postgresql/src/backend/utils/adt/network.c

473 lines
10 KiB
C

/*
* PostgreSQL type definitions for the INET type. This
* is for IP V4 CIDR notation, but prepared for V6: just
* add the necessary bits where the comments indicate.
*
* $Header: /cvsroot/pgsql/src/backend/utils/adt/network.c,v 1.24 2000/08/03 23:07:46 tgl Exp $
*
* Jon Postel RIP 16 Oct 1998
*/
#include "postgres.h"
#include <errno.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include "utils/builtins.h"
#include "utils/inet.h"
static int v4bitncmp(unsigned int a1, unsigned int a2, int bits);
static int32 network_cmp_internal(inet *a1, inet *a2);
/*
* Access macros. Add IPV6 support.
*/
#define ip_addrsize(inetptr) \
(((inet_struct *)VARDATA(inetptr))->family == AF_INET ? 4 : -1)
#define ip_family(inetptr) \
(((inet_struct *)VARDATA(inetptr))->family)
#define ip_bits(inetptr) \
(((inet_struct *)VARDATA(inetptr))->bits)
#define ip_type(inetptr) \
(((inet_struct *)VARDATA(inetptr))->type)
#define ip_v4addr(inetptr) \
(((inet_struct *)VARDATA(inetptr))->addr.ipv4_addr)
/* Common input routine */
static inet *
network_in(char *src, int type)
{
int bits;
inet *dst;
dst = (inet *) palloc(VARHDRSZ + sizeof(inet_struct));
/* First, try for an IP V4 address: */
ip_family(dst) = AF_INET;
bits = inet_net_pton(ip_family(dst), src, &ip_v4addr(dst),
type ? ip_addrsize(dst) : -1);
if ((bits < 0) || (bits > 32))
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "could not parse \"%s\"", src);
VARATT_SIZEP(dst) = VARHDRSZ
+ ((char *) &ip_v4addr(dst) - (char *) VARDATA(dst))
+ ip_addrsize(dst);
ip_bits(dst) = bits;
ip_type(dst) = type;
return dst;
}
/* INET address reader. */
Datum
inet_in(PG_FUNCTION_ARGS)
{
char *src = PG_GETARG_CSTRING(0);
PG_RETURN_INET_P(network_in(src, 0));
}
/* CIDR address reader. */
Datum
cidr_in(PG_FUNCTION_ARGS)
{
char *src = PG_GETARG_CSTRING(0);
PG_RETURN_INET_P(network_in(src, 1));
}
/*
* INET address output function.
*/
Datum
inet_out(PG_FUNCTION_ARGS)
{
inet *src = PG_GETARG_INET_P(0);
char tmp[sizeof("255.255.255.255/32")];
char *dst;
if (ip_family(src) == AF_INET)
{
/* It's an IP V4 address: */
if (ip_type(src))
dst = inet_cidr_ntop(AF_INET, &ip_v4addr(src), ip_bits(src),
tmp, sizeof(tmp));
else
dst = inet_net_ntop(AF_INET, &ip_v4addr(src), ip_bits(src),
tmp, sizeof(tmp));
if (dst == NULL)
elog(ERROR, "unable to print address (%s)", strerror(errno));
}
else
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "unknown address family (%d)", ip_family(src));
PG_RETURN_CSTRING(pstrdup(tmp));
}
/* share code with INET case */
Datum
cidr_out(PG_FUNCTION_ARGS)
{
return inet_out(fcinfo);
}
/*
* Basic comparison function for sorting and inet/cidr comparisons.
*
* XXX this ignores bits to the right of the mask. That's probably
* correct for CIDR, almost certainly wrong for INET. We need to have
* two sets of comparator routines, not just one. Note that suggests
* that CIDR and INET should not be considered binary-equivalent by
* the parser?
*/
static int32
network_cmp_internal(inet *a1, inet *a2)
{
if (ip_family(a1) == AF_INET && ip_family(a2) == AF_INET)
{
int order = v4bitncmp(ip_v4addr(a1), ip_v4addr(a2),
Min(ip_bits(a1), ip_bits(a2)));
if (order != 0)
return order;
return ((int32) ip_bits(a1)) - ((int32) ip_bits(a2));
}
else
{
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "cannot compare address families %d and %d",
ip_family(a1), ip_family(a2));
return 0; /* keep compiler quiet */
}
}
Datum
network_cmp(PG_FUNCTION_ARGS)
{
inet *a1 = PG_GETARG_INET_P(0);
inet *a2 = PG_GETARG_INET_P(1);
PG_RETURN_INT32(network_cmp_internal(a1, a2));
}
/*
* Boolean ordering tests.
*/
Datum
network_lt(PG_FUNCTION_ARGS)
{
inet *a1 = PG_GETARG_INET_P(0);
inet *a2 = PG_GETARG_INET_P(1);
PG_RETURN_BOOL(network_cmp_internal(a1, a2) < 0);
}
Datum
network_le(PG_FUNCTION_ARGS)
{
inet *a1 = PG_GETARG_INET_P(0);
inet *a2 = PG_GETARG_INET_P(1);
PG_RETURN_BOOL(network_cmp_internal(a1, a2) <= 0);
}
Datum
network_eq(PG_FUNCTION_ARGS)
{
inet *a1 = PG_GETARG_INET_P(0);
inet *a2 = PG_GETARG_INET_P(1);
PG_RETURN_BOOL(network_cmp_internal(a1, a2) == 0);
}
Datum
network_ge(PG_FUNCTION_ARGS)
{
inet *a1 = PG_GETARG_INET_P(0);
inet *a2 = PG_GETARG_INET_P(1);
PG_RETURN_BOOL(network_cmp_internal(a1, a2) >= 0);
}
Datum
network_gt(PG_FUNCTION_ARGS)
{
inet *a1 = PG_GETARG_INET_P(0);
inet *a2 = PG_GETARG_INET_P(1);
PG_RETURN_BOOL(network_cmp_internal(a1, a2) > 0);
}
Datum
network_ne(PG_FUNCTION_ARGS)
{
inet *a1 = PG_GETARG_INET_P(0);
inet *a2 = PG_GETARG_INET_P(1);
PG_RETURN_BOOL(network_cmp_internal(a1, a2) != 0);
}
/*
* Boolean network-inclusion tests.
*/
Datum
network_sub(PG_FUNCTION_ARGS)
{
inet *a1 = PG_GETARG_INET_P(0);
inet *a2 = PG_GETARG_INET_P(1);
if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET))
{
PG_RETURN_BOOL(ip_bits(a1) > ip_bits(a2)
&& v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a2)) == 0);
}
else
{
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "cannot compare address families %d and %d",
ip_family(a1), ip_family(a2));
PG_RETURN_BOOL(false);
}
}
Datum
network_subeq(PG_FUNCTION_ARGS)
{
inet *a1 = PG_GETARG_INET_P(0);
inet *a2 = PG_GETARG_INET_P(1);
if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET))
{
PG_RETURN_BOOL(ip_bits(a1) >= ip_bits(a2)
&& v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a2)) == 0);
}
else
{
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "cannot compare address families %d and %d",
ip_family(a1), ip_family(a2));
PG_RETURN_BOOL(false);
}
}
Datum
network_sup(PG_FUNCTION_ARGS)
{
inet *a1 = PG_GETARG_INET_P(0);
inet *a2 = PG_GETARG_INET_P(1);
if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET))
{
PG_RETURN_BOOL(ip_bits(a1) < ip_bits(a2)
&& v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a1)) == 0);
}
else
{
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "cannot compare address families %d and %d",
ip_family(a1), ip_family(a2));
PG_RETURN_BOOL(false);
}
}
Datum
network_supeq(PG_FUNCTION_ARGS)
{
inet *a1 = PG_GETARG_INET_P(0);
inet *a2 = PG_GETARG_INET_P(1);
if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET))
{
PG_RETURN_BOOL(ip_bits(a1) <= ip_bits(a2)
&& v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a1)) == 0);
}
else
{
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "cannot compare address families %d and %d",
ip_family(a1), ip_family(a2));
PG_RETURN_BOOL(false);
}
}
/*
* Extract data from a network datatype.
*/
Datum
network_host(PG_FUNCTION_ARGS)
{
inet *ip = PG_GETARG_INET_P(0);
text *ret;
int len;
char *ptr,
tmp[sizeof("255.255.255.255/32")];
if (ip_type(ip))
elog(ERROR, "CIDR type has no host part");
if (ip_family(ip) == AF_INET)
{
/* It's an IP V4 address: */
if (inet_net_ntop(AF_INET, &ip_v4addr(ip), 32, tmp, sizeof(tmp)) == NULL)
elog(ERROR, "unable to print host (%s)", strerror(errno));
}
else
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "unknown address family (%d)", ip_family(ip));
/* Suppress /n if present */
if ((ptr = strchr(tmp, '/')) != NULL)
*ptr = '\0';
/* Return string as a text datum */
len = strlen(tmp);
ret = (text *) palloc(len + VARHDRSZ);
VARATT_SIZEP(ret) = len + VARHDRSZ;
memcpy(VARDATA(ret), tmp, len);
PG_RETURN_TEXT_P(ret);
}
Datum
network_masklen(PG_FUNCTION_ARGS)
{
inet *ip = PG_GETARG_INET_P(0);
PG_RETURN_INT32(ip_bits(ip));
}
Datum
network_broadcast(PG_FUNCTION_ARGS)
{
inet *ip = PG_GETARG_INET_P(0);
text *ret;
int len;
char *ptr,
tmp[sizeof("255.255.255.255/32")];
if (ip_family(ip) == AF_INET)
{
/* It's an IP V4 address: */
int addr;
unsigned long mask = 0xffffffff;
if (ip_bits(ip) < 32)
mask >>= ip_bits(ip);
addr = htonl(ntohl(ip_v4addr(ip)) | mask);
if (inet_net_ntop(AF_INET, &addr, 32, tmp, sizeof(tmp)) == NULL)
elog(ERROR, "unable to print address (%s)", strerror(errno));
}
else
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "unknown address family (%d)", ip_family(ip));
/* Suppress /n if present */
if ((ptr = strchr(tmp, '/')) != NULL)
*ptr = '\0';
/* Return string as a text datum */
len = strlen(tmp);
ret = (text *) palloc(len + VARHDRSZ);
VARATT_SIZEP(ret) = len + VARHDRSZ;
memcpy(VARDATA(ret), tmp, len);
PG_RETURN_TEXT_P(ret);
}
Datum
network_network(PG_FUNCTION_ARGS)
{
inet *ip = PG_GETARG_INET_P(0);
text *ret;
int len;
char tmp[sizeof("255.255.255.255/32")];
if (ip_family(ip) == AF_INET)
{
/* It's an IP V4 address: */
int addr = htonl(ntohl(ip_v4addr(ip)) & (0xffffffff << (32 - ip_bits(ip))));
if (inet_cidr_ntop(AF_INET, &addr, ip_bits(ip), tmp, sizeof(tmp)) == NULL)
elog(ERROR, "unable to print network (%s)", strerror(errno));
}
else
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "unknown address family (%d)", ip_family(ip));
/* Return string as a text datum */
len = strlen(tmp);
ret = (text *) palloc(len + VARHDRSZ);
VARATT_SIZEP(ret) = len + VARHDRSZ;
memcpy(VARDATA(ret), tmp, len);
PG_RETURN_TEXT_P(ret);
}
Datum
network_netmask(PG_FUNCTION_ARGS)
{
inet *ip = PG_GETARG_INET_P(0);
text *ret;
int len;
char *ptr,
tmp[sizeof("255.255.255.255/32")];
if (ip_family(ip) == AF_INET)
{
/* It's an IP V4 address: */
int addr = htonl(ip_bits(ip) ?
(-1 << (32 - ip_bits(ip))) & 0xffffffff : 0x00000000);
if (inet_net_ntop(AF_INET, &addr, 32, tmp, sizeof(tmp)) == NULL)
elog(ERROR, "unable to print netmask (%s)", strerror(errno));
}
else
/* Go for an IPV6 address here, before faulting out: */
elog(ERROR, "unknown address family (%d)", ip_family(ip));
/* Suppress /n if present */
if ((ptr = strchr(tmp, '/')) != NULL)
*ptr = '\0';
/* Return string as a text datum */
len = strlen(tmp);
ret = (text *) palloc(len + VARHDRSZ);
VARATT_SIZEP(ret) = len + VARHDRSZ;
memcpy(VARDATA(ret), tmp, len);
PG_RETURN_TEXT_P(ret);
}
/*
* Bitwise comparison for V4 addresses. Add V6 implementation!
*/
static int
v4bitncmp(unsigned int a1, unsigned int a2, int bits)
{
unsigned long mask = 0;
int i;
for (i = 0; i < bits; i++)
mask = (mask >> 1) | 0x80000000;
a1 = ntohl(a1);
a2 = ntohl(a2);
if ((a1 & mask) < (a2 & mask))
return (-1);
else if ((a1 & mask) > (a2 & mask))
return (1);
return (0);
}