postgresql/src/include/nodes/plannodes.h
Tom Lane b0c4a50bbb Instead of rechecking lossy index operators by putting them into the
regular qpqual ('filter condition'), add special-purpose code to
nodeIndexscan.c to recheck them.  This ends being almost no net addition
of code, because the removal of planner code balances out the extra
executor code, but it is significantly more efficient when a lossy
operator is involved in an OR indexscan.  The old implementation had
to recheck the entire indexqual in such cases.
2004-01-06 04:31:01 +00:00

391 lines
10 KiB
C

/*-------------------------------------------------------------------------
*
* plannodes.h
* definitions for query plan nodes
*
*
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/include/nodes/plannodes.h,v 1.73 2004/01/06 04:31:01 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#ifndef PLANNODES_H
#define PLANNODES_H
#include "access/sdir.h"
#include "nodes/bitmapset.h"
#include "nodes/primnodes.h"
/* ----------------------------------------------------------------
* node definitions
* ----------------------------------------------------------------
*/
/* ----------------
* Plan node
*
* All plan nodes "derive" from the Plan structure by having the
* Plan structure as the first field. This ensures that everything works
* when nodes are cast to Plan's. (node pointers are frequently cast to Plan*
* when passed around generically in the executor)
*
* We never actually instantiate any Plan nodes; this is just the common
* abstract superclass for all Plan-type nodes.
* ----------------
*/
typedef struct Plan
{
NodeTag type;
/*
* estimated execution costs for plan (see costsize.c for more info)
*/
Cost startup_cost; /* cost expended before fetching any
* tuples */
Cost total_cost; /* total cost (assuming all tuples
* fetched) */
/*
* planner's estimate of result size of this plan step
*/
double plan_rows; /* number of rows plan is expected to emit */
int plan_width; /* average row width in bytes */
/*
* Common structural data for all Plan types.
*/
List *targetlist; /* target list to be computed at this node */
List *qual; /* implicitly-ANDed qual conditions */
struct Plan *lefttree; /* input plan tree(s) */
struct Plan *righttree;
List *initPlan; /* Init Plan nodes (un-correlated expr
* subselects) */
/*
* Information for management of parameter-change-driven rescanning
*
* extParam includes the paramIDs of all external PARAM_EXEC params
* affecting this plan node or its children. setParam params from the
* node's initPlans are not included, but their extParams are.
*
* allParam includes all the extParam paramIDs, plus the IDs of local
* params that affect the node (i.e., the setParams of its initplans).
* These are _all_ the PARAM_EXEC params that affect this node.
*/
Bitmapset *extParam;
Bitmapset *allParam;
/*
* We really need in some TopPlan node to store range table and
* resultRelation from Query there and get rid of Query itself from
* Executor. Some other stuff like below could be put there, too.
*/
int nParamExec; /* Number of them in entire query. This is
* to get Executor know about how many
* param_exec there are in query plan. */
} Plan;
/* ----------------
* these are are defined to avoid confusion problems with "left"
* and "right" and "inner" and "outer". The convention is that
* the "left" plan is the "outer" plan and the "right" plan is
* the inner plan, but these make the code more readable.
* ----------------
*/
#define innerPlan(node) (((Plan *)(node))->righttree)
#define outerPlan(node) (((Plan *)(node))->lefttree)
/* ----------------
* Result node -
* If no outer plan, evaluate a variable-free targetlist.
* If outer plan, return tuples from outer plan (after a level of
* projection as shown by targetlist).
*
* If resconstantqual isn't NULL, it represents a one-time qualification
* test (i.e., one that doesn't depend on any variables from the outer plan,
* so needs to be evaluated only once).
* ----------------
*/
typedef struct Result
{
Plan plan;
Node *resconstantqual;
} Result;
/* ----------------
* Append node -
* Generate the concatenation of the results of sub-plans.
*
* Append nodes are sometimes used to switch between several result relations
* (when the target of an UPDATE or DELETE is an inheritance set). Such a
* node will have isTarget true. The Append executor is then responsible
* for updating the executor state to point at the correct target relation
* whenever it switches subplans.
* ----------------
*/
typedef struct Append
{
Plan plan;
List *appendplans;
bool isTarget;
} Append;
/*
* ==========
* Scan nodes
* ==========
*/
typedef struct Scan
{
Plan plan;
Index scanrelid; /* relid is index into the range table */
} Scan;
/* ----------------
* sequential scan node
* ----------------
*/
typedef Scan SeqScan;
/* ----------------
* index scan node
*
* Note: this can actually represent N indexscans, all on the same table
* but potentially using different indexes, put together with OR semantics.
* ----------------
*/
typedef struct IndexScan
{
Scan scan;
List *indxid; /* list of index OIDs (1 per scan) */
List *indxqual; /* list of sublists of index quals */
List *indxqualorig; /* the same in original form */
List *indxstrategy; /* list of sublists of strategy numbers */
List *indxsubtype; /* list of sublists of strategy subtypes */
List *indxlossy; /* list of sublists of lossy flags (ints) */
ScanDirection indxorderdir; /* forward or backward or don't care */
} IndexScan;
/* ----------------
* tid scan node
* ----------------
*/
typedef struct TidScan
{
Scan scan;
List *tideval;
} TidScan;
/* ----------------
* subquery scan node
*
* SubqueryScan is for scanning the output of a sub-query in the range table.
* We need a special plan node above the sub-query's plan as a place to switch
* execution contexts. Although we are not scanning a physical relation,
* we make this a descendant of Scan anyway for code-sharing purposes.
*
* Note: we store the sub-plan in the type-specific subplan field, not in
* the generic lefttree field as you might expect. This is because we do
* not want plan-tree-traversal routines to recurse into the subplan without
* knowing that they are changing Query contexts.
* ----------------
*/
typedef struct SubqueryScan
{
Scan scan;
Plan *subplan;
} SubqueryScan;
/* ----------------
* FunctionScan node
* ----------------
*/
typedef struct FunctionScan
{
Scan scan;
/* no other fields needed at present */
} FunctionScan;
/*
* ==========
* Join nodes
* ==========
*/
/* ----------------
* Join node
*
* jointype: rule for joining tuples from left and right subtrees
* joinqual: qual conditions that came from JOIN/ON or JOIN/USING
* (plan.qual contains conditions that came from WHERE)
*
* When jointype is INNER, joinqual and plan.qual are semantically
* interchangeable. For OUTER jointypes, the two are *not* interchangeable;
* only joinqual is used to determine whether a match has been found for
* the purpose of deciding whether to generate null-extended tuples.
* (But plan.qual is still applied before actually returning a tuple.)
* For an outer join, only joinquals are allowed to be used as the merge
* or hash condition of a merge or hash join.
* ----------------
*/
typedef struct Join
{
Plan plan;
JoinType jointype;
List *joinqual; /* JOIN quals (in addition to plan.qual) */
} Join;
/* ----------------
* nest loop join node
* ----------------
*/
typedef struct NestLoop
{
Join join;
} NestLoop;
/* ----------------
* merge join node
* ----------------
*/
typedef struct MergeJoin
{
Join join;
List *mergeclauses;
} MergeJoin;
/* ----------------
* hash join (probe) node
* ----------------
*/
typedef struct HashJoin
{
Join join;
List *hashclauses;
} HashJoin;
/* ----------------
* materialization node
* ----------------
*/
typedef struct Material
{
Plan plan;
} Material;
/* ----------------
* sort node
* ----------------
*/
typedef struct Sort
{
Plan plan;
int numCols; /* number of sort-key columns */
AttrNumber *sortColIdx; /* their indexes in the target list */
Oid *sortOperators; /* OIDs of operators to sort them by */
} Sort;
/* ---------------
* group node -
* Used for queries with GROUP BY (but no aggregates) specified.
* The input must be presorted according to the grouping columns.
* ---------------
*/
typedef struct Group
{
Plan plan;
int numCols; /* number of grouping columns */
AttrNumber *grpColIdx; /* their indexes in the target list */
} Group;
/* ---------------
* aggregate node
*
* An Agg node implements plain or grouped aggregation. For grouped
* aggregation, we can work with presorted input or unsorted input;
* the latter strategy uses an internal hashtable.
*
* Notice the lack of any direct info about the aggregate functions to be
* computed. They are found by scanning the node's tlist and quals during
* executor startup. (It is possible that there are no aggregate functions;
* this could happen if they get optimized away by constant-folding, or if
* we are using the Agg node to implement hash-based grouping.)
* ---------------
*/
typedef enum AggStrategy
{
AGG_PLAIN, /* simple agg across all input rows */
AGG_SORTED, /* grouped agg, input must be sorted */
AGG_HASHED /* grouped agg, use internal hashtable */
} AggStrategy;
typedef struct Agg
{
Plan plan;
AggStrategy aggstrategy;
int numCols; /* number of grouping columns */
AttrNumber *grpColIdx; /* their indexes in the target list */
long numGroups; /* estimated number of groups in input */
} Agg;
/* ----------------
* unique node
* ----------------
*/
typedef struct Unique
{
Plan plan;
int numCols; /* number of columns to check for
* uniqueness */
AttrNumber *uniqColIdx; /* indexes into the target list */
} Unique;
/* ----------------
* hash build node
* ----------------
*/
typedef struct Hash
{
Plan plan;
/* all other info is in the parent HashJoin node */
} Hash;
/* ----------------
* setop node
* ----------------
*/
typedef enum SetOpCmd
{
SETOPCMD_INTERSECT,
SETOPCMD_INTERSECT_ALL,
SETOPCMD_EXCEPT,
SETOPCMD_EXCEPT_ALL
} SetOpCmd;
typedef struct SetOp
{
Plan plan;
SetOpCmd cmd; /* what to do */
int numCols; /* number of columns to check for
* duplicate-ness */
AttrNumber *dupColIdx; /* indexes into the target list */
AttrNumber flagColIdx;
} SetOp;
/* ----------------
* limit node
* ----------------
*/
typedef struct Limit
{
Plan plan;
Node *limitOffset; /* OFFSET parameter, or NULL if none */
Node *limitCount; /* COUNT parameter, or NULL if none */
} Limit;
#endif /* PLANNODES_H */