postgresql/src/backend/parser/parse_agg.c

463 lines
14 KiB
C

/*-------------------------------------------------------------------------
*
* parse_agg.c
* handle aggregates in parser
*
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/parser/parse_agg.c,v 1.84 2008/10/04 21:56:54 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/tlist.h"
#include "optimizer/var.h"
#include "parser/parse_agg.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteManip.h"
#include "utils/lsyscache.h"
typedef struct
{
ParseState *pstate;
List *groupClauses;
bool have_non_var_grouping;
int sublevels_up;
} check_ungrouped_columns_context;
static void check_ungrouped_columns(Node *node, ParseState *pstate,
List *groupClauses, bool have_non_var_grouping);
static bool check_ungrouped_columns_walker(Node *node,
check_ungrouped_columns_context *context);
/*
* transformAggregateCall -
* Finish initial transformation of an aggregate call
*
* parse_func.c has recognized the function as an aggregate, and has set
* up all the fields of the Aggref except agglevelsup. Here we must
* determine which query level the aggregate actually belongs to, set
* agglevelsup accordingly, and mark p_hasAggs true in the corresponding
* pstate level.
*/
void
transformAggregateCall(ParseState *pstate, Aggref *agg)
{
int min_varlevel;
/*
* The aggregate's level is the same as the level of the lowest-level
* variable or aggregate in its arguments; or if it contains no variables
* at all, we presume it to be local.
*/
min_varlevel = find_minimum_var_level((Node *) agg->args);
/*
* An aggregate can't directly contain another aggregate call of the same
* level (though outer aggs are okay). We can skip this check if we
* didn't find any local vars or aggs.
*/
if (min_varlevel == 0)
{
if (checkExprHasAggs((Node *) agg->args))
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregate function calls cannot be nested"),
parser_errposition(pstate,
locate_agg_of_level((Node *) agg->args, 0))));
}
if (min_varlevel < 0)
min_varlevel = 0;
agg->agglevelsup = min_varlevel;
/* Mark the correct pstate as having aggregates */
while (min_varlevel-- > 0)
pstate = pstate->parentParseState;
pstate->p_hasAggs = true;
}
/*
* parseCheckAggregates
* Check for aggregates where they shouldn't be and improper grouping.
*
* Ideally this should be done earlier, but it's difficult to distinguish
* aggregates from plain functions at the grammar level. So instead we
* check here. This function should be called after the target list and
* qualifications are finalized.
*/
void
parseCheckAggregates(ParseState *pstate, Query *qry)
{
List *groupClauses = NIL;
bool have_non_var_grouping;
ListCell *l;
bool hasJoinRTEs;
bool hasSelfRefRTEs;
PlannerInfo *root;
Node *clause;
/* This should only be called if we found aggregates or grouping */
Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual);
/*
* Scan the range table to see if there are JOIN or self-reference CTE
* entries. We'll need this info below.
*/
hasJoinRTEs = hasSelfRefRTEs = false;
foreach(l, pstate->p_rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
if (rte->rtekind == RTE_JOIN)
hasJoinRTEs = true;
else if (rte->rtekind == RTE_CTE && rte->self_reference)
hasSelfRefRTEs = true;
}
/*
* Aggregates must never appear in WHERE or JOIN/ON clauses.
*
* (Note this check should appear first to deliver an appropriate error
* message; otherwise we are likely to complain about some innocent
* variable in the target list, which is outright misleading if the
* problem is in WHERE.)
*/
if (checkExprHasAggs(qry->jointree->quals))
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregates not allowed in WHERE clause"),
parser_errposition(pstate,
locate_agg_of_level(qry->jointree->quals, 0))));
if (checkExprHasAggs((Node *) qry->jointree->fromlist))
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregates not allowed in JOIN conditions"),
parser_errposition(pstate,
locate_agg_of_level((Node *) qry->jointree->fromlist, 0))));
/*
* No aggregates allowed in GROUP BY clauses, either.
*
* While we are at it, build a list of the acceptable GROUP BY expressions
* for use by check_ungrouped_columns().
*/
foreach(l, qry->groupClause)
{
SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
Node *expr;
expr = get_sortgroupclause_expr(grpcl, qry->targetList);
if (expr == NULL)
continue; /* probably cannot happen */
if (checkExprHasAggs(expr))
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("aggregates not allowed in GROUP BY clause"),
parser_errposition(pstate,
locate_agg_of_level(expr, 0))));
groupClauses = lcons(expr, groupClauses);
}
/*
* If there are join alias vars involved, we have to flatten them to the
* underlying vars, so that aliased and unaliased vars will be correctly
* taken as equal. We can skip the expense of doing this if no rangetable
* entries are RTE_JOIN kind.
* We use the planner's flatten_join_alias_vars routine to do the
* flattening; it wants a PlannerInfo root node, which fortunately can be
* mostly dummy.
*/
if (hasJoinRTEs)
{
root = makeNode(PlannerInfo);
root->parse = qry;
root->planner_cxt = CurrentMemoryContext;
root->hasJoinRTEs = true;
groupClauses = (List *) flatten_join_alias_vars(root,
(Node *) groupClauses);
}
else
root = NULL; /* keep compiler quiet */
/*
* Detect whether any of the grouping expressions aren't simple Vars; if
* they're all Vars then we don't have to work so hard in the recursive
* scans. (Note we have to flatten aliases before this.)
*/
have_non_var_grouping = false;
foreach(l, groupClauses)
{
if (!IsA((Node *) lfirst(l), Var))
{
have_non_var_grouping = true;
break;
}
}
/*
* Check the targetlist and HAVING clause for ungrouped variables.
*/
clause = (Node *) qry->targetList;
if (hasJoinRTEs)
clause = flatten_join_alias_vars(root, clause);
check_ungrouped_columns(clause, pstate,
groupClauses, have_non_var_grouping);
clause = (Node *) qry->havingQual;
if (hasJoinRTEs)
clause = flatten_join_alias_vars(root, clause);
check_ungrouped_columns(clause, pstate,
groupClauses, have_non_var_grouping);
/*
* Per spec, aggregates can't appear in a recursive term.
*/
if (pstate->p_hasAggs && hasSelfRefRTEs)
ereport(ERROR,
(errcode(ERRCODE_INVALID_RECURSION),
errmsg("aggregates not allowed in a recursive query's recursive term"),
parser_errposition(pstate,
locate_agg_of_level((Node *) qry, 0))));
}
/*
* check_ungrouped_columns -
* Scan the given expression tree for ungrouped variables (variables
* that are not listed in the groupClauses list and are not within
* the arguments of aggregate functions). Emit a suitable error message
* if any are found.
*
* NOTE: we assume that the given clause has been transformed suitably for
* parser output. This means we can use expression_tree_walker.
*
* NOTE: we recognize grouping expressions in the main query, but only
* grouping Vars in subqueries. For example, this will be rejected,
* although it could be allowed:
* SELECT
* (SELECT x FROM bar where y = (foo.a + foo.b))
* FROM foo
* GROUP BY a + b;
* The difficulty is the need to account for different sublevels_up.
* This appears to require a whole custom version of equal(), which is
* way more pain than the feature seems worth.
*/
static void
check_ungrouped_columns(Node *node, ParseState *pstate,
List *groupClauses, bool have_non_var_grouping)
{
check_ungrouped_columns_context context;
context.pstate = pstate;
context.groupClauses = groupClauses;
context.have_non_var_grouping = have_non_var_grouping;
context.sublevels_up = 0;
check_ungrouped_columns_walker(node, &context);
}
static bool
check_ungrouped_columns_walker(Node *node,
check_ungrouped_columns_context *context)
{
ListCell *gl;
if (node == NULL)
return false;
if (IsA(node, Const) ||
IsA(node, Param))
return false; /* constants are always acceptable */
/*
* If we find an aggregate call of the original level, do not recurse into
* its arguments; ungrouped vars in the arguments are not an error. We can
* also skip looking at the arguments of aggregates of higher levels,
* since they could not possibly contain Vars that are of concern to us
* (see transformAggregateCall). We do need to look into the arguments of
* aggregates of lower levels, however.
*/
if (IsA(node, Aggref) &&
(int) ((Aggref *) node)->agglevelsup >= context->sublevels_up)
return false;
/*
* If we have any GROUP BY items that are not simple Vars, check to see if
* subexpression as a whole matches any GROUP BY item. We need to do this
* at every recursion level so that we recognize GROUPed-BY expressions
* before reaching variables within them. But this only works at the outer
* query level, as noted above.
*/
if (context->have_non_var_grouping && context->sublevels_up == 0)
{
foreach(gl, context->groupClauses)
{
if (equal(node, lfirst(gl)))
return false; /* acceptable, do not descend more */
}
}
/*
* If we have an ungrouped Var of the original query level, we have a
* failure. Vars below the original query level are not a problem, and
* neither are Vars from above it. (If such Vars are ungrouped as far as
* their own query level is concerned, that's someone else's problem...)
*/
if (IsA(node, Var))
{
Var *var = (Var *) node;
RangeTblEntry *rte;
char *attname;
if (var->varlevelsup != context->sublevels_up)
return false; /* it's not local to my query, ignore */
/*
* Check for a match, if we didn't do it above.
*/
if (!context->have_non_var_grouping || context->sublevels_up != 0)
{
foreach(gl, context->groupClauses)
{
Var *gvar = (Var *) lfirst(gl);
if (IsA(gvar, Var) &&
gvar->varno == var->varno &&
gvar->varattno == var->varattno &&
gvar->varlevelsup == 0)
return false; /* acceptable, we're okay */
}
}
/* Found an ungrouped local variable; generate error message */
Assert(var->varno > 0 &&
(int) var->varno <= list_length(context->pstate->p_rtable));
rte = rt_fetch(var->varno, context->pstate->p_rtable);
attname = get_rte_attribute_name(rte, var->varattno);
if (context->sublevels_up == 0)
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("column \"%s.%s\" must appear in the GROUP BY clause or be used in an aggregate function",
rte->eref->aliasname, attname),
parser_errposition(context->pstate, var->location)));
else
ereport(ERROR,
(errcode(ERRCODE_GROUPING_ERROR),
errmsg("subquery uses ungrouped column \"%s.%s\" from outer query",
rte->eref->aliasname, attname),
parser_errposition(context->pstate, var->location)));
}
if (IsA(node, Query))
{
/* Recurse into subselects */
bool result;
context->sublevels_up++;
result = query_tree_walker((Query *) node,
check_ungrouped_columns_walker,
(void *) context,
0);
context->sublevels_up--;
return result;
}
return expression_tree_walker(node, check_ungrouped_columns_walker,
(void *) context);
}
/*
* Create expression trees for the transition and final functions
* of an aggregate. These are needed so that polymorphic functions
* can be used within an aggregate --- without the expression trees,
* such functions would not know the datatypes they are supposed to use.
* (The trees will never actually be executed, however, so we can skimp
* a bit on correctness.)
*
* agg_input_types, agg_state_type, agg_result_type identify the input,
* transition, and result types of the aggregate. These should all be
* resolved to actual types (ie, none should ever be ANYELEMENT etc).
*
* transfn_oid and finalfn_oid identify the funcs to be called; the latter
* may be InvalidOid.
*
* Pointers to the constructed trees are returned into *transfnexpr and
* *finalfnexpr. The latter is set to NULL if there's no finalfn.
*/
void
build_aggregate_fnexprs(Oid *agg_input_types,
int agg_num_inputs,
Oid agg_state_type,
Oid agg_result_type,
Oid transfn_oid,
Oid finalfn_oid,
Expr **transfnexpr,
Expr **finalfnexpr)
{
Param *argp;
List *args;
int i;
/*
* Build arg list to use in the transfn FuncExpr node. We really only care
* that transfn can discover the actual argument types at runtime using
* get_fn_expr_argtype(), so it's okay to use Param nodes that don't
* correspond to any real Param.
*/
argp = makeNode(Param);
argp->paramkind = PARAM_EXEC;
argp->paramid = -1;
argp->paramtype = agg_state_type;
argp->paramtypmod = -1;
argp->location = -1;
args = list_make1(argp);
for (i = 0; i < agg_num_inputs; i++)
{
argp = makeNode(Param);
argp->paramkind = PARAM_EXEC;
argp->paramid = -1;
argp->paramtype = agg_input_types[i];
argp->paramtypmod = -1;
argp->location = -1;
args = lappend(args, argp);
}
*transfnexpr = (Expr *) makeFuncExpr(transfn_oid,
agg_state_type,
args,
COERCE_DONTCARE);
/* see if we have a final function */
if (!OidIsValid(finalfn_oid))
{
*finalfnexpr = NULL;
return;
}
/*
* Build expr tree for final function
*/
argp = makeNode(Param);
argp->paramkind = PARAM_EXEC;
argp->paramid = -1;
argp->paramtype = agg_state_type;
argp->paramtypmod = -1;
argp->location = -1;
args = list_make1(argp);
*finalfnexpr = (Expr *) makeFuncExpr(finalfn_oid,
agg_result_type,
args,
COERCE_DONTCARE);
}