postgresql/src/backend/catalog/toasting.c
Andres Freund 4c850ecec6 Don't include heapam.h from others headers.
heapam.h previously was included in a number of widely used
headers (e.g. execnodes.h, indirectly in executor.h, ...). That's
problematic on its own, as heapam.h contains a lot of low-level
details that don't need to be exposed that widely, but becomes more
problematic with the upcoming introduction of pluggable table storage
- it seems inappropriate for heapam.h to be included that widely
afterwards.

heapam.h was largely only included in other headers to get the
HeapScanDesc typedef (which was defined in heapam.h, even though
HeapScanDescData is defined in relscan.h). The better solution here
seems to be to just use the underlying struct (forward declared where
necessary). Similar for BulkInsertState.

Another problem was that LockTupleMode was used in executor.h - parts
of the file tried to cope without heapam.h, but due to the fact that
it indirectly included it, several subsequent violations of that goal
were not not noticed. We could just reuse the approach of declaring
parameters as int, but it seems nicer to move LockTupleMode to
lockoptions.h - that's not a perfect location, but also doesn't seem
bad.

As a number of files relied on implicitly included heapam.h, a
significant number of files grew an explicit include. It's quite
probably that a few external projects will need to do the same.

Author: Andres Freund
Reviewed-By: Alvaro Herrera
Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
2019-01-14 16:24:41 -08:00

451 lines
13 KiB
C

/*-------------------------------------------------------------------------
*
* toasting.c
* This file contains routines to support creation of toast tables
*
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/catalog/toasting.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/heapam.h"
#include "access/tuptoaster.h"
#include "access/xact.h"
#include "catalog/binary_upgrade.h"
#include "catalog/dependency.h"
#include "catalog/heap.h"
#include "catalog/index.h"
#include "catalog/namespace.h"
#include "catalog/pg_am.h"
#include "catalog/pg_namespace.h"
#include "catalog/pg_opclass.h"
#include "catalog/pg_type.h"
#include "catalog/toasting.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "storage/lock.h"
#include "utils/builtins.h"
#include "utils/rel.h"
#include "utils/syscache.h"
/* Potentially set by pg_upgrade_support functions */
Oid binary_upgrade_next_toast_pg_type_oid = InvalidOid;
static void CheckAndCreateToastTable(Oid relOid, Datum reloptions,
LOCKMODE lockmode, bool check);
static bool create_toast_table(Relation rel, Oid toastOid, Oid toastIndexOid,
Datum reloptions, LOCKMODE lockmode, bool check);
static bool needs_toast_table(Relation rel);
/*
* CreateToastTable variants
* If the table needs a toast table, and doesn't already have one,
* then create a toast table for it.
*
* reloptions for the toast table can be passed, too. Pass (Datum) 0
* for default reloptions.
*
* We expect the caller to have verified that the relation is a table and have
* already done any necessary permission checks. Callers expect this function
* to end with CommandCounterIncrement if it makes any changes.
*/
void
AlterTableCreateToastTable(Oid relOid, Datum reloptions, LOCKMODE lockmode)
{
CheckAndCreateToastTable(relOid, reloptions, lockmode, true);
}
void
NewHeapCreateToastTable(Oid relOid, Datum reloptions, LOCKMODE lockmode)
{
CheckAndCreateToastTable(relOid, reloptions, lockmode, false);
}
void
NewRelationCreateToastTable(Oid relOid, Datum reloptions)
{
CheckAndCreateToastTable(relOid, reloptions, AccessExclusiveLock, false);
}
static void
CheckAndCreateToastTable(Oid relOid, Datum reloptions, LOCKMODE lockmode, bool check)
{
Relation rel;
rel = heap_open(relOid, lockmode);
/* create_toast_table does all the work */
(void) create_toast_table(rel, InvalidOid, InvalidOid, reloptions, lockmode, check);
heap_close(rel, NoLock);
}
/*
* Create a toast table during bootstrap
*
* Here we need to prespecify the OIDs of the toast table and its index
*/
void
BootstrapToastTable(char *relName, Oid toastOid, Oid toastIndexOid)
{
Relation rel;
rel = heap_openrv(makeRangeVar(NULL, relName, -1), AccessExclusiveLock);
if (rel->rd_rel->relkind != RELKIND_RELATION &&
rel->rd_rel->relkind != RELKIND_MATVIEW)
ereport(ERROR,
(errcode(ERRCODE_WRONG_OBJECT_TYPE),
errmsg("\"%s\" is not a table or materialized view",
relName)));
/* create_toast_table does all the work */
if (!create_toast_table(rel, toastOid, toastIndexOid, (Datum) 0,
AccessExclusiveLock, false))
elog(ERROR, "\"%s\" does not require a toast table",
relName);
heap_close(rel, NoLock);
}
/*
* create_toast_table --- internal workhorse
*
* rel is already opened and locked
* toastOid and toastIndexOid are normally InvalidOid, but during
* bootstrap they can be nonzero to specify hand-assigned OIDs
*/
static bool
create_toast_table(Relation rel, Oid toastOid, Oid toastIndexOid,
Datum reloptions, LOCKMODE lockmode, bool check)
{
Oid relOid = RelationGetRelid(rel);
HeapTuple reltup;
TupleDesc tupdesc;
bool shared_relation;
bool mapped_relation;
Relation toast_rel;
Relation class_rel;
Oid toast_relid;
Oid toast_typid = InvalidOid;
Oid namespaceid;
char toast_relname[NAMEDATALEN];
char toast_idxname[NAMEDATALEN];
IndexInfo *indexInfo;
Oid collationObjectId[2];
Oid classObjectId[2];
int16 coloptions[2];
ObjectAddress baseobject,
toastobject;
/*
* Toast table is shared if and only if its parent is.
*
* We cannot allow toasting a shared relation after initdb (because
* there's no way to mark it toasted in other databases' pg_class).
*/
shared_relation = rel->rd_rel->relisshared;
if (shared_relation && !IsBootstrapProcessingMode())
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("shared tables cannot be toasted after initdb")));
/* It's mapped if and only if its parent is, too */
mapped_relation = RelationIsMapped(rel);
/*
* Is it already toasted?
*/
if (rel->rd_rel->reltoastrelid != InvalidOid)
return false;
/*
* Check to see whether the table actually needs a TOAST table.
*/
if (!IsBinaryUpgrade)
{
/* Normal mode, normal check */
if (!needs_toast_table(rel))
return false;
}
else
{
/*
* In binary-upgrade mode, create a TOAST table if and only if
* pg_upgrade told us to (ie, a TOAST table OID has been provided).
*
* This indicates that the old cluster had a TOAST table for the
* current table. We must create a TOAST table to receive the old
* TOAST file, even if the table seems not to need one.
*
* Contrariwise, if the old cluster did not have a TOAST table, we
* should be able to get along without one even if the new version's
* needs_toast_table rules suggest we should have one. There is a lot
* of daylight between where we will create a TOAST table and where
* one is really necessary to avoid failures, so small cross-version
* differences in the when-to-create heuristic shouldn't be a problem.
* If we tried to create a TOAST table anyway, we would have the
* problem that it might take up an OID that will conflict with some
* old-cluster table we haven't seen yet.
*/
if (!OidIsValid(binary_upgrade_next_toast_pg_class_oid) ||
!OidIsValid(binary_upgrade_next_toast_pg_type_oid))
return false;
}
/*
* If requested check lockmode is sufficient. This is a cross check in
* case of errors or conflicting decisions in earlier code.
*/
if (check && lockmode != AccessExclusiveLock)
elog(ERROR, "AccessExclusiveLock required to add toast table.");
/*
* Create the toast table and its index
*/
snprintf(toast_relname, sizeof(toast_relname),
"pg_toast_%u", relOid);
snprintf(toast_idxname, sizeof(toast_idxname),
"pg_toast_%u_index", relOid);
/* this is pretty painful... need a tuple descriptor */
tupdesc = CreateTemplateTupleDesc(3);
TupleDescInitEntry(tupdesc, (AttrNumber) 1,
"chunk_id",
OIDOID,
-1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 2,
"chunk_seq",
INT4OID,
-1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 3,
"chunk_data",
BYTEAOID,
-1, 0);
/*
* Ensure that the toast table doesn't itself get toasted, or we'll be
* toast :-(. This is essential for chunk_data because type bytea is
* toastable; hit the other two just to be sure.
*/
TupleDescAttr(tupdesc, 0)->attstorage = 'p';
TupleDescAttr(tupdesc, 1)->attstorage = 'p';
TupleDescAttr(tupdesc, 2)->attstorage = 'p';
/*
* Toast tables for regular relations go in pg_toast; those for temp
* relations go into the per-backend temp-toast-table namespace.
*/
if (isTempOrTempToastNamespace(rel->rd_rel->relnamespace))
namespaceid = GetTempToastNamespace();
else
namespaceid = PG_TOAST_NAMESPACE;
/*
* Use binary-upgrade override for pg_type.oid, if supplied. We might be
* in the post-schema-restore phase where we are doing ALTER TABLE to
* create TOAST tables that didn't exist in the old cluster.
*/
if (IsBinaryUpgrade && OidIsValid(binary_upgrade_next_toast_pg_type_oid))
{
toast_typid = binary_upgrade_next_toast_pg_type_oid;
binary_upgrade_next_toast_pg_type_oid = InvalidOid;
}
toast_relid = heap_create_with_catalog(toast_relname,
namespaceid,
rel->rd_rel->reltablespace,
toastOid,
toast_typid,
InvalidOid,
rel->rd_rel->relowner,
tupdesc,
NIL,
RELKIND_TOASTVALUE,
rel->rd_rel->relpersistence,
shared_relation,
mapped_relation,
ONCOMMIT_NOOP,
reloptions,
false,
true,
true,
InvalidOid,
NULL);
Assert(toast_relid != InvalidOid);
/* make the toast relation visible, else heap_open will fail */
CommandCounterIncrement();
/* ShareLock is not really needed here, but take it anyway */
toast_rel = heap_open(toast_relid, ShareLock);
/*
* Create unique index on chunk_id, chunk_seq.
*
* NOTE: the normal TOAST access routines could actually function with a
* single-column index on chunk_id only. However, the slice access
* routines use both columns for faster access to an individual chunk. In
* addition, we want it to be unique as a check against the possibility of
* duplicate TOAST chunk OIDs. The index might also be a little more
* efficient this way, since btree isn't all that happy with large numbers
* of equal keys.
*/
indexInfo = makeNode(IndexInfo);
indexInfo->ii_NumIndexAttrs = 2;
indexInfo->ii_NumIndexKeyAttrs = 2;
indexInfo->ii_IndexAttrNumbers[0] = 1;
indexInfo->ii_IndexAttrNumbers[1] = 2;
indexInfo->ii_Expressions = NIL;
indexInfo->ii_ExpressionsState = NIL;
indexInfo->ii_Predicate = NIL;
indexInfo->ii_PredicateState = NULL;
indexInfo->ii_ExclusionOps = NULL;
indexInfo->ii_ExclusionProcs = NULL;
indexInfo->ii_ExclusionStrats = NULL;
indexInfo->ii_Unique = true;
indexInfo->ii_ReadyForInserts = true;
indexInfo->ii_Concurrent = false;
indexInfo->ii_BrokenHotChain = false;
indexInfo->ii_ParallelWorkers = 0;
indexInfo->ii_Am = BTREE_AM_OID;
indexInfo->ii_AmCache = NULL;
indexInfo->ii_Context = CurrentMemoryContext;
collationObjectId[0] = InvalidOid;
collationObjectId[1] = InvalidOid;
classObjectId[0] = OID_BTREE_OPS_OID;
classObjectId[1] = INT4_BTREE_OPS_OID;
coloptions[0] = 0;
coloptions[1] = 0;
index_create(toast_rel, toast_idxname, toastIndexOid, InvalidOid,
InvalidOid, InvalidOid,
indexInfo,
list_make2("chunk_id", "chunk_seq"),
BTREE_AM_OID,
rel->rd_rel->reltablespace,
collationObjectId, classObjectId, coloptions, (Datum) 0,
INDEX_CREATE_IS_PRIMARY, 0, true, true, NULL);
heap_close(toast_rel, NoLock);
/*
* Store the toast table's OID in the parent relation's pg_class row
*/
class_rel = heap_open(RelationRelationId, RowExclusiveLock);
reltup = SearchSysCacheCopy1(RELOID, ObjectIdGetDatum(relOid));
if (!HeapTupleIsValid(reltup))
elog(ERROR, "cache lookup failed for relation %u", relOid);
((Form_pg_class) GETSTRUCT(reltup))->reltoastrelid = toast_relid;
if (!IsBootstrapProcessingMode())
{
/* normal case, use a transactional update */
CatalogTupleUpdate(class_rel, &reltup->t_self, reltup);
}
else
{
/* While bootstrapping, we cannot UPDATE, so overwrite in-place */
heap_inplace_update(class_rel, reltup);
}
heap_freetuple(reltup);
heap_close(class_rel, RowExclusiveLock);
/*
* Register dependency from the toast table to the master, so that the
* toast table will be deleted if the master is. Skip this in bootstrap
* mode.
*/
if (!IsBootstrapProcessingMode())
{
baseobject.classId = RelationRelationId;
baseobject.objectId = relOid;
baseobject.objectSubId = 0;
toastobject.classId = RelationRelationId;
toastobject.objectId = toast_relid;
toastobject.objectSubId = 0;
recordDependencyOn(&toastobject, &baseobject, DEPENDENCY_INTERNAL);
}
/*
* Make changes visible
*/
CommandCounterIncrement();
return true;
}
/*
* Check to see whether the table needs a TOAST table. It does only if
* (1) there are any toastable attributes, and (2) the maximum length
* of a tuple could exceed TOAST_TUPLE_THRESHOLD. (We don't want to
* create a toast table for something like "f1 varchar(20)".)
* No need to create a TOAST table for partitioned tables.
*/
static bool
needs_toast_table(Relation rel)
{
int32 data_length = 0;
bool maxlength_unknown = false;
bool has_toastable_attrs = false;
TupleDesc tupdesc;
int32 tuple_length;
int i;
if (rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE)
return false;
tupdesc = rel->rd_att;
for (i = 0; i < tupdesc->natts; i++)
{
Form_pg_attribute att = TupleDescAttr(tupdesc, i);
if (att->attisdropped)
continue;
data_length = att_align_nominal(data_length, att->attalign);
if (att->attlen > 0)
{
/* Fixed-length types are never toastable */
data_length += att->attlen;
}
else
{
int32 maxlen = type_maximum_size(att->atttypid,
att->atttypmod);
if (maxlen < 0)
maxlength_unknown = true;
else
data_length += maxlen;
if (att->attstorage != 'p')
has_toastable_attrs = true;
}
}
if (!has_toastable_attrs)
return false; /* nothing to toast? */
if (maxlength_unknown)
return true; /* any unlimited-length attrs? */
tuple_length = MAXALIGN(SizeofHeapTupleHeader +
BITMAPLEN(tupdesc->natts)) +
MAXALIGN(data_length);
return (tuple_length > TOAST_TUPLE_THRESHOLD);
}