)
{
RelationTruncate(onerel, blkno);
vacrelstats->rel_pages = blkno; /* set new number of blocks */
}
/* clean up */
pfree(vacpage);
if (vacrelstats->vtlinks != NULL)
pfree(vacrelstats->vtlinks);
ExecContext_Finish(&ec);
}
/*
* move_chain_tuple() -- move one tuple that is part of a tuple chain
*
* This routine moves old_tup from old_page to dst_page.
* old_page and dst_page might be the same page.
* On entry old_buf and dst_buf are locked exclusively, both locks (or
* the single lock, if this is a intra-page-move) are released before
* exit.
*
* Yes, a routine with ten parameters is ugly, but it's still better
* than having these 120 lines of code in repair_frag() which is
* already too long and almost unreadable.
*/
static void
move_chain_tuple(Relation rel,
Buffer old_buf, Page old_page, HeapTuple old_tup,
Buffer dst_buf, Page dst_page, VacPage dst_vacpage,
ExecContext ec, ItemPointer ctid, bool cleanVpd)
{
TransactionId myXID = GetCurrentTransactionId();
HeapTupleData newtup;
OffsetNumber newoff;
ItemId newitemid;
Size tuple_len = old_tup->t_len;
/*
* make a modifiable copy of the source tuple.
*/
heap_copytuple_with_tuple(old_tup, &newtup);
/*
* register invalidation of source tuple in catcaches.
*/
CacheInvalidateHeapTuple(rel, old_tup);
/* NO EREPORT(ERROR) TILL CHANGES ARE LOGGED */
START_CRIT_SECTION();
/*
* mark the source tuple MOVED_OFF.
*/
old_tup->t_data->t_infomask &= ~(HEAP_XMIN_COMMITTED |
HEAP_XMIN_INVALID |
HEAP_MOVED_IN);
old_tup->t_data->t_infomask |= HEAP_MOVED_OFF;
HeapTupleHeaderSetXvac(old_tup->t_data, myXID);
/*
* If this page was not used before - clean it.
*
* NOTE: a nasty bug used to lurk here. It is possible for the source and
* destination pages to be the same (since this tuple-chain member can be
* on a page lower than the one we're currently processing in the outer
* loop). If that's true, then after vacuum_page() the source tuple will
* have been moved, and tuple.t_data will be pointing at garbage.
* Therefore we must do everything that uses old_tup->t_data BEFORE this
* step!!
*
* This path is different from the other callers of vacuum_page, because
* we have already incremented the vacpage's offsets_used field to account
* for the tuple(s) we expect to move onto the page. Therefore
* vacuum_page's check for offsets_used == 0 is wrong. But since that's a
* good debugging check for all other callers, we work around it here
* rather than remove it.
*/
if (!PageIsEmpty(dst_page) && cleanVpd)
{
int sv_offsets_used = dst_vacpage->offsets_used;
dst_vacpage->offsets_used = 0;
vacuum_page(rel, dst_buf, dst_vacpage);
dst_vacpage->offsets_used = sv_offsets_used;
}
/*
* Update the state of the copied tuple, and store it on the destination
* page.
*/
newtup.t_data->t_infomask &= ~(HEAP_XMIN_COMMITTED |
HEAP_XMIN_INVALID |
HEAP_MOVED_OFF);
newtup.t_data->t_infomask |= HEAP_MOVED_IN;
HeapTupleHeaderSetXvac(newtup.t_data, myXID);
newoff = PageAddItem(dst_page, (Item) newtup.t_data, tuple_len,
InvalidOffsetNumber, LP_USED);
if (newoff == InvalidOffsetNumber)
elog(PANIC, "failed to add item with len = %lu to page %u while moving tuple chain",
(unsigned long) tuple_len, dst_vacpage->blkno);
newitemid = PageGetItemId(dst_page, newoff);
/* drop temporary copy, and point to the version on the dest page */
pfree(newtup.t_data);
newtup.t_data = (HeapTupleHeader) PageGetItem(dst_page, newitemid);
ItemPointerSet(&(newtup.t_self), dst_vacpage->blkno, newoff);
/*
* Set new tuple's t_ctid pointing to itself if last tuple in chain, and
* to next tuple in chain otherwise. (Since we move the chain in reverse
* order, this is actually the previously processed tuple.)
*/
if (!ItemPointerIsValid(ctid))
newtup.t_data->t_ctid = newtup.t_self;
else
newtup.t_data->t_ctid = *ctid;
*ctid = newtup.t_self;
MarkBufferDirty(dst_buf);
if (dst_buf != old_buf)
MarkBufferDirty(old_buf);
/* XLOG stuff */
if (!rel->rd_istemp)
{
XLogRecPtr recptr = log_heap_move(rel, old_buf, old_tup->t_self,
dst_buf, &newtup);
if (old_buf != dst_buf)
{
PageSetLSN(old_page, recptr);
PageSetTLI(old_page, ThisTimeLineID);
}
PageSetLSN(dst_page, recptr);
PageSetTLI(dst_page, ThisTimeLineID);
}
else
{
/*
* No XLOG record, but still need to flag that XID exists on disk
*/
MyXactMadeTempRelUpdate = true;
}
END_CRIT_SECTION();
LockBuffer(dst_buf, BUFFER_LOCK_UNLOCK);
if (dst_buf != old_buf)
LockBuffer(old_buf, BUFFER_LOCK_UNLOCK);
/* Create index entries for the moved tuple */
if (ec->resultRelInfo->ri_NumIndices > 0)
{
ExecStoreTuple(&newtup, ec->slot, InvalidBuffer, false);
ExecInsertIndexTuples(ec->slot, &(newtup.t_self), ec->estate, true);
ResetPerTupleExprContext(ec->estate);
}
}
/*
* move_plain_tuple() -- move one tuple that is not part of a chain
*
* This routine moves old_tup from old_page to dst_page.
* On entry old_buf and dst_buf are locked exclusively, both locks are
* released before exit.
*
* Yes, a routine with eight parameters is ugly, but it's still better
* than having these 90 lines of code in repair_frag() which is already
* too long and almost unreadable.
*/
static void
move_plain_tuple(Relation rel,
Buffer old_buf, Page old_page, HeapTuple old_tup,
Buffer dst_buf, Page dst_page, VacPage dst_vacpage,
ExecContext ec)
{
TransactionId myXID = GetCurrentTransactionId();
HeapTupleData newtup;
OffsetNumber newoff;
ItemId newitemid;
Size tuple_len = old_tup->t_len;
/* copy tuple */
heap_copytuple_with_tuple(old_tup, &newtup);
/*
* register invalidation of source tuple in catcaches.
*
* (Note: we do not need to register the copied tuple, because we are not
* changing the tuple contents and so there cannot be any need to flush
* negative catcache entries.)
*/
CacheInvalidateHeapTuple(rel, old_tup);
/* NO EREPORT(ERROR) TILL CHANGES ARE LOGGED */
START_CRIT_SECTION();
/*
* Mark new tuple as MOVED_IN by me.
*/
newtup.t_data->t_infomask &= ~(HEAP_XMIN_COMMITTED |
HEAP_XMIN_INVALID |
HEAP_MOVED_OFF);
newtup.t_data->t_infomask |= HEAP_MOVED_IN;
HeapTupleHeaderSetXvac(newtup.t_data, myXID);
/* add tuple to the page */
newoff = PageAddItem(dst_page, (Item) newtup.t_data, tuple_len,
InvalidOffsetNumber, LP_USED);
if (newoff == InvalidOffsetNumber)
elog(PANIC, "failed to add item with len = %lu to page %u (free space %lu, nusd %u, noff %u)",
(unsigned long) tuple_len,
dst_vacpage->blkno, (unsigned long) dst_vacpage->free,
dst_vacpage->offsets_used, dst_vacpage->offsets_free);
newitemid = PageGetItemId(dst_page, newoff);
pfree(newtup.t_data);
newtup.t_data = (HeapTupleHeader) PageGetItem(dst_page, newitemid);
ItemPointerSet(&(newtup.t_data->t_ctid), dst_vacpage->blkno, newoff);
newtup.t_self = newtup.t_data->t_ctid;
/*
* Mark old tuple as MOVED_OFF by me.
*/
old_tup->t_data->t_infomask &= ~(HEAP_XMIN_COMMITTED |
HEAP_XMIN_INVALID |
HEAP_MOVED_IN);
old_tup->t_data->t_infomask |= HEAP_MOVED_OFF;
HeapTupleHeaderSetXvac(old_tup->t_data, myXID);
MarkBufferDirty(dst_buf);
MarkBufferDirty(old_buf);
/* XLOG stuff */
if (!rel->rd_istemp)
{
XLogRecPtr recptr = log_heap_move(rel, old_buf, old_tup->t_self,
dst_buf, &newtup);
PageSetLSN(old_page, recptr);
PageSetTLI(old_page, ThisTimeLineID);
PageSetLSN(dst_page, recptr);
PageSetTLI(dst_page, ThisTimeLineID);
}
else
{
/*
* No XLOG record, but still need to flag that XID exists on disk
*/
MyXactMadeTempRelUpdate = true;
}
END_CRIT_SECTION();
dst_vacpage->free = PageGetFreeSpaceWithFillFactor(rel, dst_page);
LockBuffer(dst_buf, BUFFER_LOCK_UNLOCK);
LockBuffer(old_buf, BUFFER_LOCK_UNLOCK);
dst_vacpage->offsets_used++;
/* insert index' tuples if needed */
if (ec->resultRelInfo->ri_NumIndices > 0)
{
ExecStoreTuple(&newtup, ec->slot, InvalidBuffer, false);
ExecInsertIndexTuples(ec->slot, &(newtup.t_self), ec->estate, true);
ResetPerTupleExprContext(ec->estate);
}
}
/*
* update_hint_bits() -- update hint bits in destination pages
*
* Scan all the pages that we moved tuples onto and update tuple status bits.
* This is normally not really necessary, but it will save time for future
* transactions examining these tuples.
*
* This pass guarantees that all HEAP_MOVED_IN tuples are marked as
* XMIN_COMMITTED, so that future tqual tests won't need to check their XVAC.
*
* BUT NOTICE that this code fails to clear HEAP_MOVED_OFF tuples from
* pages that were move source pages but not move dest pages. The bulk
* of the move source pages will be physically truncated from the relation,
* and the last page remaining in the rel will be fixed separately in
* repair_frag(), so the only cases where a MOVED_OFF tuple won't get its
* hint bits updated are tuples that are moved as part of a chain and were
* on pages that were not either move destinations nor at the end of the rel.
* To completely ensure that no MOVED_OFF tuples remain unmarked, we'd have
* to remember and revisit those pages too.
*
* Because of this omission, VACUUM FULL FREEZE is not a safe combination;
* it's possible that the VACUUM's own XID remains exposed as something that
* tqual tests would need to check.
*
* For the non-freeze case, one wonders whether it wouldn't be better to skip
* this work entirely, and let the tuple status updates happen someplace
* that's not holding an exclusive lock on the relation.
*/
static void
update_hint_bits(Relation rel, VacPageList fraged_pages, int num_fraged_pages,
BlockNumber last_move_dest_block, int num_moved)
{
TransactionId myXID = GetCurrentTransactionId();
int checked_moved = 0;
int i;
VacPage *curpage;
for (i = 0, curpage = fraged_pages->pagedesc;
i < num_fraged_pages;
i++, curpage++)
{
Buffer buf;
Page page;
OffsetNumber max_offset;
OffsetNumber off;
int num_tuples = 0;
vacuum_delay_point();
if ((*curpage)->blkno > last_move_dest_block)
break; /* no need to scan any further */
if ((*curpage)->offsets_used == 0)
continue; /* this page was never used as a move dest */
buf = ReadBuffer(rel, (*curpage)->blkno);
LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
page = BufferGetPage(buf);
max_offset = PageGetMaxOffsetNumber(page);
for (off = FirstOffsetNumber;
off <= max_offset;
off = OffsetNumberNext(off))
{
ItemId itemid = PageGetItemId(page, off);
HeapTupleHeader htup;
if (!ItemIdIsUsed(itemid))
continue;
htup = (HeapTupleHeader) PageGetItem(page, itemid);
if (htup->t_infomask & HEAP_XMIN_COMMITTED)
continue;
/*
* Here we may see either MOVED_OFF or MOVED_IN tuples.
*/
if (!(htup->t_infomask & HEAP_MOVED))
elog(ERROR, "HEAP_MOVED_OFF/HEAP_MOVED_IN was expected");
if (HeapTupleHeaderGetXvac(htup) != myXID)
elog(ERROR, "invalid XVAC in tuple header");
if (htup->t_infomask & HEAP_MOVED_IN)
{
htup->t_infomask |= HEAP_XMIN_COMMITTED;
htup->t_infomask &= ~HEAP_MOVED;
num_tuples++;
}
else
htup->t_infomask |= HEAP_XMIN_INVALID;
}
MarkBufferDirty(buf);
UnlockReleaseBuffer(buf);
Assert((*curpage)->offsets_used == num_tuples);
checked_moved += num_tuples;
}
Assert(num_moved == checked_moved);
}
/*
* vacuum_heap() -- free dead tuples
*
* This routine marks dead tuples as unused and truncates relation
* if there are "empty" end-blocks.
*/
static void
vacuum_heap(VRelStats *vacrelstats, Relation onerel, VacPageList vacuum_pages)
{
Buffer buf;
VacPage *vacpage;
BlockNumber relblocks;
int nblocks;
int i;
nblocks = vacuum_pages->num_pages;
nblocks -= vacuum_pages->empty_end_pages; /* nothing to do with them */
for (i = 0, vacpage = vacuum_pages->pagedesc; i < nblocks; i++, vacpage++)
{
vacuum_delay_point();
if ((*vacpage)->offsets_free > 0)
{
buf = ReadBuffer(onerel, (*vacpage)->blkno);
LockBuffer(buf, BUFFER_LOCK_EXCLUSIVE);
vacuum_page(onerel, buf, *vacpage);
UnlockReleaseBuffer(buf);
}
}
/* Truncate relation if there are some empty end-pages */
Assert(vacrelstats->rel_pages >= vacuum_pages->empty_end_pages);
if (vacuum_pages->empty_end_pages > 0)
{
relblocks = vacrelstats->rel_pages - vacuum_pages->empty_end_pages;
ereport(elevel,
(errmsg("\"%s\": truncated %u to %u pages",
RelationGetRelationName(onerel),
vacrelstats->rel_pages, relblocks)));
RelationTruncate(onerel, relblocks);
vacrelstats->rel_pages = relblocks; /* set new number of blocks */
}
}
/*
* vacuum_page() -- free dead tuples on a page
* and repair its fragmentation.
*
* Caller must hold pin and lock on buffer.
*/
static void
vacuum_page(Relation onerel, Buffer buffer, VacPage vacpage)
{
OffsetNumber unused[MaxOffsetNumber];
int uncnt;
Page page = BufferGetPage(buffer);
ItemId itemid;
int i;
/* There shouldn't be any tuples moved onto the page yet! */
Assert(vacpage->offsets_used == 0);
START_CRIT_SECTION();
for (i = 0; i < vacpage->offsets_free; i++)
{
itemid = PageGetItemId(page, vacpage->offsets[i]);
itemid->lp_flags &= ~LP_USED;
}
uncnt = PageRepairFragmentation(page, unused);
MarkBufferDirty(buffer);
/* XLOG stuff */
if (!onerel->rd_istemp)
{
XLogRecPtr recptr;
recptr = log_heap_clean(onerel, buffer, unused, uncnt);
PageSetLSN(page, recptr);
PageSetTLI(page, ThisTimeLineID);
}
else
{
/* No XLOG record, but still need to flag that XID exists on disk */
MyXactMadeTempRelUpdate = true;
}
END_CRIT_SECTION();
}
/*
* scan_index() -- scan one index relation to update pg_class statistics.
*
* We use this when we have no deletions to do.
*/
static void
scan_index(Relation indrel, double num_tuples)
{
IndexBulkDeleteResult *stats;
IndexVacuumInfo ivinfo;
PGRUsage ru0;
pg_rusage_init(&ru0);
ivinfo.index = indrel;
ivinfo.vacuum_full = true;
ivinfo.message_level = elevel;
ivinfo.num_heap_tuples = num_tuples;
stats = index_vacuum_cleanup(&ivinfo, NULL);
if (!stats)
return;
/* now update statistics in pg_class */
vac_update_relstats(RelationGetRelid(indrel),
stats->num_pages, stats->num_index_tuples,
false, InvalidTransactionId, InvalidTransactionId);
ereport(elevel,
(errmsg("index \"%s\" now contains %.0f row versions in %u pages",
RelationGetRelationName(indrel),
stats->num_index_tuples,
stats->num_pages),
errdetail("%u index pages have been deleted, %u are currently reusable.\n"
"%s.",
stats->pages_deleted, stats->pages_free,
pg_rusage_show(&ru0))));
/*
* Check for tuple count mismatch. If the index is partial, then it's OK
* for it to have fewer tuples than the heap; else we got trouble.
*/
if (stats->num_index_tuples != num_tuples)
{
if (stats->num_index_tuples > num_tuples ||
!vac_is_partial_index(indrel))
ereport(WARNING,
(errmsg("index \"%s\" contains %.0f row versions, but table contains %.0f row versions",
RelationGetRelationName(indrel),
stats->num_index_tuples, num_tuples),
errhint("Rebuild the index with REINDEX.")));
}
pfree(stats);
}
/*
* vacuum_index() -- vacuum one index relation.
*
* Vpl is the VacPageList of the heap we're currently vacuuming.
* It's locked. Indrel is an index relation on the vacuumed heap.
*
* We don't bother to set locks on the index relation here, since
* the parent table is exclusive-locked already.
*
* Finally, we arrange to update the index relation's statistics in
* pg_class.
*/
static void
vacuum_index(VacPageList vacpagelist, Relation indrel,
double num_tuples, int keep_tuples)
{
IndexBulkDeleteResult *stats;
IndexVacuumInfo ivinfo;
PGRUsage ru0;
pg_rusage_init(&ru0);
ivinfo.index = indrel;
ivinfo.vacuum_full = true;
ivinfo.message_level = elevel;
ivinfo.num_heap_tuples = num_tuples + keep_tuples;
/* Do bulk deletion */
stats = index_bulk_delete(&ivinfo, NULL, tid_reaped, (void *) vacpagelist);
/* Do post-VACUUM cleanup */
stats = index_vacuum_cleanup(&ivinfo, stats);
if (!stats)
return;
/* now update statistics in pg_class */
vac_update_relstats(RelationGetRelid(indrel),
stats->num_pages, stats->num_index_tuples,
false, InvalidTransactionId, InvalidTransactionId);
ereport(elevel,
(errmsg("index \"%s\" now contains %.0f row versions in %u pages",
RelationGetRelationName(indrel),
stats->num_index_tuples,
stats->num_pages),
errdetail("%.0f index row versions were removed.\n"
"%u index pages have been deleted, %u are currently reusable.\n"
"%s.",
stats->tuples_removed,
stats->pages_deleted, stats->pages_free,
pg_rusage_show(&ru0))));
/*
* Check for tuple count mismatch. If the index is partial, then it's OK
* for it to have fewer tuples than the heap; else we got trouble.
*/
if (stats->num_index_tuples != num_tuples + keep_tuples)
{
if (stats->num_index_tuples > num_tuples + keep_tuples ||
!vac_is_partial_index(indrel))
ereport(WARNING,
(errmsg("index \"%s\" contains %.0f row versions, but table contains %.0f row versions",
RelationGetRelationName(indrel),
stats->num_index_tuples, num_tuples + keep_tuples),
errhint("Rebuild the index with REINDEX.")));
}
pfree(stats);
}
/*
* tid_reaped() -- is a particular tid reaped?
*
* This has the right signature to be an IndexBulkDeleteCallback.
*
* vacpagelist->VacPage_array is sorted in right order.
*/
static bool
tid_reaped(ItemPointer itemptr, void *state)
{
VacPageList vacpagelist = (VacPageList) state;
OffsetNumber ioffno;
OffsetNumber *voff;
VacPage vp,
*vpp;
VacPageData vacpage;
vacpage.blkno = ItemPointerGetBlockNumber(itemptr);
ioffno = ItemPointerGetOffsetNumber(itemptr);
vp = &vacpage;
vpp = (VacPage *) vac_bsearch((void *) &vp,
(void *) (vacpagelist->pagedesc),
vacpagelist->num_pages,
sizeof(VacPage),
vac_cmp_blk);
if (vpp == NULL)
return false;
/* ok - we are on a partially or fully reaped page */
vp = *vpp;
if (vp->offsets_free == 0)
{
/* this is EmptyPage, so claim all tuples on it are reaped!!! */
return true;
}
voff = (OffsetNumber *) vac_bsearch((void *) &ioffno,
(void *) (vp->offsets),
vp->offsets_free,
sizeof(OffsetNumber),
vac_cmp_offno);
if (voff == NULL)
return false;
/* tid is reaped */
return true;
}
/*
* Update the shared Free Space Map with the info we now have about
* free space in the relation, discarding any old info the map may have.
*/
static void
vac_update_fsm(Relation onerel, VacPageList fraged_pages,
BlockNumber rel_pages)
{
int nPages = fraged_pages->num_pages;
VacPage *pagedesc = fraged_pages->pagedesc;
Size threshold;
PageFreeSpaceInfo *pageSpaces;
int outPages;
int i;
/*
* We only report pages with free space at least equal to the average
* request size --- this avoids cluttering FSM with uselessly-small bits
* of space. Although FSM would discard pages with little free space
* anyway, it's important to do this prefiltering because (a) it reduces
* the time spent holding the FSM lock in RecordRelationFreeSpace, and (b)
* FSM uses the number of pages reported as a statistic for guiding space
* management. If we didn't threshold our reports the same way
* vacuumlazy.c does, we'd be skewing that statistic.
*/
threshold = GetAvgFSMRequestSize(&onerel->rd_node);
pageSpaces = (PageFreeSpaceInfo *)
palloc(nPages * sizeof(PageFreeSpaceInfo));
outPages = 0;
for (i = 0; i < nPages; i++)
{
/*
* fraged_pages may contain entries for pages that we later decided to
* truncate from the relation; don't enter them into the free space
* map!
*/
if (pagedesc[i]->blkno >= rel_pages)
break;
if (pagedesc[i]->free >= threshold)
{
pageSpaces[outPages].blkno = pagedesc[i]->blkno;
pageSpaces[outPages].avail = pagedesc[i]->free;
outPages++;
}
}
RecordRelationFreeSpace(&onerel->rd_node, outPages, pageSpaces);
pfree(pageSpaces);
}
/* Copy a VacPage structure */
static VacPage
copy_vac_page(VacPage vacpage)
{
VacPage newvacpage;
/* allocate a VacPageData entry */
newvacpage = (VacPage) palloc(sizeof(VacPageData) +
vacpage->offsets_free * sizeof(OffsetNumber));
/* fill it in */
if (vacpage->offsets_free > 0)
memcpy(newvacpage->offsets, vacpage->offsets,
vacpage->offsets_free * sizeof(OffsetNumber));
newvacpage->blkno = vacpage->blkno;
newvacpage->free = vacpage->free;
newvacpage->offsets_used = vacpage->offsets_used;
newvacpage->offsets_free = vacpage->offsets_free;
return newvacpage;
}
/*
* Add a VacPage pointer to a VacPageList.
*
* As a side effect of the way that scan_heap works,
* higher pages come after lower pages in the array
* (and highest tid on a page is last).
*/
static void
vpage_insert(VacPageList vacpagelist, VacPage vpnew)
{
#define PG_NPAGEDESC 1024
/* allocate a VacPage entry if needed */
if (vacpagelist->num_pages == 0)
{
vacpagelist->pagedesc = (VacPage *) palloc(PG_NPAGEDESC * sizeof(VacPage));
vacpagelist->num_allocated_pages = PG_NPAGEDESC;
}
else if (vacpagelist->num_pages >= vacpagelist->num_allocated_pages)
{
vacpagelist->num_allocated_pages *= 2;
vacpagelist->pagedesc = (VacPage *) repalloc(vacpagelist->pagedesc, vacpagelist->num_allocated_pages * sizeof(VacPage));
}
vacpagelist->pagedesc[vacpagelist->num_pages] = vpnew;
(vacpagelist->num_pages)++;
}
/*
* vac_bsearch: just like standard C library routine bsearch(),
* except that we first test to see whether the target key is outside
* the range of the table entries. This case is handled relatively slowly
* by the normal binary search algorithm (ie, no faster than any other key)
* but it occurs often enough in VACUUM to be worth optimizing.
*/
static void *
vac_bsearch(const void *key, const void *base,
size_t nelem, size_t size,
int (*compar) (const void *, const void *))
{
int res;
const void *last;
if (nelem == 0)
return NULL;
res = compar(key, base);
if (res < 0)
return NULL;
if (res == 0)
return (void *) base;
if (nelem > 1)
{
last = (const void *) ((const char *) base + (nelem - 1) * size);
res = compar(key, last);
if (res > 0)
return NULL;
if (res == 0)
return (void *) last;
}
if (nelem <= 2)
return NULL; /* already checked 'em all */
return bsearch(key, base, nelem, size, compar);
}
/*
* Comparator routines for use with qsort() and bsearch().
*/
static int
vac_cmp_blk(const void *left, const void *right)
{
BlockNumber lblk,
rblk;
lblk = (*((VacPage *) left))->blkno;
rblk = (*((VacPage *) right))->blkno;
if (lblk < rblk)
return -1;
if (lblk == rblk)
return 0;
return 1;
}
static int
vac_cmp_offno(const void *left, const void *right)
{
if (*(OffsetNumber *) left < *(OffsetNumber *) right)
return -1;
if (*(OffsetNumber *) left == *(OffsetNumber *) right)
return 0;
return 1;
}
static int
vac_cmp_vtlinks(const void *left, const void *right)
{
if (((VTupleLink) left)->new_tid.ip_blkid.bi_hi <
((VTupleLink) right)->new_tid.ip_blkid.bi_hi)
return -1;
if (((VTupleLink) left)->new_tid.ip_blkid.bi_hi >
((VTupleLink) right)->new_tid.ip_blkid.bi_hi)
return 1;
/* bi_hi-es are equal */
if (((VTupleLink) left)->new_tid.ip_blkid.bi_lo <
((VTupleLink) right)->new_tid.ip_blkid.bi_lo)
return -1;
if (((VTupleLink) left)->new_tid.ip_blkid.bi_lo >
((VTupleLink) right)->new_tid.ip_blkid.bi_lo)
return 1;
/* bi_lo-es are equal */
if (((VTupleLink) left)->new_tid.ip_posid <
((VTupleLink) right)->new_tid.ip_posid)
return -1;
if (((VTupleLink) left)->new_tid.ip_posid >
((VTupleLink) right)->new_tid.ip_posid)
return 1;
return 0;
}
/*
* Open all the indexes of the given relation, obtaining the specified kind
* of lock on each. Return an array of Relation pointers for the indexes
* into *Irel, and the number of indexes into *nindexes.
*/
void
vac_open_indexes(Relation relation, LOCKMODE lockmode,
int *nindexes, Relation **Irel)
{
List *indexoidlist;
ListCell *indexoidscan;
int i;
Assert(lockmode != NoLock);
indexoidlist = RelationGetIndexList(relation);
*nindexes = list_length(indexoidlist);
if (*nindexes > 0)
*Irel = (Relation *) palloc(*nindexes * sizeof(Relation));
else
*Irel = NULL;
i = 0;
foreach(indexoidscan, indexoidlist)
{
Oid indexoid = lfirst_oid(indexoidscan);
(*Irel)[i++] = index_open(indexoid, lockmode);
}
list_free(indexoidlist);
}
/*
* Release the resources acquired by vac_open_indexes. Optionally release
* the locks (say NoLock to keep 'em).
*/
void
vac_close_indexes(int nindexes, Relation *Irel, LOCKMODE lockmode)
{
if (Irel == NULL)
return;
while (nindexes--)
{
Relation ind = Irel[nindexes];
index_close(ind, lockmode);
}
pfree(Irel);
}
/*
* Is an index partial (ie, could it contain fewer tuples than the heap?)
*/
bool
vac_is_partial_index(Relation indrel)
{
/*
* If the index's AM doesn't support nulls, it's partial for our purposes
*/
if (!indrel->rd_am->amindexnulls)
return true;
/* Otherwise, look to see if there's a partial-index predicate */
if (!heap_attisnull(indrel->rd_indextuple, Anum_pg_index_indpred))
return true;
return false;
}
static bool
enough_space(VacPage vacpage, Size len)
{
len = MAXALIGN(len);
if (len > vacpage->free)
return false;
/* if there are free itemid(s) and len <= free_space... */
if (vacpage->offsets_used < vacpage->offsets_free)
return true;
/* noff_used >= noff_free and so we'll have to allocate new itemid */
if (len + sizeof(ItemIdData) <= vacpage->free)
return true;
return false;
}
static Size
PageGetFreeSpaceWithFillFactor(Relation relation, Page page)
{
PageHeader pd = (PageHeader) page;
Size freespace = pd->pd_upper - pd->pd_lower;
Size targetfree;
targetfree = RelationGetTargetPageFreeSpace(relation,
HEAP_DEFAULT_FILLFACTOR);
if (freespace > targetfree)
return freespace - targetfree;
else
return 0;
}
/*
* vacuum_delay_point --- check for interrupts and cost-based delay.
*
* This should be called in each major loop of VACUUM processing,
* typically once per page processed.
*/
void
vacuum_delay_point(void)
{
/* Always check for interrupts */
CHECK_FOR_INTERRUPTS();
/* Nap if appropriate */
if (VacuumCostActive && !InterruptPending &&
VacuumCostBalance >= VacuumCostLimit)
{
int msec;
msec = VacuumCostDelay * VacuumCostBalance / VacuumCostLimit;
if (msec > VacuumCostDelay * 4)
msec = VacuumCostDelay * 4;
pg_usleep(msec * 1000L);
VacuumCostBalance = 0;
/* Might have gotten an interrupt while sleeping */
CHECK_FOR_INTERRUPTS();
}
}