postgresql/src/backend/optimizer/util/placeholder.c
Tom Lane 4da6439bd8 Fix mark_placeholder_maybe_needed to handle LATERAL references.
If a PlaceHolderVar contains a pulled-up LATERAL reference, its minimum
possible evaluation level might be higher in the join tree than its
original syntactic location.  That in turn affects the ph_needed level for
any contained PlaceHolderVars (that is, those PHVs had better propagate up
the join tree at least to the evaluation level of the outer PHV).  We got
this mostly right, but mark_placeholder_maybe_needed() failed to account
for the effect, and in consequence could leave the inner PHVs with
ph_may_need less than what their ultimate ph_needed value will be.  That's
bad because it could lead to failure to select a join order that will allow
evaluation of the inner PHV at a valid location.  Fix that, and add an
Assert that checks that we don't ever set ph_needed to more than
ph_may_need.
2012-09-01 13:56:46 -04:00

469 lines
14 KiB
C

/*-------------------------------------------------------------------------
*
* placeholder.c
* PlaceHolderVar and PlaceHolderInfo manipulation routines
*
*
* Portions Copyright (c) 1996-2012, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/util/placeholder.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/pathnode.h"
#include "optimizer/placeholder.h"
#include "optimizer/planmain.h"
#include "optimizer/var.h"
#include "utils/lsyscache.h"
/* Local functions */
static Relids find_placeholders_recurse(PlannerInfo *root, Node *jtnode);
static void mark_placeholders_in_expr(PlannerInfo *root, Node *expr,
Relids relids);
/*
* make_placeholder_expr
* Make a PlaceHolderVar for the given expression.
*
* phrels is the syntactic location (as a set of baserels) to attribute
* to the expression.
*/
PlaceHolderVar *
make_placeholder_expr(PlannerInfo *root, Expr *expr, Relids phrels)
{
PlaceHolderVar *phv = makeNode(PlaceHolderVar);
phv->phexpr = expr;
phv->phrels = phrels;
phv->phid = ++(root->glob->lastPHId);
phv->phlevelsup = 0;
return phv;
}
/*
* find_placeholder_info
* Fetch the PlaceHolderInfo for the given PHV
*
* If the PlaceHolderInfo doesn't exist yet, create it if create_new_ph is
* true, else throw an error.
*
* This is separate from make_placeholder_expr because subquery pullup has
* to make PlaceHolderVars for expressions that might not be used at all in
* the upper query, or might not remain after const-expression simplification.
* We build PlaceHolderInfos only for PHVs that are still present in the
* simplified query passed to query_planner().
*
* Note: this should only be called after query_planner() has started. Also,
* create_new_ph must not be TRUE after deconstruct_jointree begins, because
* make_outerjoininfo assumes that we already know about all placeholders.
*/
PlaceHolderInfo *
find_placeholder_info(PlannerInfo *root, PlaceHolderVar *phv,
bool create_new_ph)
{
PlaceHolderInfo *phinfo;
ListCell *lc;
/* if this ever isn't true, we'd need to be able to look in parent lists */
Assert(phv->phlevelsup == 0);
foreach(lc, root->placeholder_list)
{
phinfo = (PlaceHolderInfo *) lfirst(lc);
if (phinfo->phid == phv->phid)
return phinfo;
}
/* Not found, so create it */
if (!create_new_ph)
elog(ERROR, "too late to create a new PlaceHolderInfo");
phinfo = makeNode(PlaceHolderInfo);
phinfo->phid = phv->phid;
phinfo->ph_var = copyObject(phv);
phinfo->ph_eval_at = pull_varnos((Node *) phv);
/* ph_eval_at may change later, see update_placeholder_eval_levels */
phinfo->ph_needed = NULL; /* initially it's unused */
phinfo->ph_may_need = NULL;
/* for the moment, estimate width using just the datatype info */
phinfo->ph_width = get_typavgwidth(exprType((Node *) phv->phexpr),
exprTypmod((Node *) phv->phexpr));
root->placeholder_list = lappend(root->placeholder_list, phinfo);
return phinfo;
}
/*
* find_placeholders_in_jointree
* Search the jointree for PlaceHolderVars, and build PlaceHolderInfos
*
* We don't need to look at the targetlist because build_base_rel_tlists()
* will already have made entries for any PHVs in the tlist.
*/
void
find_placeholders_in_jointree(PlannerInfo *root)
{
/* We need do nothing if the query contains no PlaceHolderVars */
if (root->glob->lastPHId != 0)
{
/* Start recursion at top of jointree */
Assert(root->parse->jointree != NULL &&
IsA(root->parse->jointree, FromExpr));
(void) find_placeholders_recurse(root, (Node *) root->parse->jointree);
}
}
/*
* find_placeholders_recurse
* One recursion level of find_placeholders_in_jointree.
*
* jtnode is the current jointree node to examine.
*
* The result is the set of base Relids contained in or below jtnode.
* This is just an internal convenience, it's not used at the top level.
*/
static Relids
find_placeholders_recurse(PlannerInfo *root, Node *jtnode)
{
Relids jtrelids;
if (jtnode == NULL)
return NULL;
if (IsA(jtnode, RangeTblRef))
{
int varno = ((RangeTblRef *) jtnode)->rtindex;
/* No quals to deal with, just return correct result */
jtrelids = bms_make_singleton(varno);
}
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
ListCell *l;
/*
* First, recurse to handle child joins, and form their relid set.
*/
jtrelids = NULL;
foreach(l, f->fromlist)
{
Relids sub_relids;
sub_relids = find_placeholders_recurse(root, lfirst(l));
jtrelids = bms_join(jtrelids, sub_relids);
}
/*
* Now process the top-level quals.
*/
mark_placeholders_in_expr(root, f->quals, jtrelids);
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
Relids leftids,
rightids;
/*
* First, recurse to handle child joins, and form their relid set.
*/
leftids = find_placeholders_recurse(root, j->larg);
rightids = find_placeholders_recurse(root, j->rarg);
jtrelids = bms_join(leftids, rightids);
/* Process the qual clauses */
mark_placeholders_in_expr(root, j->quals, jtrelids);
}
else
{
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(jtnode));
jtrelids = NULL; /* keep compiler quiet */
}
return jtrelids;
}
/*
* mark_placeholders_in_expr
* Find all PlaceHolderVars in the given expression, and mark them
* as possibly needed at the specified join level.
*
* relids is the syntactic join level to mark as the "maybe needed" level
* for each PlaceHolderVar found in the expression.
*/
static void
mark_placeholders_in_expr(PlannerInfo *root, Node *expr, Relids relids)
{
List *vars;
ListCell *vl;
/*
* pull_var_clause does more than we need here, but it'll do and it's
* convenient to use.
*/
vars = pull_var_clause(expr,
PVC_RECURSE_AGGREGATES,
PVC_INCLUDE_PLACEHOLDERS);
foreach(vl, vars)
{
PlaceHolderVar *phv = (PlaceHolderVar *) lfirst(vl);
PlaceHolderInfo *phinfo;
/* Ignore any plain Vars */
if (!IsA(phv, PlaceHolderVar))
continue;
/* Create a PlaceHolderInfo entry if there's not one already */
phinfo = find_placeholder_info(root, phv, true);
/* Mark it, and recursively process any contained placeholders */
mark_placeholder_maybe_needed(root, phinfo, relids);
}
list_free(vars);
}
/*
* mark_placeholder_maybe_needed
* Mark a placeholder as possibly needed at the specified join level.
*
* relids is the syntactic join level to mark as the "maybe needed" level
* for the placeholder.
*
* This is called during an initial scan of the query's targetlist and quals
* before we begin deconstruct_jointree. Once we begin deconstruct_jointree,
* all active placeholders must be present in root->placeholder_list with
* their correct ph_may_need values, because make_outerjoininfo and
* update_placeholder_eval_levels require this info to be available while
* we crawl up the join tree.
*/
void
mark_placeholder_maybe_needed(PlannerInfo *root, PlaceHolderInfo *phinfo,
Relids relids)
{
Relids est_eval_level;
/* Mark the PHV as possibly needed at the given syntactic level */
phinfo->ph_may_need = bms_add_members(phinfo->ph_may_need, relids);
/*
* This is a bit tricky: the PHV's contained expression may contain other,
* lower-level PHVs. We need to get those into the PlaceHolderInfo list,
* but they aren't going to be needed where the outer PHV is referenced.
* Rather, they'll be needed where the outer PHV is evaluated. We can
* estimate that conservatively as the syntactic location of the PHV's
* expression, but not less than the level of any Vars it contains.
* (Normally the Vars would come from below the syntactic location anyway,
* but this might not be true if the PHV contains any LATERAL references.)
*/
est_eval_level = bms_union(phinfo->ph_var->phrels, phinfo->ph_eval_at);
/* Now recurse to take care of any such PHVs */
mark_placeholders_in_expr(root, (Node *) phinfo->ph_var->phexpr,
est_eval_level);
bms_free(est_eval_level);
}
/*
* update_placeholder_eval_levels
* Adjust the target evaluation levels for placeholders
*
* The initial eval_at level set by find_placeholder_info was the set of
* rels used in the placeholder's expression (or the whole subselect below
* the placeholder's syntactic location, if the expr is variable-free).
* If the subselect contains any outer joins that can null any of those rels,
* we must delay evaluation to above those joins.
*
* We repeat this operation each time we add another outer join to
* root->join_info_list. It's somewhat annoying to have to do that, but
* since we don't have very much information on the placeholders' locations,
* it's hard to avoid. Each placeholder's eval_at level must be correct
* by the time it starts to figure in outer-join delay decisions for higher
* outer joins.
*
* In future we might want to put additional policy/heuristics here to
* try to determine an optimal evaluation level. The current rules will
* result in evaluation at the lowest possible level. However, pushing a
* placeholder eval up the tree is likely to further constrain evaluation
* order for outer joins, so it could easily be counterproductive; and we
* don't have enough information at this point to make an intelligent choice.
*/
void
update_placeholder_eval_levels(PlannerInfo *root, SpecialJoinInfo *new_sjinfo)
{
ListCell *lc1;
foreach(lc1, root->placeholder_list)
{
PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc1);
Relids syn_level = phinfo->ph_var->phrels;
Relids eval_at;
bool found_some;
ListCell *lc2;
/*
* We don't need to do any work on this placeholder unless the
* newly-added outer join is syntactically beneath its location.
*/
if (!bms_is_subset(new_sjinfo->syn_lefthand, syn_level) ||
!bms_is_subset(new_sjinfo->syn_righthand, syn_level))
continue;
/*
* Check for delays due to lower outer joins. This is the same logic
* as in check_outerjoin_delay in initsplan.c, except that we don't
* have anything to do with the delay_upper_joins flags; delay of
* upper outer joins will be handled later, based on the eval_at
* values we compute now.
*/
eval_at = phinfo->ph_eval_at;
do
{
found_some = false;
foreach(lc2, root->join_info_list)
{
SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc2);
/* disregard joins not within the PHV's sub-select */
if (!bms_is_subset(sjinfo->syn_lefthand, syn_level) ||
!bms_is_subset(sjinfo->syn_righthand, syn_level))
continue;
/* do we reference any nullable rels of this OJ? */
if (bms_overlap(eval_at, sjinfo->min_righthand) ||
(sjinfo->jointype == JOIN_FULL &&
bms_overlap(eval_at, sjinfo->min_lefthand)))
{
/* yes; have we included all its rels in eval_at? */
if (!bms_is_subset(sjinfo->min_lefthand, eval_at) ||
!bms_is_subset(sjinfo->min_righthand, eval_at))
{
/* no, so add them in */
eval_at = bms_add_members(eval_at,
sjinfo->min_lefthand);
eval_at = bms_add_members(eval_at,
sjinfo->min_righthand);
/* we'll need another iteration */
found_some = true;
}
}
}
} while (found_some);
phinfo->ph_eval_at = eval_at;
}
}
/*
* fix_placeholder_input_needed_levels
* Adjust the "needed at" levels for placeholder inputs
*
* This is called after we've finished determining the eval_at levels for
* all placeholders. We need to make sure that all vars and placeholders
* needed to evaluate each placeholder will be available at the join level
* where the evaluation will be done. Note that this loop can have
* side-effects on the ph_needed sets of other PlaceHolderInfos; that's okay
* because we don't examine ph_needed here, so there are no ordering issues
* to worry about.
*/
void
fix_placeholder_input_needed_levels(PlannerInfo *root)
{
ListCell *lc;
foreach(lc, root->placeholder_list)
{
PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
Relids eval_at = phinfo->ph_eval_at;
/* No work unless it'll be evaluated above baserel level */
if (bms_membership(eval_at) == BMS_MULTIPLE)
{
List *vars = pull_var_clause((Node *) phinfo->ph_var->phexpr,
PVC_RECURSE_AGGREGATES,
PVC_INCLUDE_PLACEHOLDERS);
add_vars_to_targetlist(root, vars, eval_at, false);
list_free(vars);
}
}
}
/*
* add_placeholders_to_base_rels
* Add any required PlaceHolderVars to base rels' targetlists.
*
* If any placeholder can be computed at a base rel and is needed above it,
* add it to that rel's targetlist. This might look like it could be merged
* with fix_placeholder_input_needed_levels, but it must be separate because
* join removal happens in between, and can change the ph_eval_at sets. There
* is essentially the same logic in add_placeholders_to_joinrel, but we can't
* do that part until joinrels are formed.
*/
void
add_placeholders_to_base_rels(PlannerInfo *root)
{
ListCell *lc;
foreach(lc, root->placeholder_list)
{
PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
Relids eval_at = phinfo->ph_eval_at;
if (bms_membership(eval_at) == BMS_SINGLETON &&
bms_nonempty_difference(phinfo->ph_needed, eval_at))
{
int varno = bms_singleton_member(eval_at);
RelOptInfo *rel = find_base_rel(root, varno);
rel->reltargetlist = lappend(rel->reltargetlist,
copyObject(phinfo->ph_var));
}
}
}
/*
* add_placeholders_to_joinrel
* Add any required PlaceHolderVars to a join rel's targetlist.
*
* A join rel should emit a PlaceHolderVar if (a) the PHV is needed above
* this join level and (b) the PHV can be computed at or below this level.
* At this time we do not need to distinguish whether the PHV will be
* computed here or copied up from below.
*/
void
add_placeholders_to_joinrel(PlannerInfo *root, RelOptInfo *joinrel)
{
Relids relids = joinrel->relids;
ListCell *lc;
foreach(lc, root->placeholder_list)
{
PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
/* Is it still needed above this joinrel? */
if (bms_nonempty_difference(phinfo->ph_needed, relids))
{
/* Is it computable here? */
if (bms_is_subset(phinfo->ph_eval_at, relids))
{
/* Yup, add it to the output */
joinrel->reltargetlist = lappend(joinrel->reltargetlist,
phinfo->ph_var);
joinrel->width += phinfo->ph_width;
}
}
}
}