postgresql/src/backend/utils/mmgr/mcxt.c

1656 lines
47 KiB
C

/*-------------------------------------------------------------------------
*
* mcxt.c
* POSTGRES memory context management code.
*
* This module handles context management operations that are independent
* of the particular kind of context being operated on. It calls
* context-type-specific operations via the function pointers in a
* context's MemoryContextMethods struct.
*
*
* Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/utils/mmgr/mcxt.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h"
#include "storage/proc.h"
#include "storage/procarray.h"
#include "storage/procsignal.h"
#include "utils/fmgrprotos.h"
#include "utils/memdebug.h"
#include "utils/memutils.h"
#include "utils/memutils_internal.h"
#include "utils/memutils_memorychunk.h"
static void BogusFree(void *pointer);
static void *BogusRealloc(void *pointer, Size size);
static MemoryContext BogusGetChunkContext(void *pointer);
static Size BogusGetChunkSpace(void *pointer);
/*****************************************************************************
* GLOBAL MEMORY *
*****************************************************************************/
static const MemoryContextMethods mcxt_methods[] = {
/* aset.c */
[MCTX_ASET_ID].alloc = AllocSetAlloc,
[MCTX_ASET_ID].free_p = AllocSetFree,
[MCTX_ASET_ID].realloc = AllocSetRealloc,
[MCTX_ASET_ID].reset = AllocSetReset,
[MCTX_ASET_ID].delete_context = AllocSetDelete,
[MCTX_ASET_ID].get_chunk_context = AllocSetGetChunkContext,
[MCTX_ASET_ID].get_chunk_space = AllocSetGetChunkSpace,
[MCTX_ASET_ID].is_empty = AllocSetIsEmpty,
[MCTX_ASET_ID].stats = AllocSetStats,
#ifdef MEMORY_CONTEXT_CHECKING
[MCTX_ASET_ID].check = AllocSetCheck,
#endif
/* generation.c */
[MCTX_GENERATION_ID].alloc = GenerationAlloc,
[MCTX_GENERATION_ID].free_p = GenerationFree,
[MCTX_GENERATION_ID].realloc = GenerationRealloc,
[MCTX_GENERATION_ID].reset = GenerationReset,
[MCTX_GENERATION_ID].delete_context = GenerationDelete,
[MCTX_GENERATION_ID].get_chunk_context = GenerationGetChunkContext,
[MCTX_GENERATION_ID].get_chunk_space = GenerationGetChunkSpace,
[MCTX_GENERATION_ID].is_empty = GenerationIsEmpty,
[MCTX_GENERATION_ID].stats = GenerationStats,
#ifdef MEMORY_CONTEXT_CHECKING
[MCTX_GENERATION_ID].check = GenerationCheck,
#endif
/* slab.c */
[MCTX_SLAB_ID].alloc = SlabAlloc,
[MCTX_SLAB_ID].free_p = SlabFree,
[MCTX_SLAB_ID].realloc = SlabRealloc,
[MCTX_SLAB_ID].reset = SlabReset,
[MCTX_SLAB_ID].delete_context = SlabDelete,
[MCTX_SLAB_ID].get_chunk_context = SlabGetChunkContext,
[MCTX_SLAB_ID].get_chunk_space = SlabGetChunkSpace,
[MCTX_SLAB_ID].is_empty = SlabIsEmpty,
[MCTX_SLAB_ID].stats = SlabStats,
#ifdef MEMORY_CONTEXT_CHECKING
[MCTX_SLAB_ID].check = SlabCheck,
#endif
/* alignedalloc.c */
[MCTX_ALIGNED_REDIRECT_ID].alloc = NULL, /* not required */
[MCTX_ALIGNED_REDIRECT_ID].free_p = AlignedAllocFree,
[MCTX_ALIGNED_REDIRECT_ID].realloc = AlignedAllocRealloc,
[MCTX_ALIGNED_REDIRECT_ID].reset = NULL, /* not required */
[MCTX_ALIGNED_REDIRECT_ID].delete_context = NULL, /* not required */
[MCTX_ALIGNED_REDIRECT_ID].get_chunk_context = AlignedAllocGetChunkContext,
[MCTX_ALIGNED_REDIRECT_ID].get_chunk_space = AlignedAllocGetChunkSpace,
[MCTX_ALIGNED_REDIRECT_ID].is_empty = NULL, /* not required */
[MCTX_ALIGNED_REDIRECT_ID].stats = NULL, /* not required */
#ifdef MEMORY_CONTEXT_CHECKING
[MCTX_ALIGNED_REDIRECT_ID].check = NULL, /* not required */
#endif
/*
* Unused (as yet) IDs should have dummy entries here. This allows us to
* fail cleanly if a bogus pointer is passed to pfree or the like. It
* seems sufficient to provide routines for the methods that might get
* invoked from inspection of a chunk (see MCXT_METHOD calls below).
*/
[MCTX_UNUSED1_ID].free_p = BogusFree,
[MCTX_UNUSED1_ID].realloc = BogusRealloc,
[MCTX_UNUSED1_ID].get_chunk_context = BogusGetChunkContext,
[MCTX_UNUSED1_ID].get_chunk_space = BogusGetChunkSpace,
[MCTX_UNUSED2_ID].free_p = BogusFree,
[MCTX_UNUSED2_ID].realloc = BogusRealloc,
[MCTX_UNUSED2_ID].get_chunk_context = BogusGetChunkContext,
[MCTX_UNUSED2_ID].get_chunk_space = BogusGetChunkSpace,
[MCTX_UNUSED3_ID].free_p = BogusFree,
[MCTX_UNUSED3_ID].realloc = BogusRealloc,
[MCTX_UNUSED3_ID].get_chunk_context = BogusGetChunkContext,
[MCTX_UNUSED3_ID].get_chunk_space = BogusGetChunkSpace,
[MCTX_UNUSED4_ID].free_p = BogusFree,
[MCTX_UNUSED4_ID].realloc = BogusRealloc,
[MCTX_UNUSED4_ID].get_chunk_context = BogusGetChunkContext,
[MCTX_UNUSED4_ID].get_chunk_space = BogusGetChunkSpace,
};
/*
* CurrentMemoryContext
* Default memory context for allocations.
*/
MemoryContext CurrentMemoryContext = NULL;
/*
* Standard top-level contexts. For a description of the purpose of each
* of these contexts, refer to src/backend/utils/mmgr/README
*/
MemoryContext TopMemoryContext = NULL;
MemoryContext ErrorContext = NULL;
MemoryContext PostmasterContext = NULL;
MemoryContext CacheMemoryContext = NULL;
MemoryContext MessageContext = NULL;
MemoryContext TopTransactionContext = NULL;
MemoryContext CurTransactionContext = NULL;
/* This is a transient link to the active portal's memory context: */
MemoryContext PortalContext = NULL;
static void MemoryContextCallResetCallbacks(MemoryContext context);
static void MemoryContextStatsInternal(MemoryContext context, int level,
bool print, int max_children,
MemoryContextCounters *totals,
bool print_to_stderr);
static void MemoryContextStatsPrint(MemoryContext context, void *passthru,
const char *stats_string,
bool print_to_stderr);
/*
* You should not do memory allocations within a critical section, because
* an out-of-memory error will be escalated to a PANIC. To enforce that
* rule, the allocation functions Assert that.
*/
#define AssertNotInCriticalSection(context) \
Assert(CritSectionCount == 0 || (context)->allowInCritSection)
/*
* Call the given function in the MemoryContextMethods for the memory context
* type that 'pointer' belongs to.
*/
#define MCXT_METHOD(pointer, method) \
mcxt_methods[GetMemoryChunkMethodID(pointer)].method
/*
* GetMemoryChunkMethodID
* Return the MemoryContextMethodID from the uint64 chunk header which
* directly precedes 'pointer'.
*/
static inline MemoryContextMethodID
GetMemoryChunkMethodID(const void *pointer)
{
uint64 header;
/*
* Try to detect bogus pointers handed to us, poorly though we can.
* Presumably, a pointer that isn't MAXALIGNED isn't pointing at an
* allocated chunk.
*/
Assert(pointer == (const void *) MAXALIGN(pointer));
/* Allow access to the uint64 header */
VALGRIND_MAKE_MEM_DEFINED((char *) pointer - sizeof(uint64), sizeof(uint64));
header = *((const uint64 *) ((const char *) pointer - sizeof(uint64)));
/* Disallow access to the uint64 header */
VALGRIND_MAKE_MEM_NOACCESS((char *) pointer - sizeof(uint64), sizeof(uint64));
return (MemoryContextMethodID) (header & MEMORY_CONTEXT_METHODID_MASK);
}
/*
* GetMemoryChunkHeader
* Return the uint64 chunk header which directly precedes 'pointer'.
*
* This is only used after GetMemoryChunkMethodID, so no need for error checks.
*/
static inline uint64
GetMemoryChunkHeader(const void *pointer)
{
uint64 header;
/* Allow access to the uint64 header */
VALGRIND_MAKE_MEM_DEFINED((char *) pointer - sizeof(uint64), sizeof(uint64));
header = *((const uint64 *) ((const char *) pointer - sizeof(uint64)));
/* Disallow access to the uint64 header */
VALGRIND_MAKE_MEM_NOACCESS((char *) pointer - sizeof(uint64), sizeof(uint64));
return header;
}
/*
* Support routines to trap use of invalid memory context method IDs
* (from calling pfree or the like on a bogus pointer). As a possible
* aid in debugging, we report the header word along with the pointer
* address (if we got here, there must be an accessible header word).
*/
static void
BogusFree(void *pointer)
{
elog(ERROR, "pfree called with invalid pointer %p (header 0x%016llx)",
pointer, (unsigned long long) GetMemoryChunkHeader(pointer));
}
static void *
BogusRealloc(void *pointer, Size size)
{
elog(ERROR, "repalloc called with invalid pointer %p (header 0x%016llx)",
pointer, (unsigned long long) GetMemoryChunkHeader(pointer));
return NULL; /* keep compiler quiet */
}
static MemoryContext
BogusGetChunkContext(void *pointer)
{
elog(ERROR, "GetMemoryChunkContext called with invalid pointer %p (header 0x%016llx)",
pointer, (unsigned long long) GetMemoryChunkHeader(pointer));
return NULL; /* keep compiler quiet */
}
static Size
BogusGetChunkSpace(void *pointer)
{
elog(ERROR, "GetMemoryChunkSpace called with invalid pointer %p (header 0x%016llx)",
pointer, (unsigned long long) GetMemoryChunkHeader(pointer));
return 0; /* keep compiler quiet */
}
/*****************************************************************************
* EXPORTED ROUTINES *
*****************************************************************************/
/*
* MemoryContextInit
* Start up the memory-context subsystem.
*
* This must be called before creating contexts or allocating memory in
* contexts. TopMemoryContext and ErrorContext are initialized here;
* other contexts must be created afterwards.
*
* In normal multi-backend operation, this is called once during
* postmaster startup, and not at all by individual backend startup
* (since the backends inherit an already-initialized context subsystem
* by virtue of being forked off the postmaster). But in an EXEC_BACKEND
* build, each process must do this for itself.
*
* In a standalone backend this must be called during backend startup.
*/
void
MemoryContextInit(void)
{
Assert(TopMemoryContext == NULL);
/*
* First, initialize TopMemoryContext, which is the parent of all others.
*/
TopMemoryContext = AllocSetContextCreate((MemoryContext) NULL,
"TopMemoryContext",
ALLOCSET_DEFAULT_SIZES);
/*
* Not having any other place to point CurrentMemoryContext, make it point
* to TopMemoryContext. Caller should change this soon!
*/
CurrentMemoryContext = TopMemoryContext;
/*
* Initialize ErrorContext as an AllocSetContext with slow growth rate ---
* we don't really expect much to be allocated in it. More to the point,
* require it to contain at least 8K at all times. This is the only case
* where retained memory in a context is *essential* --- we want to be
* sure ErrorContext still has some memory even if we've run out
* elsewhere! Also, allow allocations in ErrorContext within a critical
* section. Otherwise a PANIC will cause an assertion failure in the error
* reporting code, before printing out the real cause of the failure.
*
* This should be the last step in this function, as elog.c assumes memory
* management works once ErrorContext is non-null.
*/
ErrorContext = AllocSetContextCreate(TopMemoryContext,
"ErrorContext",
8 * 1024,
8 * 1024,
8 * 1024);
MemoryContextAllowInCriticalSection(ErrorContext, true);
}
/*
* MemoryContextReset
* Release all space allocated within a context and delete all its
* descendant contexts (but not the named context itself).
*/
void
MemoryContextReset(MemoryContext context)
{
Assert(MemoryContextIsValid(context));
/* save a function call in common case where there are no children */
if (context->firstchild != NULL)
MemoryContextDeleteChildren(context);
/* save a function call if no pallocs since startup or last reset */
if (!context->isReset)
MemoryContextResetOnly(context);
}
/*
* MemoryContextResetOnly
* Release all space allocated within a context.
* Nothing is done to the context's descendant contexts.
*/
void
MemoryContextResetOnly(MemoryContext context)
{
Assert(MemoryContextIsValid(context));
/* Nothing to do if no pallocs since startup or last reset */
if (!context->isReset)
{
MemoryContextCallResetCallbacks(context);
/*
* If context->ident points into the context's memory, it will become
* a dangling pointer. We could prevent that by setting it to NULL
* here, but that would break valid coding patterns that keep the
* ident elsewhere, e.g. in a parent context. So for now we assume
* the programmer got it right.
*/
context->methods->reset(context);
context->isReset = true;
VALGRIND_DESTROY_MEMPOOL(context);
VALGRIND_CREATE_MEMPOOL(context, 0, false);
}
}
/*
* MemoryContextResetChildren
* Release all space allocated within a context's descendants,
* but don't delete the contexts themselves. The named context
* itself is not touched.
*/
void
MemoryContextResetChildren(MemoryContext context)
{
MemoryContext child;
Assert(MemoryContextIsValid(context));
for (child = context->firstchild; child != NULL; child = child->nextchild)
{
MemoryContextResetChildren(child);
MemoryContextResetOnly(child);
}
}
/*
* MemoryContextDelete
* Delete a context and its descendants, and release all space
* allocated therein.
*
* The type-specific delete routine removes all storage for the context,
* but we have to recurse to handle the children.
* We must also delink the context from its parent, if it has one.
*/
void
MemoryContextDelete(MemoryContext context)
{
Assert(MemoryContextIsValid(context));
/* We had better not be deleting TopMemoryContext ... */
Assert(context != TopMemoryContext);
/* And not CurrentMemoryContext, either */
Assert(context != CurrentMemoryContext);
/* save a function call in common case where there are no children */
if (context->firstchild != NULL)
MemoryContextDeleteChildren(context);
/*
* It's not entirely clear whether 'tis better to do this before or after
* delinking the context; but an error in a callback will likely result in
* leaking the whole context (if it's not a root context) if we do it
* after, so let's do it before.
*/
MemoryContextCallResetCallbacks(context);
/*
* We delink the context from its parent before deleting it, so that if
* there's an error we won't have deleted/busted contexts still attached
* to the context tree. Better a leak than a crash.
*/
MemoryContextSetParent(context, NULL);
/*
* Also reset the context's ident pointer, in case it points into the
* context. This would only matter if someone tries to get stats on the
* (already unlinked) context, which is unlikely, but let's be safe.
*/
context->ident = NULL;
context->methods->delete_context(context);
VALGRIND_DESTROY_MEMPOOL(context);
}
/*
* MemoryContextDeleteChildren
* Delete all the descendants of the named context and release all
* space allocated therein. The named context itself is not touched.
*/
void
MemoryContextDeleteChildren(MemoryContext context)
{
Assert(MemoryContextIsValid(context));
/*
* MemoryContextDelete will delink the child from me, so just iterate as
* long as there is a child.
*/
while (context->firstchild != NULL)
MemoryContextDelete(context->firstchild);
}
/*
* MemoryContextRegisterResetCallback
* Register a function to be called before next context reset/delete.
* Such callbacks will be called in reverse order of registration.
*
* The caller is responsible for allocating a MemoryContextCallback struct
* to hold the info about this callback request, and for filling in the
* "func" and "arg" fields in the struct to show what function to call with
* what argument. Typically the callback struct should be allocated within
* the specified context, since that means it will automatically be freed
* when no longer needed.
*
* There is no API for deregistering a callback once registered. If you
* want it to not do anything anymore, adjust the state pointed to by its
* "arg" to indicate that.
*/
void
MemoryContextRegisterResetCallback(MemoryContext context,
MemoryContextCallback *cb)
{
Assert(MemoryContextIsValid(context));
/* Push onto head so this will be called before older registrants. */
cb->next = context->reset_cbs;
context->reset_cbs = cb;
/* Mark the context as non-reset (it probably is already). */
context->isReset = false;
}
/*
* MemoryContextCallResetCallbacks
* Internal function to call all registered callbacks for context.
*/
static void
MemoryContextCallResetCallbacks(MemoryContext context)
{
MemoryContextCallback *cb;
/*
* We pop each callback from the list before calling. That way, if an
* error occurs inside the callback, we won't try to call it a second time
* in the likely event that we reset or delete the context later.
*/
while ((cb = context->reset_cbs) != NULL)
{
context->reset_cbs = cb->next;
cb->func(cb->arg);
}
}
/*
* MemoryContextSetIdentifier
* Set the identifier string for a memory context.
*
* An identifier can be provided to help distinguish among different contexts
* of the same kind in memory context stats dumps. The identifier string
* must live at least as long as the context it is for; typically it is
* allocated inside that context, so that it automatically goes away on
* context deletion. Pass id = NULL to forget any old identifier.
*/
void
MemoryContextSetIdentifier(MemoryContext context, const char *id)
{
Assert(MemoryContextIsValid(context));
context->ident = id;
}
/*
* MemoryContextSetParent
* Change a context to belong to a new parent (or no parent).
*
* We provide this as an API function because it is sometimes useful to
* change a context's lifespan after creation. For example, a context
* might be created underneath a transient context, filled with data,
* and then reparented underneath CacheMemoryContext to make it long-lived.
* In this way no special effort is needed to get rid of the context in case
* a failure occurs before its contents are completely set up.
*
* Callers often assume that this function cannot fail, so don't put any
* elog(ERROR) calls in it.
*
* A possible caller error is to reparent a context under itself, creating
* a loop in the context graph. We assert here that context != new_parent,
* but checking for multi-level loops seems more trouble than it's worth.
*/
void
MemoryContextSetParent(MemoryContext context, MemoryContext new_parent)
{
Assert(MemoryContextIsValid(context));
Assert(context != new_parent);
/* Fast path if it's got correct parent already */
if (new_parent == context->parent)
return;
/* Delink from existing parent, if any */
if (context->parent)
{
MemoryContext parent = context->parent;
if (context->prevchild != NULL)
context->prevchild->nextchild = context->nextchild;
else
{
Assert(parent->firstchild == context);
parent->firstchild = context->nextchild;
}
if (context->nextchild != NULL)
context->nextchild->prevchild = context->prevchild;
}
/* And relink */
if (new_parent)
{
Assert(MemoryContextIsValid(new_parent));
context->parent = new_parent;
context->prevchild = NULL;
context->nextchild = new_parent->firstchild;
if (new_parent->firstchild != NULL)
new_parent->firstchild->prevchild = context;
new_parent->firstchild = context;
}
else
{
context->parent = NULL;
context->prevchild = NULL;
context->nextchild = NULL;
}
}
/*
* MemoryContextAllowInCriticalSection
* Allow/disallow allocations in this memory context within a critical
* section.
*
* Normally, memory allocations are not allowed within a critical section,
* because a failure would lead to PANIC. There are a few exceptions to
* that, like allocations related to debugging code that is not supposed to
* be enabled in production. This function can be used to exempt specific
* memory contexts from the assertion in palloc().
*/
void
MemoryContextAllowInCriticalSection(MemoryContext context, bool allow)
{
Assert(MemoryContextIsValid(context));
context->allowInCritSection = allow;
}
/*
* GetMemoryChunkContext
* Given a currently-allocated chunk, determine the MemoryContext that
* the chunk belongs to.
*/
MemoryContext
GetMemoryChunkContext(void *pointer)
{
return MCXT_METHOD(pointer, get_chunk_context) (pointer);
}
/*
* GetMemoryChunkSpace
* Given a currently-allocated chunk, determine the total space
* it occupies (including all memory-allocation overhead).
*
* This is useful for measuring the total space occupied by a set of
* allocated chunks.
*/
Size
GetMemoryChunkSpace(void *pointer)
{
return MCXT_METHOD(pointer, get_chunk_space) (pointer);
}
/*
* MemoryContextGetParent
* Get the parent context (if any) of the specified context
*/
MemoryContext
MemoryContextGetParent(MemoryContext context)
{
Assert(MemoryContextIsValid(context));
return context->parent;
}
/*
* MemoryContextIsEmpty
* Is a memory context empty of any allocated space?
*/
bool
MemoryContextIsEmpty(MemoryContext context)
{
Assert(MemoryContextIsValid(context));
/*
* For now, we consider a memory context nonempty if it has any children;
* perhaps this should be changed later.
*/
if (context->firstchild != NULL)
return false;
/* Otherwise use the type-specific inquiry */
return context->methods->is_empty(context);
}
/*
* Find the memory allocated to blocks for this memory context. If recurse is
* true, also include children.
*/
Size
MemoryContextMemAllocated(MemoryContext context, bool recurse)
{
Size total = context->mem_allocated;
Assert(MemoryContextIsValid(context));
if (recurse)
{
MemoryContext child;
for (child = context->firstchild;
child != NULL;
child = child->nextchild)
total += MemoryContextMemAllocated(child, true);
}
return total;
}
/*
* Return the memory consumption statistics about the given context and its
* children.
*/
void
MemoryContextMemConsumed(MemoryContext context,
MemoryContextCounters *consumed)
{
memset(consumed, 0, sizeof(*consumed));
MemoryContextStatsInternal(context, 0, false, 0, consumed, false);
}
/*
* MemoryContextStats
* Print statistics about the named context and all its descendants.
*
* This is just a debugging utility, so it's not very fancy. However, we do
* make some effort to summarize when the output would otherwise be very long.
* The statistics are sent to stderr.
*/
void
MemoryContextStats(MemoryContext context)
{
/* A hard-wired limit on the number of children is usually good enough */
MemoryContextStatsDetail(context, 100, true);
}
/*
* MemoryContextStatsDetail
*
* Entry point for use if you want to vary the number of child contexts shown.
*
* If print_to_stderr is true, print statistics about the memory contexts
* with fprintf(stderr), otherwise use ereport().
*/
void
MemoryContextStatsDetail(MemoryContext context, int max_children,
bool print_to_stderr)
{
MemoryContextCounters grand_totals;
memset(&grand_totals, 0, sizeof(grand_totals));
MemoryContextStatsInternal(context, 0, true, max_children, &grand_totals, print_to_stderr);
if (print_to_stderr)
fprintf(stderr,
"Grand total: %zu bytes in %zu blocks; %zu free (%zu chunks); %zu used\n",
grand_totals.totalspace, grand_totals.nblocks,
grand_totals.freespace, grand_totals.freechunks,
grand_totals.totalspace - grand_totals.freespace);
else
/*
* Use LOG_SERVER_ONLY to prevent the memory contexts from being sent
* to the connected client.
*
* We don't buffer the information about all memory contexts in a
* backend into StringInfo and log it as one message. That would
* require the buffer to be enlarged, risking an OOM as there could be
* a large number of memory contexts in a backend. Instead, we log
* one message per memory context.
*/
ereport(LOG_SERVER_ONLY,
(errhidestmt(true),
errhidecontext(true),
errmsg_internal("Grand total: %zu bytes in %zu blocks; %zu free (%zu chunks); %zu used",
grand_totals.totalspace, grand_totals.nblocks,
grand_totals.freespace, grand_totals.freechunks,
grand_totals.totalspace - grand_totals.freespace)));
}
/*
* MemoryContextStatsInternal
* One recursion level for MemoryContextStats
*
* Print this context if print is true, but in any case accumulate counts into
* *totals (if given).
*/
static void
MemoryContextStatsInternal(MemoryContext context, int level,
bool print, int max_children,
MemoryContextCounters *totals,
bool print_to_stderr)
{
MemoryContextCounters local_totals;
MemoryContext child;
int ichild;
Assert(MemoryContextIsValid(context));
/* Examine the context itself */
context->methods->stats(context,
print ? MemoryContextStatsPrint : NULL,
(void *) &level,
totals, print_to_stderr);
/*
* Examine children. If there are more than max_children of them, we do
* not print the rest explicitly, but just summarize them.
*/
memset(&local_totals, 0, sizeof(local_totals));
for (child = context->firstchild, ichild = 0;
child != NULL;
child = child->nextchild, ichild++)
{
if (ichild < max_children)
MemoryContextStatsInternal(child, level + 1,
print, max_children,
totals,
print_to_stderr);
else
MemoryContextStatsInternal(child, level + 1,
false, max_children,
&local_totals,
print_to_stderr);
}
/* Deal with excess children */
if (ichild > max_children)
{
if (print)
{
if (print_to_stderr)
{
int i;
for (i = 0; i <= level; i++)
fprintf(stderr, " ");
fprintf(stderr,
"%d more child contexts containing %zu total in %zu blocks; %zu free (%zu chunks); %zu used\n",
ichild - max_children,
local_totals.totalspace,
local_totals.nblocks,
local_totals.freespace,
local_totals.freechunks,
local_totals.totalspace - local_totals.freespace);
}
else
ereport(LOG_SERVER_ONLY,
(errhidestmt(true),
errhidecontext(true),
errmsg_internal("level: %d; %d more child contexts containing %zu total in %zu blocks; %zu free (%zu chunks); %zu used",
level,
ichild - max_children,
local_totals.totalspace,
local_totals.nblocks,
local_totals.freespace,
local_totals.freechunks,
local_totals.totalspace - local_totals.freespace)));
}
if (totals)
{
totals->nblocks += local_totals.nblocks;
totals->freechunks += local_totals.freechunks;
totals->totalspace += local_totals.totalspace;
totals->freespace += local_totals.freespace;
}
}
}
/*
* MemoryContextStatsPrint
* Print callback used by MemoryContextStatsInternal
*
* For now, the passthru pointer just points to "int level"; later we might
* make that more complicated.
*/
static void
MemoryContextStatsPrint(MemoryContext context, void *passthru,
const char *stats_string,
bool print_to_stderr)
{
int level = *(int *) passthru;
const char *name = context->name;
const char *ident = context->ident;
char truncated_ident[110];
int i;
/*
* It seems preferable to label dynahash contexts with just the hash table
* name. Those are already unique enough, so the "dynahash" part isn't
* very helpful, and this way is more consistent with pre-v11 practice.
*/
if (ident && strcmp(name, "dynahash") == 0)
{
name = ident;
ident = NULL;
}
truncated_ident[0] = '\0';
if (ident)
{
/*
* Some contexts may have very long identifiers (e.g., SQL queries).
* Arbitrarily truncate at 100 bytes, but be careful not to break
* multibyte characters. Also, replace ASCII control characters, such
* as newlines, with spaces.
*/
int idlen = strlen(ident);
bool truncated = false;
strcpy(truncated_ident, ": ");
i = strlen(truncated_ident);
if (idlen > 100)
{
idlen = pg_mbcliplen(ident, idlen, 100);
truncated = true;
}
while (idlen-- > 0)
{
unsigned char c = *ident++;
if (c < ' ')
c = ' ';
truncated_ident[i++] = c;
}
truncated_ident[i] = '\0';
if (truncated)
strcat(truncated_ident, "...");
}
if (print_to_stderr)
{
for (i = 0; i < level; i++)
fprintf(stderr, " ");
fprintf(stderr, "%s: %s%s\n", name, stats_string, truncated_ident);
}
else
ereport(LOG_SERVER_ONLY,
(errhidestmt(true),
errhidecontext(true),
errmsg_internal("level: %d; %s: %s%s",
level, name, stats_string, truncated_ident)));
}
/*
* MemoryContextCheck
* Check all chunks in the named context.
*
* This is just a debugging utility, so it's not fancy.
*/
#ifdef MEMORY_CONTEXT_CHECKING
void
MemoryContextCheck(MemoryContext context)
{
MemoryContext child;
Assert(MemoryContextIsValid(context));
context->methods->check(context);
for (child = context->firstchild; child != NULL; child = child->nextchild)
MemoryContextCheck(child);
}
#endif
/*
* MemoryContextCreate
* Context-type-independent part of context creation.
*
* This is only intended to be called by context-type-specific
* context creation routines, not by the unwashed masses.
*
* The memory context creation procedure goes like this:
* 1. Context-type-specific routine makes some initial space allocation,
* including enough space for the context header. If it fails,
* it can ereport() with no damage done.
* 2. Context-type-specific routine sets up all type-specific fields of
* the header (those beyond MemoryContextData proper), as well as any
* other management fields it needs to have a fully valid context.
* Usually, failure in this step is impossible, but if it's possible
* the initial space allocation should be freed before ereport'ing.
* 3. Context-type-specific routine calls MemoryContextCreate() to fill in
* the generic header fields and link the context into the context tree.
* 4. We return to the context-type-specific routine, which finishes
* up type-specific initialization. This routine can now do things
* that might fail (like allocate more memory), so long as it's
* sure the node is left in a state that delete will handle.
*
* node: the as-yet-uninitialized common part of the context header node.
* tag: NodeTag code identifying the memory context type.
* method_id: MemoryContextMethodID of the context-type being created.
* parent: parent context, or NULL if this will be a top-level context.
* name: name of context (must be statically allocated).
*
* Context routines generally assume that MemoryContextCreate can't fail,
* so this can contain Assert but not elog/ereport.
*/
void
MemoryContextCreate(MemoryContext node,
NodeTag tag,
MemoryContextMethodID method_id,
MemoryContext parent,
const char *name)
{
/* Creating new memory contexts is not allowed in a critical section */
Assert(CritSectionCount == 0);
/* Initialize all standard fields of memory context header */
node->type = tag;
node->isReset = true;
node->methods = &mcxt_methods[method_id];
node->parent = parent;
node->firstchild = NULL;
node->mem_allocated = 0;
node->prevchild = NULL;
node->name = name;
node->ident = NULL;
node->reset_cbs = NULL;
/* OK to link node into context tree */
if (parent)
{
node->nextchild = parent->firstchild;
if (parent->firstchild != NULL)
parent->firstchild->prevchild = node;
parent->firstchild = node;
/* inherit allowInCritSection flag from parent */
node->allowInCritSection = parent->allowInCritSection;
}
else
{
node->nextchild = NULL;
node->allowInCritSection = false;
}
VALGRIND_CREATE_MEMPOOL(node, 0, false);
}
/*
* MemoryContextAlloc
* Allocate space within the specified context.
*
* This could be turned into a macro, but we'd have to import
* nodes/memnodes.h into postgres.h which seems a bad idea.
*/
void *
MemoryContextAlloc(MemoryContext context, Size size)
{
void *ret;
Assert(MemoryContextIsValid(context));
AssertNotInCriticalSection(context);
if (!AllocSizeIsValid(size))
elog(ERROR, "invalid memory alloc request size %zu", size);
context->isReset = false;
ret = context->methods->alloc(context, size);
if (unlikely(ret == NULL))
{
MemoryContextStats(TopMemoryContext);
/*
* Here, and elsewhere in this module, we show the target context's
* "name" but not its "ident" (if any) in user-visible error messages.
* The "ident" string might contain security-sensitive data, such as
* values in SQL commands.
*/
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory"),
errdetail("Failed on request of size %zu in memory context \"%s\".",
size, context->name)));
}
VALGRIND_MEMPOOL_ALLOC(context, ret, size);
return ret;
}
/*
* MemoryContextAllocZero
* Like MemoryContextAlloc, but clears allocated memory
*
* We could just call MemoryContextAlloc then clear the memory, but this
* is a very common combination, so we provide the combined operation.
*/
void *
MemoryContextAllocZero(MemoryContext context, Size size)
{
void *ret;
Assert(MemoryContextIsValid(context));
AssertNotInCriticalSection(context);
if (!AllocSizeIsValid(size))
elog(ERROR, "invalid memory alloc request size %zu", size);
context->isReset = false;
ret = context->methods->alloc(context, size);
if (unlikely(ret == NULL))
{
MemoryContextStats(TopMemoryContext);
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory"),
errdetail("Failed on request of size %zu in memory context \"%s\".",
size, context->name)));
}
VALGRIND_MEMPOOL_ALLOC(context, ret, size);
MemSetAligned(ret, 0, size);
return ret;
}
/*
* MemoryContextAllocExtended
* Allocate space within the specified context using the given flags.
*/
void *
MemoryContextAllocExtended(MemoryContext context, Size size, int flags)
{
void *ret;
Assert(MemoryContextIsValid(context));
AssertNotInCriticalSection(context);
if (!((flags & MCXT_ALLOC_HUGE) != 0 ? AllocHugeSizeIsValid(size) :
AllocSizeIsValid(size)))
elog(ERROR, "invalid memory alloc request size %zu", size);
context->isReset = false;
ret = context->methods->alloc(context, size);
if (unlikely(ret == NULL))
{
if ((flags & MCXT_ALLOC_NO_OOM) == 0)
{
MemoryContextStats(TopMemoryContext);
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory"),
errdetail("Failed on request of size %zu in memory context \"%s\".",
size, context->name)));
}
return NULL;
}
VALGRIND_MEMPOOL_ALLOC(context, ret, size);
if ((flags & MCXT_ALLOC_ZERO) != 0)
MemSetAligned(ret, 0, size);
return ret;
}
/*
* HandleLogMemoryContextInterrupt
* Handle receipt of an interrupt indicating logging of memory
* contexts.
*
* All the actual work is deferred to ProcessLogMemoryContextInterrupt(),
* because we cannot safely emit a log message inside the signal handler.
*/
void
HandleLogMemoryContextInterrupt(void)
{
InterruptPending = true;
LogMemoryContextPending = true;
/* latch will be set by procsignal_sigusr1_handler */
}
/*
* ProcessLogMemoryContextInterrupt
* Perform logging of memory contexts of this backend process.
*
* Any backend that participates in ProcSignal signaling must arrange
* to call this function if we see LogMemoryContextPending set.
* It is called from CHECK_FOR_INTERRUPTS(), which is enough because
* the target process for logging of memory contexts is a backend.
*/
void
ProcessLogMemoryContextInterrupt(void)
{
LogMemoryContextPending = false;
/*
* Use LOG_SERVER_ONLY to prevent this message from being sent to the
* connected client.
*/
ereport(LOG_SERVER_ONLY,
(errhidestmt(true),
errhidecontext(true),
errmsg("logging memory contexts of PID %d", MyProcPid)));
/*
* When a backend process is consuming huge memory, logging all its memory
* contexts might overrun available disk space. To prevent this, we limit
* the number of child contexts to log per parent to 100.
*
* As with MemoryContextStats(), we suppose that practical cases where the
* dump gets long will typically be huge numbers of siblings under the
* same parent context; while the additional debugging value from seeing
* details about individual siblings beyond 100 will not be large.
*/
MemoryContextStatsDetail(TopMemoryContext, 100, false);
}
void *
palloc(Size size)
{
/* duplicates MemoryContextAlloc to avoid increased overhead */
void *ret;
MemoryContext context = CurrentMemoryContext;
Assert(MemoryContextIsValid(context));
AssertNotInCriticalSection(context);
if (!AllocSizeIsValid(size))
elog(ERROR, "invalid memory alloc request size %zu", size);
context->isReset = false;
ret = context->methods->alloc(context, size);
if (unlikely(ret == NULL))
{
MemoryContextStats(TopMemoryContext);
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory"),
errdetail("Failed on request of size %zu in memory context \"%s\".",
size, context->name)));
}
VALGRIND_MEMPOOL_ALLOC(context, ret, size);
return ret;
}
void *
palloc0(Size size)
{
/* duplicates MemoryContextAllocZero to avoid increased overhead */
void *ret;
MemoryContext context = CurrentMemoryContext;
Assert(MemoryContextIsValid(context));
AssertNotInCriticalSection(context);
if (!AllocSizeIsValid(size))
elog(ERROR, "invalid memory alloc request size %zu", size);
context->isReset = false;
ret = context->methods->alloc(context, size);
if (unlikely(ret == NULL))
{
MemoryContextStats(TopMemoryContext);
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory"),
errdetail("Failed on request of size %zu in memory context \"%s\".",
size, context->name)));
}
VALGRIND_MEMPOOL_ALLOC(context, ret, size);
MemSetAligned(ret, 0, size);
return ret;
}
void *
palloc_extended(Size size, int flags)
{
/* duplicates MemoryContextAllocExtended to avoid increased overhead */
void *ret;
MemoryContext context = CurrentMemoryContext;
Assert(MemoryContextIsValid(context));
AssertNotInCriticalSection(context);
if (!((flags & MCXT_ALLOC_HUGE) != 0 ? AllocHugeSizeIsValid(size) :
AllocSizeIsValid(size)))
elog(ERROR, "invalid memory alloc request size %zu", size);
context->isReset = false;
ret = context->methods->alloc(context, size);
if (unlikely(ret == NULL))
{
if ((flags & MCXT_ALLOC_NO_OOM) == 0)
{
MemoryContextStats(TopMemoryContext);
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory"),
errdetail("Failed on request of size %zu in memory context \"%s\".",
size, context->name)));
}
return NULL;
}
VALGRIND_MEMPOOL_ALLOC(context, ret, size);
if ((flags & MCXT_ALLOC_ZERO) != 0)
MemSetAligned(ret, 0, size);
return ret;
}
/*
* MemoryContextAllocAligned
* Allocate 'size' bytes of memory in 'context' aligned to 'alignto'
* bytes.
*
* Currently, we align addresses by requesting additional bytes from the
* MemoryContext's standard allocator function and then aligning the returned
* address by the required alignment. This means that the given MemoryContext
* must support providing us with a chunk of memory that's larger than 'size'.
* For allocators such as Slab, that's not going to work, as slab only allows
* chunks of the size that's specified when the context is created.
*
* 'alignto' must be a power of 2.
* 'flags' may be 0 or set the same as MemoryContextAllocExtended().
*/
void *
MemoryContextAllocAligned(MemoryContext context,
Size size, Size alignto, int flags)
{
MemoryChunk *alignedchunk;
Size alloc_size;
void *unaligned;
void *aligned;
/* wouldn't make much sense to waste that much space */
Assert(alignto < (128 * 1024 * 1024));
/* ensure alignto is a power of 2 */
Assert((alignto & (alignto - 1)) == 0);
/*
* If the alignment requirements are less than what we already guarantee
* then just use the standard allocation function.
*/
if (unlikely(alignto <= MAXIMUM_ALIGNOF))
return MemoryContextAllocExtended(context, size, flags);
/*
* We implement aligned pointers by simply allocating enough memory for
* the requested size plus the alignment and an additional "redirection"
* MemoryChunk. This additional MemoryChunk is required for operations
* such as pfree when used on the pointer returned by this function. We
* use this redirection MemoryChunk in order to find the pointer to the
* memory that was returned by the MemoryContextAllocExtended call below.
* We do that by "borrowing" the block offset field and instead of using
* that to find the offset into the owning block, we use it to find the
* original allocated address.
*
* Here we must allocate enough extra memory so that we can still align
* the pointer returned by MemoryContextAllocExtended and also have enough
* space for the redirection MemoryChunk. Since allocations will already
* be at least aligned by MAXIMUM_ALIGNOF, we can subtract that amount
* from the allocation size to save a little memory.
*/
alloc_size = size + PallocAlignedExtraBytes(alignto);
#ifdef MEMORY_CONTEXT_CHECKING
/* ensure there's space for a sentinel byte */
alloc_size += 1;
#endif
/* perform the actual allocation */
unaligned = MemoryContextAllocExtended(context, alloc_size, flags);
/* set the aligned pointer */
aligned = (void *) TYPEALIGN(alignto, (char *) unaligned +
sizeof(MemoryChunk));
alignedchunk = PointerGetMemoryChunk(aligned);
/*
* We set the redirect MemoryChunk so that the block offset calculation is
* used to point back to the 'unaligned' allocated chunk. This allows us
* to use MemoryChunkGetBlock() to find the unaligned chunk when we need
* to perform operations such as pfree() and repalloc().
*
* We store 'alignto' in the MemoryChunk's 'value' so that we know what
* the alignment was set to should we ever be asked to realloc this
* pointer.
*/
MemoryChunkSetHdrMask(alignedchunk, unaligned, alignto,
MCTX_ALIGNED_REDIRECT_ID);
/* double check we produced a correctly aligned pointer */
Assert((void *) TYPEALIGN(alignto, aligned) == aligned);
#ifdef MEMORY_CONTEXT_CHECKING
alignedchunk->requested_size = size;
/* set mark to catch clobber of "unused" space */
set_sentinel(aligned, size);
#endif
/* Mark the bytes before the redirection header as noaccess */
VALGRIND_MAKE_MEM_NOACCESS(unaligned,
(char *) alignedchunk - (char *) unaligned);
/* Disallow access to the redirection chunk header. */
VALGRIND_MAKE_MEM_NOACCESS(alignedchunk, sizeof(MemoryChunk));
return aligned;
}
/*
* palloc_aligned
* Allocate 'size' bytes returning a pointer that's aligned to the
* 'alignto' boundary.
*
* Currently, we align addresses by requesting additional bytes from the
* MemoryContext's standard allocator function and then aligning the returned
* address by the required alignment. This means that the given MemoryContext
* must support providing us with a chunk of memory that's larger than 'size'.
* For allocators such as Slab, that's not going to work, as slab only allows
* chunks of the size that's specified when the context is created.
*
* 'alignto' must be a power of 2.
* 'flags' may be 0 or set the same as MemoryContextAllocExtended().
*/
void *
palloc_aligned(Size size, Size alignto, int flags)
{
return MemoryContextAllocAligned(CurrentMemoryContext, size, alignto, flags);
}
/*
* pfree
* Release an allocated chunk.
*/
void
pfree(void *pointer)
{
#ifdef USE_VALGRIND
MemoryContextMethodID method = GetMemoryChunkMethodID(pointer);
MemoryContext context = GetMemoryChunkContext(pointer);
#endif
MCXT_METHOD(pointer, free_p) (pointer);
#ifdef USE_VALGRIND
if (method != MCTX_ALIGNED_REDIRECT_ID)
VALGRIND_MEMPOOL_FREE(context, pointer);
#endif
}
/*
* repalloc
* Adjust the size of a previously allocated chunk.
*/
void *
repalloc(void *pointer, Size size)
{
#ifdef USE_VALGRIND
MemoryContextMethodID method = GetMemoryChunkMethodID(pointer);
#endif
#if defined(USE_ASSERT_CHECKING) || defined(USE_VALGRIND)
MemoryContext context = GetMemoryChunkContext(pointer);
#endif
void *ret;
if (!AllocSizeIsValid(size))
elog(ERROR, "invalid memory alloc request size %zu", size);
AssertNotInCriticalSection(context);
/* isReset must be false already */
Assert(!context->isReset);
ret = MCXT_METHOD(pointer, realloc) (pointer, size);
if (unlikely(ret == NULL))
{
MemoryContext cxt = GetMemoryChunkContext(pointer);
MemoryContextStats(TopMemoryContext);
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory"),
errdetail("Failed on request of size %zu in memory context \"%s\".",
size, cxt->name)));
}
#ifdef USE_VALGRIND
if (method != MCTX_ALIGNED_REDIRECT_ID)
VALGRIND_MEMPOOL_CHANGE(context, pointer, ret, size);
#endif
return ret;
}
/*
* repalloc_extended
* Adjust the size of a previously allocated chunk,
* with HUGE and NO_OOM options.
*/
void *
repalloc_extended(void *pointer, Size size, int flags)
{
#if defined(USE_ASSERT_CHECKING) || defined(USE_VALGRIND)
MemoryContext context = GetMemoryChunkContext(pointer);
#endif
void *ret;
if (!((flags & MCXT_ALLOC_HUGE) != 0 ? AllocHugeSizeIsValid(size) :
AllocSizeIsValid(size)))
elog(ERROR, "invalid memory alloc request size %zu", size);
AssertNotInCriticalSection(context);
/* isReset must be false already */
Assert(!context->isReset);
ret = MCXT_METHOD(pointer, realloc) (pointer, size);
if (unlikely(ret == NULL))
{
if ((flags & MCXT_ALLOC_NO_OOM) == 0)
{
MemoryContext cxt = GetMemoryChunkContext(pointer);
MemoryContextStats(TopMemoryContext);
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory"),
errdetail("Failed on request of size %zu in memory context \"%s\".",
size, cxt->name)));
}
return NULL;
}
VALGRIND_MEMPOOL_CHANGE(context, pointer, ret, size);
return ret;
}
/*
* repalloc0
* Adjust the size of a previously allocated chunk and zero out the added
* space.
*/
void *
repalloc0(void *pointer, Size oldsize, Size size)
{
void *ret;
/* catch wrong argument order */
if (unlikely(oldsize > size))
elog(ERROR, "invalid repalloc0 call: oldsize %zu, new size %zu",
oldsize, size);
ret = repalloc(pointer, size);
memset((char *) ret + oldsize, 0, (size - oldsize));
return ret;
}
/*
* MemoryContextAllocHuge
* Allocate (possibly-expansive) space within the specified context.
*
* See considerations in comment at MaxAllocHugeSize.
*/
void *
MemoryContextAllocHuge(MemoryContext context, Size size)
{
void *ret;
Assert(MemoryContextIsValid(context));
AssertNotInCriticalSection(context);
if (!AllocHugeSizeIsValid(size))
elog(ERROR, "invalid memory alloc request size %zu", size);
context->isReset = false;
ret = context->methods->alloc(context, size);
if (unlikely(ret == NULL))
{
MemoryContextStats(TopMemoryContext);
ereport(ERROR,
(errcode(ERRCODE_OUT_OF_MEMORY),
errmsg("out of memory"),
errdetail("Failed on request of size %zu in memory context \"%s\".",
size, context->name)));
}
VALGRIND_MEMPOOL_ALLOC(context, ret, size);
return ret;
}
/*
* repalloc_huge
* Adjust the size of a previously allocated chunk, permitting a large
* value. The previous allocation need not have been "huge".
*/
void *
repalloc_huge(void *pointer, Size size)
{
/* this one seems not worth its own implementation */
return repalloc_extended(pointer, size, MCXT_ALLOC_HUGE);
}
/*
* MemoryContextStrdup
* Like strdup(), but allocate from the specified context
*/
char *
MemoryContextStrdup(MemoryContext context, const char *string)
{
char *nstr;
Size len = strlen(string) + 1;
nstr = (char *) MemoryContextAlloc(context, len);
memcpy(nstr, string, len);
return nstr;
}
char *
pstrdup(const char *in)
{
return MemoryContextStrdup(CurrentMemoryContext, in);
}
/*
* pnstrdup
* Like pstrdup(), but append null byte to a
* not-necessarily-null-terminated input string.
*/
char *
pnstrdup(const char *in, Size len)
{
char *out;
len = strnlen(in, len);
out = palloc(len + 1);
memcpy(out, in, len);
out[len] = '\0';
return out;
}
/*
* Make copy of string with all trailing newline characters removed.
*/
char *
pchomp(const char *in)
{
size_t n;
n = strlen(in);
while (n > 0 && in[n - 1] == '\n')
n--;
return pnstrdup(in, n);
}