postgresql/src/tutorial/complex.source

304 lines
10 KiB
Plaintext

---------------------------------------------------------------------------
--
-- complex.sql-
-- This file shows how to create a new user-defined type and how to
-- use this new type.
--
--
-- Copyright (c) 1994, Regents of the University of California
--
-- $Id: complex.source,v 1.8 2000/07/17 03:05:41 tgl Exp $
--
---------------------------------------------------------------------------
-----------------------------
-- Creating a new type:
-- a user-defined type must have an input and an output function. They
-- are user-defined C functions. We are going to create a new type
-- called 'complex' which represents complex numbers.
-----------------------------
-- Assume the user defined functions are in _OBJWD_/complex_DLSUFFIX_
-- Look at $PWD/complex.c for the source.
-- the input function 'complex_in' takes a null-terminated string (the
-- textual representation of the type) and turns it into the internal
-- (in memory) representation. You will get a message telling you 'complex'
-- does not exist yet but that's okay.
CREATE FUNCTION complex_in(opaque)
RETURNS complex
AS '_OBJWD_/complex_DLSUFFIX_'
LANGUAGE 'c';
-- the output function 'complex_out' takes the internal representation and
-- converts it into the textual representation.
CREATE FUNCTION complex_out(opaque)
RETURNS opaque
AS '_OBJWD_/complex_DLSUFFIX_'
LANGUAGE 'c';
-- now, we can create the type. The internallength specifies the size of the
-- memory block required to hold the type (we need two 8-byte doubles).
CREATE TYPE complex (
internallength = 16,
input = complex_in,
output = complex_out
);
-----------------------------
-- Using the new type:
-- user-defined types can be use like ordinary built-in types.
-----------------------------
-- eg. we can use it in a schema
CREATE TABLE test_complex (
a complex,
b complex
);
-- data for user-defined type are just strings in the proper textual
-- representation.
INSERT INTO test_complex VALUES ('(1.0, 2.5)', '(4.2, 3.55 )');
INSERT INTO test_complex VALUES ('(33.0, 51.4)', '(100.42, 93.55)');
SELECT * FROM test_complex;
-----------------------------
-- Creating an operator for the new type:
-- Let's define an add operator for complex types. Since POSTGRES
-- supports function overloading, we'll use + as the add operator.
-- (Operators can be reused with different number and types of
-- arguments.)
-----------------------------
-- first, define a function complex_add (also in complex.c)
CREATE FUNCTION complex_add(complex, complex)
RETURNS complex
AS '_OBJWD_/complex_DLSUFFIX_'
LANGUAGE 'c';
-- we can now define the operator. We show a binary operator here but you
-- can also define unary operators by omitting either of leftarg or rightarg.
CREATE OPERATOR + (
leftarg = complex,
rightarg = complex,
procedure = complex_add,
commutator = +
);
SELECT (a + b) AS c FROM test_complex;
-- Occasionally, you may find it useful to cast the string to the desired
-- type explicitly. :: denotes a type cast.
SELECT a + '(1.0,1.0)'::complex AS aa,
b + '(1.0,1.0)'::complex AS bb
FROM test_complex;
-----------------------------
-- Creating aggregate functions
-- you can also define aggregate functions. The syntax is somewhat
-- cryptic but the idea is to express the aggregate in terms of state
-- transition functions.
-----------------------------
CREATE AGGREGATE complex_sum (
sfunc = complex_add,
basetype = complex,
stype = complex,
initcond = '(0,0)'
);
SELECT complex_sum(a) FROM test_complex;
-------------------------------------------------------------------------------
-- ATTENTION! ATTENTION! ATTENTION! --
-- YOU MAY SKIP THE SECTION BELOW ON INTERFACING WITH INDICES. YOU DON'T --
-- NEED THE FOLLOWING IF YOU DON'T USE INDICES WITH NEW DATA TYPES. --
-------------------------------------------------------------------------------
SELECT 'READ ABOVE!' AS STOP;
-----------------------------
-- Interfacing New Types with Indices:
-- We cannot define a secondary index (eg. a B-tree) over the new type
-- yet. We need to modify a few system catalogs to show POSTGRES how
-- to use the new type. Unfortunately, there is no simple command to
-- do this. Please bear with me.
-----------------------------
-- first, define the required operators
CREATE FUNCTION complex_abs_lt(complex, complex) RETURNS bool
AS '_OBJWD_/complex_DLSUFFIX_' LANGUAGE 'c';
CREATE FUNCTION complex_abs_le(complex, complex) RETURNS bool
AS '_OBJWD_/complex_DLSUFFIX_' LANGUAGE 'c';
CREATE FUNCTION complex_abs_eq(complex, complex) RETURNS bool
AS '_OBJWD_/complex_DLSUFFIX_' LANGUAGE 'c';
CREATE FUNCTION complex_abs_ge(complex, complex) RETURNS bool
AS '_OBJWD_/complex_DLSUFFIX_' LANGUAGE 'c';
CREATE FUNCTION complex_abs_gt(complex, complex) RETURNS bool
AS '_OBJWD_/complex_DLSUFFIX_' LANGUAGE 'c';
CREATE OPERATOR < (
leftarg = complex, rightarg = complex, procedure = complex_abs_lt,
restrict = scalarltsel, join = scalarltjoinsel
);
CREATE OPERATOR <= (
leftarg = complex, rightarg = complex, procedure = complex_abs_le,
restrict = scalarltsel, join = scalarltjoinsel
);
CREATE OPERATOR = (
leftarg = complex, rightarg = complex, procedure = complex_abs_eq,
restrict = eqsel, join = eqjoinsel
);
CREATE OPERATOR >= (
leftarg = complex, rightarg = complex, procedure = complex_abs_ge,
restrict = scalargtsel, join = scalargtjoinsel
);
CREATE OPERATOR > (
leftarg = complex, rightarg = complex, procedure = complex_abs_gt,
restrict = scalargtsel, join = scalargtjoinsel
);
INSERT INTO pg_opclass (opcname, opcdeftype)
SELECT 'complex_abs_ops', oid FROM pg_type WHERE typname = 'complex';
SELECT oid, opcname, opcdeftype
FROM pg_opclass WHERE opcname = 'complex_abs_ops';
SELECT o.oid AS opoid, o.oprname
INTO TABLE complex_ops_tmp
FROM pg_operator o, pg_type t
WHERE o.oprleft = t.oid and o.oprright = t.oid
and t.typname = 'complex';
-- make sure we have the right operators
SELECT * from complex_ops_tmp;
INSERT INTO pg_amop (amopid, amopclaid, amopopr, amopstrategy)
SELECT am.oid, opcl.oid, c.opoid, 1
FROM pg_am am, pg_opclass opcl, complex_ops_tmp c
WHERE amname = 'btree' and opcname = 'complex_abs_ops'
and c.oprname = '<';
INSERT INTO pg_amop (amopid, amopclaid, amopopr, amopstrategy)
SELECT am.oid, opcl.oid, c.opoid, 2
FROM pg_am am, pg_opclass opcl, complex_ops_tmp c
WHERE amname = 'btree' and opcname = 'complex_abs_ops'
and c.oprname = '<=';
INSERT INTO pg_amop (amopid, amopclaid, amopopr, amopstrategy)
SELECT am.oid, opcl.oid, c.opoid, 3
FROM pg_am am, pg_opclass opcl, complex_ops_tmp c
WHERE amname = 'btree' and opcname = 'complex_abs_ops'
and c.oprname = '=';
INSERT INTO pg_amop (amopid, amopclaid, amopopr, amopstrategy)
SELECT am.oid, opcl.oid, c.opoid, 4
FROM pg_am am, pg_opclass opcl, complex_ops_tmp c
WHERE amname = 'btree' and opcname = 'complex_abs_ops'
and c.oprname = '>=';
INSERT INTO pg_amop (amopid, amopclaid, amopopr, amopstrategy)
SELECT am.oid, opcl.oid, c.opoid, 5
FROM pg_am am, pg_opclass opcl, complex_ops_tmp c
WHERE amname = 'btree' and opcname = 'complex_abs_ops'
and c.oprname = '>';
--
CREATE FUNCTION complex_abs_cmp(complex, complex) RETURNS int4
AS '_OBJWD_/complex_DLSUFFIX_' LANGUAGE 'c';
SELECT oid, proname FROM pg_proc WHERE proname = 'complex_abs_cmp';
INSERT INTO pg_amproc (amid, amopclaid, amproc, amprocnum)
SELECT am.oid, opcl.oid, pro.oid, 1
FROM pg_am am, pg_opclass opcl, pg_proc pro
WHERE amname = 'btree' and opcname = 'complex_abs_ops'
and proname = 'complex_abs_cmp';
-- now, we can define a btree index on complex types. First, let's populate
-- the table. Note that postgres needs many more tuples to start using the
-- btree index during selects.
INSERT INTO test_complex VALUES ('(56.0,-22.5)', '(-43.2,-0.07)');
INSERT INTO test_complex VALUES ('(-91.9,33.6)', '(8.6,3.0)');
CREATE INDEX test_cplx_ind ON test_complex
USING btree(a complex_abs_ops);
SELECT * from test_complex where a = '(56.0,-22.5)';
SELECT * from test_complex where a < '(56.0,-22.5)';
SELECT * from test_complex where a > '(56.0,-22.5)';
DELETE FROM pg_amop where (amopid, amopclaid, amopopr, amopstrategy)
= (
SELECT am.oid, opcl.oid, c.opoid, 1
FROM pg_am am, pg_opclass opcl, complex_ops_tmp c
WHERE amname = 'btree' and opcname = 'complex_abs_ops'
and c.oprname = '<');
DELETE FROM pg_amop where (amopid, amopclaid, amopopr, amopstrategy)
= (
SELECT am.oid, opcl.oid, c.opoid, 2
FROM pg_am am, pg_opclass opcl, complex_ops_tmp c
WHERE amname = 'btree' and opcname = 'complex_abs_ops'
and c.oprname = '<=');
DELETE FROM pg_amop where (amopid, amopclaid, amopopr, amopstrategy)
= (
SELECT am.oid, opcl.oid, c.opoid, 3
FROM pg_am am, pg_opclass opcl, complex_ops_tmp c
WHERE amname = 'btree' and opcname = 'complex_abs_ops'
and c.oprname = '=');
DELETE FROM pg_amop where (amopid, amopclaid, amopopr, amopstrategy)
= (
SELECT am.oid, opcl.oid, c.opoid, 4
FROM pg_am am, pg_opclass opcl, complex_ops_tmp c
WHERE amname = 'btree' and opcname = 'complex_abs_ops'
and c.oprname = '>=');
DELETE FROM pg_amop where (amopid, amopclaid, amopopr, amopstrategy)
= (
SELECT am.oid, opcl.oid, c.opoid, 5
FROM pg_am am, pg_opclass opcl, complex_ops_tmp c
WHERE amname = 'btree' and opcname = 'complex_abs_ops'
and c.oprname = '>');
DELETE FROM pg_amproc where (amid, amopclaid, amproc, amprocnum)
= (
SELECT am.oid, opcl.oid, pro.oid, 1
FROM pg_am am, pg_opclass opcl, pg_proc pro
WHERE amname = 'btree' and opcname = 'complex_abs_ops'
and proname = 'complex_abs_cmp');
DELETE FROM pg_opclass WHERE opcname = 'complex_abs_ops';
DROP FUNCTION complex_in(opaque);
DROP FUNCTION complex_out(opaque);
DROP FUNCTION complex_add(complex, complex);
DROP FUNCTION complex_abs_lt(complex, complex);
DROP FUNCTION complex_abs_le(complex, complex);
DROP FUNCTION complex_abs_eq(complex, complex);
DROP FUNCTION complex_abs_ge(complex, complex);
DROP FUNCTION complex_abs_gt(complex, complex);
DROP FUNCTION complex_abs_cmp(complex, complex);
DROP OPERATOR + (complex, complex);
DROP OPERATOR < (complex, complex);
DROP OPERATOR <= (complex, complex);
DROP OPERATOR = (complex, complex);
DROP OPERATOR >= (complex, complex);
DROP OPERATOR > (complex, complex);
DROP AGGREGATE complex_sum complex;
DROP TYPE complex;
DROP TABLE test_complex, complex_ops_tmp;