postgresql/src/backend/utils/hash/dynahash.c
Bruce Momjian 436a2956d8 Re-run pgindent, fixing a problem where comment lines after a blank
comment line where output as too long, and update typedefs for /lib
directory.  Also fix case where identifiers were used as variable names
in the backend, but as typedefs in ecpg (favor the backend for
indenting).

Backpatch to 8.1.X.
2005-11-22 18:17:34 +00:00

999 lines
26 KiB
C

/*-------------------------------------------------------------------------
*
* dynahash.c
* dynamic hash tables
*
*
* Portions Copyright (c) 1996-2005, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/hash/dynahash.c,v 1.66 2005/11/22 18:17:25 momjian Exp $
*
*-------------------------------------------------------------------------
*/
/*
*
* Dynamic hashing, after CACM April 1988 pp 446-457, by Per-Ake Larson.
* Coded into C, with minor code improvements, and with hsearch(3) interface,
* by ejp@ausmelb.oz, Jul 26, 1988: 13:16;
* also, hcreate/hdestroy routines added to simulate hsearch(3).
*
* These routines simulate hsearch(3) and family, with the important
* difference that the hash table is dynamic - can grow indefinitely
* beyond its original size (as supplied to hcreate()).
*
* Performance appears to be comparable to that of hsearch(3).
* The 'source-code' options referred to in hsearch(3)'s 'man' page
* are not implemented; otherwise functionality is identical.
*
* Compilation controls:
* DEBUG controls some informative traces, mainly for debugging.
* HASH_STATISTICS causes HashAccesses and HashCollisions to be maintained;
* when combined with HASH_DEBUG, these are displayed by hdestroy().
*
* Problems & fixes to ejp@ausmelb.oz. WARNING: relies on pre-processor
* concatenation property, in probably unnecessary code 'optimisation'.
*
* Modified margo@postgres.berkeley.edu February 1990
* added multiple table interface
* Modified by sullivan@postgres.berkeley.edu April 1990
* changed ctl structure for shared memory
*/
#include "postgres.h"
#include "storage/shmem.h"
#include "utils/dynahash.h"
#include "utils/hsearch.h"
#include "utils/memutils.h"
/*
* Key (also entry) part of a HASHELEMENT
*/
#define ELEMENTKEY(helem) (((char *)(helem)) + MAXALIGN(sizeof(HASHELEMENT)))
/*
* Fast MOD arithmetic, assuming that y is a power of 2 !
*/
#define MOD(x,y) ((x) & ((y)-1))
/*
* Private function prototypes
*/
static void *DynaHashAlloc(Size size);
static HASHSEGMENT seg_alloc(HTAB *hashp);
static bool element_alloc(HTAB *hashp, int nelem);
static bool dir_realloc(HTAB *hashp);
static bool expand_table(HTAB *hashp);
static void hdefault(HTAB *hashp);
static bool init_htab(HTAB *hashp, long nelem);
static void hash_corrupted(HTAB *hashp);
/*
* memory allocation support
*/
static MemoryContext CurrentDynaHashCxt = NULL;
static void *
DynaHashAlloc(Size size)
{
Assert(MemoryContextIsValid(CurrentDynaHashCxt));
return MemoryContextAlloc(CurrentDynaHashCxt, size);
}
#if HASH_STATISTICS
static long hash_accesses,
hash_collisions,
hash_expansions;
#endif
/************************** CREATE ROUTINES **********************/
/*
* hash_create -- create a new dynamic hash table
*
* tabname: a name for the table (for debugging purposes)
* nelem: maximum number of elements expected
* *info: additional table parameters, as indicated by flags
* flags: bitmask indicating which parameters to take from *info
*
* Note: for a shared-memory hashtable, nelem needs to be a pretty good
* estimate, since we can't expand the table on the fly. But an unshared
* hashtable can be expanded on-the-fly, so it's better for nelem to be
* on the small side and let the table grow if it's exceeded. An overly
* large nelem will penalize hash_seq_search speed without buying much.
*/
HTAB *
hash_create(const char *tabname, long nelem, HASHCTL *info, int flags)
{
HTAB *hashp;
HASHHDR *hctl;
/*
* For shared hash tables, we have a local hash header (HTAB struct) that
* we allocate in TopMemoryContext; all else is in shared memory.
*
* For non-shared hash tables, everything including the hash header is in
* a memory context created specially for the hash table --- this makes
* hash_destroy very simple. The memory context is made a child of either
* a context specified by the caller, or TopMemoryContext if nothing is
* specified.
*/
if (flags & HASH_SHARED_MEM)
{
/* Set up to allocate the hash header */
CurrentDynaHashCxt = TopMemoryContext;
}
else
{
/* Create the hash table's private memory context */
if (flags & HASH_CONTEXT)
CurrentDynaHashCxt = info->hcxt;
else
CurrentDynaHashCxt = TopMemoryContext;
CurrentDynaHashCxt = AllocSetContextCreate(CurrentDynaHashCxt,
tabname,
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
}
/* Initialize the hash header, plus a copy of the table name */
hashp = (HTAB *) DynaHashAlloc(sizeof(HTAB) + strlen(tabname) +1);
MemSet(hashp, 0, sizeof(HTAB));
hashp->tabname = (char *) (hashp + 1);
strcpy(hashp->tabname, tabname);
if (flags & HASH_FUNCTION)
hashp->hash = info->hash;
else
hashp->hash = string_hash; /* default hash function */
/*
* If you don't specify a match function, it defaults to strncmp() if you
* used string_hash (either explicitly or by default) and to memcmp()
* otherwise. (Prior to PostgreSQL 7.4, memcmp() was always used.)
*/
if (flags & HASH_COMPARE)
hashp->match = info->match;
else if (hashp->hash == string_hash)
hashp->match = (HashCompareFunc) strncmp;
else
hashp->match = memcmp;
/*
* Similarly, the key-copying function defaults to strncpy() or memcpy().
*/
if (flags & HASH_KEYCOPY)
hashp->keycopy = info->keycopy;
else if (hashp->hash == string_hash)
hashp->keycopy = (HashCopyFunc) strncpy;
else
hashp->keycopy = memcpy;
if (flags & HASH_ALLOC)
hashp->alloc = info->alloc;
else
hashp->alloc = DynaHashAlloc;
if (flags & HASH_SHARED_MEM)
{
/*
* ctl structure is preallocated for shared memory tables. Note that
* HASH_DIRSIZE and HASH_ALLOC had better be set as well.
*/
hashp->hctl = info->hctl;
hashp->dir = info->dir;
hashp->hcxt = NULL;
hashp->isshared = true;
/* hash table already exists, we're just attaching to it */
if (flags & HASH_ATTACH)
return hashp;
}
else
{
/* setup hash table defaults */
hashp->hctl = NULL;
hashp->dir = NULL;
hashp->hcxt = CurrentDynaHashCxt;
hashp->isshared = false;
}
if (!hashp->hctl)
{
hashp->hctl = (HASHHDR *) hashp->alloc(sizeof(HASHHDR));
if (!hashp->hctl)
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory")));
}
hdefault(hashp);
hctl = hashp->hctl;
#ifdef HASH_STATISTICS
hctl->accesses = hctl->collisions = 0;
#endif
if (flags & HASH_SEGMENT)
{
hctl->ssize = info->ssize;
hctl->sshift = my_log2(info->ssize);
/* ssize had better be a power of 2 */
Assert(hctl->ssize == (1L << hctl->sshift));
}
if (flags & HASH_FFACTOR)
hctl->ffactor = info->ffactor;
/*
* SHM hash tables have fixed directory size passed by the caller.
*/
if (flags & HASH_DIRSIZE)
{
hctl->max_dsize = info->max_dsize;
hctl->dsize = info->dsize;
}
/*
* hash table now allocates space for key and data but you have to say how
* much space to allocate
*/
if (flags & HASH_ELEM)
{
Assert(info->entrysize >= info->keysize);
hctl->keysize = info->keysize;
hctl->entrysize = info->entrysize;
}
/* Build the hash directory structure */
if (!init_htab(hashp, nelem))
{
hash_destroy(hashp);
elog(ERROR, "failed to initialize hash table");
}
/*
* For a shared hash table, preallocate the requested number of elements.
* This reduces problems with run-time out-of-shared-memory conditions.
*/
if (flags & HASH_SHARED_MEM)
{
if (!element_alloc(hashp, (int) nelem))
{
hash_destroy(hashp);
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory")));
}
}
return hashp;
}
/*
* Set default HASHHDR parameters.
*/
static void
hdefault(HTAB *hashp)
{
HASHHDR *hctl = hashp->hctl;
MemSet(hctl, 0, sizeof(HASHHDR));
hctl->ssize = DEF_SEGSIZE;
hctl->sshift = DEF_SEGSIZE_SHIFT;
hctl->dsize = DEF_DIRSIZE;
hctl->ffactor = DEF_FFACTOR;
hctl->nentries = 0;
hctl->nsegs = 0;
/* rather pointless defaults for key & entry size */
hctl->keysize = sizeof(char *);
hctl->entrysize = 2 * sizeof(char *);
/* table has no fixed maximum size */
hctl->max_dsize = NO_MAX_DSIZE;
/* garbage collection for HASH_REMOVE */
hctl->freeList = NULL;
}
static bool
init_htab(HTAB *hashp, long nelem)
{
HASHHDR *hctl = hashp->hctl;
HASHSEGMENT *segp;
long lnbuckets;
int nbuckets;
int nsegs;
/*
* Divide number of elements by the fill factor to determine a desired
* number of buckets. Allocate space for the next greater power of two
* number of buckets
*/
lnbuckets = (nelem - 1) / hctl->ffactor + 1;
nbuckets = 1 << my_log2(lnbuckets);
hctl->max_bucket = hctl->low_mask = nbuckets - 1;
hctl->high_mask = (nbuckets << 1) - 1;
/*
* Figure number of directory segments needed, round up to a power of 2
*/
nsegs = (nbuckets - 1) / hctl->ssize + 1;
nsegs = 1 << my_log2(nsegs);
/*
* Make sure directory is big enough. If pre-allocated directory is too
* small, choke (caller screwed up).
*/
if (nsegs > hctl->dsize)
{
if (!(hashp->dir))
hctl->dsize = nsegs;
else
return false;
}
/* Allocate a directory */
if (!(hashp->dir))
{
CurrentDynaHashCxt = hashp->hcxt;
hashp->dir = (HASHSEGMENT *)
hashp->alloc(hctl->dsize * sizeof(HASHSEGMENT));
if (!hashp->dir)
return false;
}
/* Allocate initial segments */
for (segp = hashp->dir; hctl->nsegs < nsegs; hctl->nsegs++, segp++)
{
*segp = seg_alloc(hashp);
if (*segp == NULL)
return false;
}
/* Choose number of entries to allocate at a time */
hctl->nelem_alloc = (int) Min(nelem, HASHELEMENT_ALLOC_MAX);
hctl->nelem_alloc = Max(hctl->nelem_alloc, 1);
#if HASH_DEBUG
fprintf(stderr, "init_htab:\n%s%p\n%s%ld\n%s%ld\n%s%d\n%s%ld\n%s%u\n%s%x\n%s%x\n%s%ld\n%s%ld\n",
"TABLE POINTER ", hashp,
"DIRECTORY SIZE ", hctl->dsize,
"SEGMENT SIZE ", hctl->ssize,
"SEGMENT SHIFT ", hctl->sshift,
"FILL FACTOR ", hctl->ffactor,
"MAX BUCKET ", hctl->max_bucket,
"HIGH MASK ", hctl->high_mask,
"LOW MASK ", hctl->low_mask,
"NSEGS ", hctl->nsegs,
"NENTRIES ", hctl->nentries);
#endif
return true;
}
/*
* Estimate the space needed for a hashtable containing the given number
* of entries of given size.
* NOTE: this is used to estimate the footprint of hashtables in shared
* memory; therefore it does not count HTAB which is in local memory.
* NB: assumes that all hash structure parameters have default values!
*/
Size
hash_estimate_size(long num_entries, Size entrysize)
{
Size size;
long nBuckets,
nSegments,
nDirEntries,
nElementAllocs,
elementSize,
elementAllocCnt;
/* estimate number of buckets wanted */
nBuckets = 1L << my_log2((num_entries - 1) / DEF_FFACTOR + 1);
/* # of segments needed for nBuckets */
nSegments = 1L << my_log2((nBuckets - 1) / DEF_SEGSIZE + 1);
/* directory entries */
nDirEntries = DEF_DIRSIZE;
while (nDirEntries < nSegments)
nDirEntries <<= 1; /* dir_alloc doubles dsize at each call */
/* fixed control info */
size = MAXALIGN(sizeof(HASHHDR)); /* but not HTAB, per above */
/* directory */
size = add_size(size, mul_size(nDirEntries, sizeof(HASHSEGMENT)));
/* segments */
size = add_size(size, mul_size(nSegments,
MAXALIGN(DEF_SEGSIZE * sizeof(HASHBUCKET))));
/* elements --- allocated in groups of up to HASHELEMENT_ALLOC_MAX */
elementSize = MAXALIGN(sizeof(HASHELEMENT)) + MAXALIGN(entrysize);
elementAllocCnt = Min(num_entries, HASHELEMENT_ALLOC_MAX);
elementAllocCnt = Max(elementAllocCnt, 1);
nElementAllocs = (num_entries - 1) / elementAllocCnt + 1;
size = add_size(size,
mul_size(nElementAllocs,
mul_size(elementAllocCnt, elementSize)));
return size;
}
/*
* Select an appropriate directory size for a hashtable with the given
* maximum number of entries.
* This is only needed for hashtables in shared memory, whose directories
* cannot be expanded dynamically.
* NB: assumes that all hash structure parameters have default values!
*
* XXX this had better agree with the behavior of init_htab()...
*/
long
hash_select_dirsize(long num_entries)
{
long nBuckets,
nSegments,
nDirEntries;
/* estimate number of buckets wanted */
nBuckets = 1L << my_log2((num_entries - 1) / DEF_FFACTOR + 1);
/* # of segments needed for nBuckets */
nSegments = 1L << my_log2((nBuckets - 1) / DEF_SEGSIZE + 1);
/* directory entries */
nDirEntries = DEF_DIRSIZE;
while (nDirEntries < nSegments)
nDirEntries <<= 1; /* dir_alloc doubles dsize at each call */
return nDirEntries;
}
/********************** DESTROY ROUTINES ************************/
void
hash_destroy(HTAB *hashp)
{
if (hashp != NULL)
{
/* allocation method must be one we know how to free, too */
Assert(hashp->alloc == DynaHashAlloc);
/* so this hashtable must have it's own context */
Assert(hashp->hcxt != NULL);
hash_stats("destroy", hashp);
/*
* Free everything by destroying the hash table's memory context.
*/
MemoryContextDelete(hashp->hcxt);
}
}
void
hash_stats(const char *where, HTAB *hashp)
{
#if HASH_STATISTICS
fprintf(stderr, "%s: this HTAB -- accesses %ld collisions %ld\n",
where, hashp->hctl->accesses, hashp->hctl->collisions);
fprintf(stderr, "hash_stats: entries %ld keysize %ld maxp %u segmentcount %ld\n",
hashp->hctl->nentries, hashp->hctl->keysize,
hashp->hctl->max_bucket, hashp->hctl->nsegs);
fprintf(stderr, "%s: total accesses %ld total collisions %ld\n",
where, hash_accesses, hash_collisions);
fprintf(stderr, "hash_stats: total expansions %ld\n",
hash_expansions);
#endif
}
/*******************************SEARCH ROUTINES *****************************/
/* Convert a hash value to a bucket number */
static inline uint32
calc_bucket(HASHHDR *hctl, uint32 hash_val)
{
uint32 bucket;
bucket = hash_val & hctl->high_mask;
if (bucket > hctl->max_bucket)
bucket = bucket & hctl->low_mask;
return bucket;
}
/*----------
* hash_search -- look up key in table and perform action
*
* action is one of:
* HASH_FIND: look up key in table
* HASH_ENTER: look up key in table, creating entry if not present
* HASH_ENTER_NULL: same, but return NULL if out of memory
* HASH_REMOVE: look up key in table, remove entry if present
*
* Return value is a pointer to the element found/entered/removed if any,
* or NULL if no match was found. (NB: in the case of the REMOVE action,
* the result is a dangling pointer that shouldn't be dereferenced!)
*
* HASH_ENTER will normally ereport a generic "out of memory" error if
* it is unable to create a new entry. The HASH_ENTER_NULL operation is
* the same except it will return NULL if out of memory. Note that
* HASH_ENTER_NULL cannot be used with the default palloc-based allocator,
* since palloc internally ereports on out-of-memory.
*
* If foundPtr isn't NULL, then *foundPtr is set TRUE if we found an
* existing entry in the table, FALSE otherwise. This is needed in the
* HASH_ENTER case, but is redundant with the return value otherwise.
*----------
*/
void *
hash_search(HTAB *hashp,
const void *keyPtr,
HASHACTION action,
bool *foundPtr)
{
HASHHDR *hctl = hashp->hctl;
Size keysize = hctl->keysize;
uint32 hashvalue;
uint32 bucket;
long segment_num;
long segment_ndx;
HASHSEGMENT segp;
HASHBUCKET currBucket;
HASHBUCKET *prevBucketPtr;
HashCompareFunc match;
#if HASH_STATISTICS
hash_accesses++;
hctl->accesses++;
#endif
/*
* Do the initial lookup
*/
hashvalue = hashp->hash(keyPtr, keysize);
bucket = calc_bucket(hctl, hashvalue);
segment_num = bucket >> hctl->sshift;
segment_ndx = MOD(bucket, hctl->ssize);
segp = hashp->dir[segment_num];
if (segp == NULL)
hash_corrupted(hashp);
prevBucketPtr = &segp[segment_ndx];
currBucket = *prevBucketPtr;
/*
* Follow collision chain looking for matching key
*/
match = hashp->match; /* save one fetch in inner loop */
while (currBucket != NULL)
{
if (currBucket->hashvalue == hashvalue &&
match(ELEMENTKEY(currBucket), keyPtr, keysize) == 0)
break;
prevBucketPtr = &(currBucket->link);
currBucket = *prevBucketPtr;
#if HASH_STATISTICS
hash_collisions++;
hctl->collisions++;
#endif
}
if (foundPtr)
*foundPtr = (bool) (currBucket != NULL);
/*
* OK, now what?
*/
switch (action)
{
case HASH_FIND:
if (currBucket != NULL)
return (void *) ELEMENTKEY(currBucket);
return NULL;
case HASH_REMOVE:
if (currBucket != NULL)
{
Assert(hctl->nentries > 0);
hctl->nentries--;
/* remove record from hash bucket's chain. */
*prevBucketPtr = currBucket->link;
/* add the record to the freelist for this table. */
currBucket->link = hctl->freeList;
hctl->freeList = currBucket;
/*
* better hope the caller is synchronizing access to this
* element, because someone else is going to reuse it the next
* time something is added to the table
*/
return (void *) ELEMENTKEY(currBucket);
}
return NULL;
case HASH_ENTER_NULL:
/* ENTER_NULL does not work with palloc-based allocator */
Assert(hashp->alloc != DynaHashAlloc);
/* FALL THRU */
case HASH_ENTER:
/* Return existing element if found, else create one */
if (currBucket != NULL)
return (void *) ELEMENTKEY(currBucket);
/* get the next free element */
currBucket = hctl->freeList;
if (currBucket == NULL)
{
/* no free elements. allocate another chunk of buckets */
if (!element_alloc(hashp, hctl->nelem_alloc))
{
/* out of memory */
if (action == HASH_ENTER_NULL)
return NULL;
/* report a generic message */
if (hashp->isshared)
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of shared memory")));
else
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory")));
}
currBucket = hctl->freeList;
Assert(currBucket != NULL);
}
hctl->freeList = currBucket->link;
/* link into hashbucket chain */
*prevBucketPtr = currBucket;
currBucket->link = NULL;
/* copy key into record */
currBucket->hashvalue = hashvalue;
hashp->keycopy(ELEMENTKEY(currBucket), keyPtr, keysize);
/* caller is expected to fill the data field on return */
/* Check if it is time to split the segment */
if (++hctl->nentries / (long) (hctl->max_bucket + 1) >= hctl->ffactor)
{
/*
* NOTE: failure to expand table is not a fatal error, it just
* means we have to run at higher fill factor than we wanted.
*/
expand_table(hashp);
}
return (void *) ELEMENTKEY(currBucket);
}
elog(ERROR, "unrecognized hash action code: %d", (int) action);
return NULL; /* keep compiler quiet */
}
/*
* hash_seq_init/_search
* Sequentially search through hash table and return
* all the elements one by one, return NULL when no more.
*
* NOTE: caller may delete the returned element before continuing the scan.
* However, deleting any other element while the scan is in progress is
* UNDEFINED (it might be the one that curIndex is pointing at!). Also,
* if elements are added to the table while the scan is in progress, it is
* unspecified whether they will be visited by the scan or not.
*/
void
hash_seq_init(HASH_SEQ_STATUS *status, HTAB *hashp)
{
status->hashp = hashp;
status->curBucket = 0;
status->curEntry = NULL;
}
void *
hash_seq_search(HASH_SEQ_STATUS *status)
{
HTAB *hashp;
HASHHDR *hctl;
uint32 max_bucket;
long ssize;
long segment_num;
long segment_ndx;
HASHSEGMENT segp;
uint32 curBucket;
HASHELEMENT *curElem;
if ((curElem = status->curEntry) != NULL)
{
/* Continuing scan of curBucket... */
status->curEntry = curElem->link;
if (status->curEntry == NULL) /* end of this bucket */
++status->curBucket;
return (void *) ELEMENTKEY(curElem);
}
/*
* Search for next nonempty bucket starting at curBucket.
*/
curBucket = status->curBucket;
hashp = status->hashp;
hctl = hashp->hctl;
ssize = hctl->ssize;
max_bucket = hctl->max_bucket;
if (curBucket > max_bucket)
return NULL; /* search is done */
/*
* first find the right segment in the table directory.
*/
segment_num = curBucket >> hctl->sshift;
segment_ndx = MOD(curBucket, ssize);
segp = hashp->dir[segment_num];
/*
* Pick up the first item in this bucket's chain. If chain is not empty
* we can begin searching it. Otherwise we have to advance to find the
* next nonempty bucket. We try to optimize that case since searching a
* near-empty hashtable has to iterate this loop a lot.
*/
while ((curElem = segp[segment_ndx]) == NULL)
{
/* empty bucket, advance to next */
if (++curBucket > max_bucket)
{
status->curBucket = curBucket;
return NULL; /* search is done */
}
if (++segment_ndx >= ssize)
{
segment_num++;
segment_ndx = 0;
segp = hashp->dir[segment_num];
}
}
/* Begin scan of curBucket... */
status->curEntry = curElem->link;
if (status->curEntry == NULL) /* end of this bucket */
++curBucket;
status->curBucket = curBucket;
return (void *) ELEMENTKEY(curElem);
}
/********************************* UTILITIES ************************/
/*
* Expand the table by adding one more hash bucket.
*/
static bool
expand_table(HTAB *hashp)
{
HASHHDR *hctl = hashp->hctl;
HASHSEGMENT old_seg,
new_seg;
long old_bucket,
new_bucket;
long new_segnum,
new_segndx;
long old_segnum,
old_segndx;
HASHBUCKET *oldlink,
*newlink;
HASHBUCKET currElement,
nextElement;
#ifdef HASH_STATISTICS
hash_expansions++;
#endif
new_bucket = hctl->max_bucket + 1;
new_segnum = new_bucket >> hctl->sshift;
new_segndx = MOD(new_bucket, hctl->ssize);
if (new_segnum >= hctl->nsegs)
{
/* Allocate new segment if necessary -- could fail if dir full */
if (new_segnum >= hctl->dsize)
if (!dir_realloc(hashp))
return false;
if (!(hashp->dir[new_segnum] = seg_alloc(hashp)))
return false;
hctl->nsegs++;
}
/* OK, we created a new bucket */
hctl->max_bucket++;
/*
* *Before* changing masks, find old bucket corresponding to same hash
* values; values in that bucket may need to be relocated to new bucket.
* Note that new_bucket is certainly larger than low_mask at this point,
* so we can skip the first step of the regular hash mask calc.
*/
old_bucket = (new_bucket & hctl->low_mask);
/*
* If we crossed a power of 2, readjust masks.
*/
if ((uint32) new_bucket > hctl->high_mask)
{
hctl->low_mask = hctl->high_mask;
hctl->high_mask = (uint32) new_bucket | hctl->low_mask;
}
/*
* Relocate records to the new bucket. NOTE: because of the way the hash
* masking is done in calc_bucket, only one old bucket can need to be
* split at this point. With a different way of reducing the hash value,
* that might not be true!
*/
old_segnum = old_bucket >> hctl->sshift;
old_segndx = MOD(old_bucket, hctl->ssize);
old_seg = hashp->dir[old_segnum];
new_seg = hashp->dir[new_segnum];
oldlink = &old_seg[old_segndx];
newlink = &new_seg[new_segndx];
for (currElement = *oldlink;
currElement != NULL;
currElement = nextElement)
{
nextElement = currElement->link;
if ((long) calc_bucket(hctl, currElement->hashvalue) == old_bucket)
{
*oldlink = currElement;
oldlink = &currElement->link;
}
else
{
*newlink = currElement;
newlink = &currElement->link;
}
}
/* don't forget to terminate the rebuilt hash chains... */
*oldlink = NULL;
*newlink = NULL;
return true;
}
static bool
dir_realloc(HTAB *hashp)
{
HASHSEGMENT *p;
HASHSEGMENT *old_p;
long new_dsize;
long old_dirsize;
long new_dirsize;
if (hashp->hctl->max_dsize != NO_MAX_DSIZE)
return false;
/* Reallocate directory */
new_dsize = hashp->hctl->dsize << 1;
old_dirsize = hashp->hctl->dsize * sizeof(HASHSEGMENT);
new_dirsize = new_dsize * sizeof(HASHSEGMENT);
old_p = hashp->dir;
CurrentDynaHashCxt = hashp->hcxt;
p = (HASHSEGMENT *) hashp->alloc((Size) new_dirsize);
if (p != NULL)
{
memcpy(p, old_p, old_dirsize);
MemSet(((char *) p) + old_dirsize, 0, new_dirsize - old_dirsize);
hashp->dir = p;
hashp->hctl->dsize = new_dsize;
/* XXX assume the allocator is palloc, so we know how to free */
Assert(hashp->alloc == DynaHashAlloc);
pfree(old_p);
return true;
}
return false;
}
static HASHSEGMENT
seg_alloc(HTAB *hashp)
{
HASHSEGMENT segp;
CurrentDynaHashCxt = hashp->hcxt;
segp = (HASHSEGMENT) hashp->alloc(sizeof(HASHBUCKET) * hashp->hctl->ssize);
if (!segp)
return NULL;
MemSet(segp, 0, sizeof(HASHBUCKET) * hashp->hctl->ssize);
return segp;
}
/*
* allocate some new elements and link them into the free list
*/
static bool
element_alloc(HTAB *hashp, int nelem)
{
HASHHDR *hctl = hashp->hctl;
Size elementSize;
HASHELEMENT *tmpElement;
int i;
/* Each element has a HASHELEMENT header plus user data. */
elementSize = MAXALIGN(sizeof(HASHELEMENT)) + MAXALIGN(hctl->entrysize);
CurrentDynaHashCxt = hashp->hcxt;
tmpElement = (HASHELEMENT *)
hashp->alloc(nelem * elementSize);
if (!tmpElement)
return false;
/* link all the new entries into the freelist */
for (i = 0; i < nelem; i++)
{
tmpElement->link = hctl->freeList;
hctl->freeList = tmpElement;
tmpElement = (HASHELEMENT *) (((char *) tmpElement) + elementSize);
}
return true;
}
/* complain when we have detected a corrupted hashtable */
static void
hash_corrupted(HTAB *hashp)
{
/*
* If the corruption is in a shared hashtable, we'd better force a
* systemwide restart. Otherwise, just shut down this one backend.
*/
if (hashp->isshared)
elog(PANIC, "hash table \"%s\" corrupted", hashp->tabname);
else
elog(FATAL, "hash table \"%s\" corrupted", hashp->tabname);
}
/* calculate ceil(log base 2) of num */
int
my_log2(long num)
{
int i;
long limit;
for (i = 0, limit = 1; limit < num; i++, limit <<= 1)
;
return i;
}