postgresql/src/backend/parser/parse_cte.c

1198 lines
37 KiB
C

/*-------------------------------------------------------------------------
*
* parse_cte.c
* handle CTEs (common table expressions) in parser
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/parser/parse_cte.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/pg_collation.h"
#include "catalog/pg_type.h"
#include "nodes/nodeFuncs.h"
#include "parser/analyze.h"
#include "parser/parse_coerce.h"
#include "parser/parse_collate.h"
#include "parser/parse_cte.h"
#include "parser/parse_expr.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/typcache.h"
/* Enumeration of contexts in which a self-reference is disallowed */
typedef enum
{
RECURSION_OK,
RECURSION_NONRECURSIVETERM, /* inside the left-hand term */
RECURSION_SUBLINK, /* inside a sublink */
RECURSION_OUTERJOIN, /* inside nullable side of an outer join */
RECURSION_INTERSECT, /* underneath INTERSECT (ALL) */
RECURSION_EXCEPT, /* underneath EXCEPT (ALL) */
} RecursionContext;
/* Associated error messages --- each must have one %s for CTE name */
static const char *const recursion_errormsgs[] = {
/* RECURSION_OK */
NULL,
/* RECURSION_NONRECURSIVETERM */
gettext_noop("recursive reference to query \"%s\" must not appear within its non-recursive term"),
/* RECURSION_SUBLINK */
gettext_noop("recursive reference to query \"%s\" must not appear within a subquery"),
/* RECURSION_OUTERJOIN */
gettext_noop("recursive reference to query \"%s\" must not appear within an outer join"),
/* RECURSION_INTERSECT */
gettext_noop("recursive reference to query \"%s\" must not appear within INTERSECT"),
/* RECURSION_EXCEPT */
gettext_noop("recursive reference to query \"%s\" must not appear within EXCEPT")
};
/*
* For WITH RECURSIVE, we have to find an ordering of the clause members
* with no forward references, and determine which members are recursive
* (i.e., self-referential). It is convenient to do this with an array
* of CteItems instead of a list of CommonTableExprs.
*/
typedef struct CteItem
{
CommonTableExpr *cte; /* One CTE to examine */
int id; /* Its ID number for dependencies */
Bitmapset *depends_on; /* CTEs depended on (not including self) */
} CteItem;
/* CteState is what we need to pass around in the tree walkers */
typedef struct CteState
{
/* global state: */
ParseState *pstate; /* global parse state */
CteItem *items; /* array of CTEs and extra data */
int numitems; /* number of CTEs */
/* working state during a tree walk: */
int curitem; /* index of item currently being examined */
List *innerwiths; /* list of lists of CommonTableExpr */
/* working state for checkWellFormedRecursion walk only: */
int selfrefcount; /* number of self-references detected */
RecursionContext context; /* context to allow or disallow self-ref */
} CteState;
static void analyzeCTE(ParseState *pstate, CommonTableExpr *cte);
/* Dependency processing functions */
static void makeDependencyGraph(CteState *cstate);
static bool makeDependencyGraphWalker(Node *node, CteState *cstate);
static void TopologicalSort(ParseState *pstate, CteItem *items, int numitems);
/* Recursion validity checker functions */
static void checkWellFormedRecursion(CteState *cstate);
static bool checkWellFormedRecursionWalker(Node *node, CteState *cstate);
static void checkWellFormedSelectStmt(SelectStmt *stmt, CteState *cstate);
/*
* transformWithClause -
* Transform the list of WITH clause "common table expressions" into
* Query nodes.
*
* The result is the list of transformed CTEs to be put into the output
* Query. (This is in fact the same as the ending value of p_ctenamespace,
* but it seems cleaner to not expose that in the function's API.)
*/
List *
transformWithClause(ParseState *pstate, WithClause *withClause)
{
ListCell *lc;
/* Only one WITH clause per query level */
Assert(pstate->p_ctenamespace == NIL);
Assert(pstate->p_future_ctes == NIL);
/*
* For either type of WITH, there must not be duplicate CTE names in the
* list. Check this right away so we needn't worry later.
*
* Also, tentatively mark each CTE as non-recursive, and initialize its
* reference count to zero, and set pstate->p_hasModifyingCTE if needed.
*/
foreach(lc, withClause->ctes)
{
CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
ListCell *rest;
/* MERGE is allowed by parser, but unimplemented. Reject for now */
if (IsA(cte->ctequery, MergeStmt))
ereport(ERROR,
errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("MERGE not supported in WITH query"),
parser_errposition(pstate, cte->location));
for_each_cell(rest, withClause->ctes, lnext(withClause->ctes, lc))
{
CommonTableExpr *cte2 = (CommonTableExpr *) lfirst(rest);
if (strcmp(cte->ctename, cte2->ctename) == 0)
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_ALIAS),
errmsg("WITH query name \"%s\" specified more than once",
cte2->ctename),
parser_errposition(pstate, cte2->location)));
}
cte->cterecursive = false;
cte->cterefcount = 0;
if (!IsA(cte->ctequery, SelectStmt))
{
/* must be a data-modifying statement */
Assert(IsA(cte->ctequery, InsertStmt) ||
IsA(cte->ctequery, UpdateStmt) ||
IsA(cte->ctequery, DeleteStmt));
pstate->p_hasModifyingCTE = true;
}
}
if (withClause->recursive)
{
/*
* For WITH RECURSIVE, we rearrange the list elements if needed to
* eliminate forward references. First, build a work array and set up
* the data structure needed by the tree walkers.
*/
CteState cstate;
int i;
cstate.pstate = pstate;
cstate.numitems = list_length(withClause->ctes);
cstate.items = (CteItem *) palloc0(cstate.numitems * sizeof(CteItem));
i = 0;
foreach(lc, withClause->ctes)
{
cstate.items[i].cte = (CommonTableExpr *) lfirst(lc);
cstate.items[i].id = i;
i++;
}
/*
* Find all the dependencies and sort the CteItems into a safe
* processing order. Also, mark CTEs that contain self-references.
*/
makeDependencyGraph(&cstate);
/*
* Check that recursive queries are well-formed.
*/
checkWellFormedRecursion(&cstate);
/*
* Set up the ctenamespace for parse analysis. Per spec, all the WITH
* items are visible to all others, so stuff them all in before parse
* analysis. We build the list in safe processing order so that the
* planner can process the queries in sequence.
*/
for (i = 0; i < cstate.numitems; i++)
{
CommonTableExpr *cte = cstate.items[i].cte;
pstate->p_ctenamespace = lappend(pstate->p_ctenamespace, cte);
}
/*
* Do parse analysis in the order determined by the topological sort.
*/
for (i = 0; i < cstate.numitems; i++)
{
CommonTableExpr *cte = cstate.items[i].cte;
analyzeCTE(pstate, cte);
}
}
else
{
/*
* For non-recursive WITH, just analyze each CTE in sequence and then
* add it to the ctenamespace. This corresponds to the spec's
* definition of the scope of each WITH name. However, to allow error
* reports to be aware of the possibility of an erroneous reference,
* we maintain a list in p_future_ctes of the not-yet-visible CTEs.
*/
pstate->p_future_ctes = list_copy(withClause->ctes);
foreach(lc, withClause->ctes)
{
CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
analyzeCTE(pstate, cte);
pstate->p_ctenamespace = lappend(pstate->p_ctenamespace, cte);
pstate->p_future_ctes = list_delete_first(pstate->p_future_ctes);
}
}
return pstate->p_ctenamespace;
}
/*
* Perform the actual parse analysis transformation of one CTE. All
* CTEs it depends on have already been loaded into pstate->p_ctenamespace,
* and have been marked with the correct output column names/types.
*/
static void
analyzeCTE(ParseState *pstate, CommonTableExpr *cte)
{
Query *query;
CTESearchClause *search_clause = cte->search_clause;
CTECycleClause *cycle_clause = cte->cycle_clause;
/* Analysis not done already */
Assert(!IsA(cte->ctequery, Query));
/*
* Before analyzing the CTE's query, we'd better identify the data type of
* the cycle mark column if any, since the query could refer to that.
* Other validity checks on the cycle clause will be done afterwards.
*/
if (cycle_clause)
{
TypeCacheEntry *typentry;
Oid op;
cycle_clause->cycle_mark_value =
transformExpr(pstate, cycle_clause->cycle_mark_value,
EXPR_KIND_CYCLE_MARK);
cycle_clause->cycle_mark_default =
transformExpr(pstate, cycle_clause->cycle_mark_default,
EXPR_KIND_CYCLE_MARK);
cycle_clause->cycle_mark_type =
select_common_type(pstate,
list_make2(cycle_clause->cycle_mark_value,
cycle_clause->cycle_mark_default),
"CYCLE", NULL);
cycle_clause->cycle_mark_value =
coerce_to_common_type(pstate,
cycle_clause->cycle_mark_value,
cycle_clause->cycle_mark_type,
"CYCLE/SET/TO");
cycle_clause->cycle_mark_default =
coerce_to_common_type(pstate,
cycle_clause->cycle_mark_default,
cycle_clause->cycle_mark_type,
"CYCLE/SET/DEFAULT");
cycle_clause->cycle_mark_typmod =
select_common_typmod(pstate,
list_make2(cycle_clause->cycle_mark_value,
cycle_clause->cycle_mark_default),
cycle_clause->cycle_mark_type);
cycle_clause->cycle_mark_collation =
select_common_collation(pstate,
list_make2(cycle_clause->cycle_mark_value,
cycle_clause->cycle_mark_default),
true);
/* Might as well look up the relevant <> operator while we are at it */
typentry = lookup_type_cache(cycle_clause->cycle_mark_type,
TYPECACHE_EQ_OPR);
if (!OidIsValid(typentry->eq_opr))
ereport(ERROR,
errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("could not identify an equality operator for type %s",
format_type_be(cycle_clause->cycle_mark_type)));
op = get_negator(typentry->eq_opr);
if (!OidIsValid(op))
ereport(ERROR,
errcode(ERRCODE_UNDEFINED_FUNCTION),
errmsg("could not identify an inequality operator for type %s",
format_type_be(cycle_clause->cycle_mark_type)));
cycle_clause->cycle_mark_neop = op;
}
/* Now we can get on with analyzing the CTE's query */
query = parse_sub_analyze(cte->ctequery, pstate, cte, false, true);
cte->ctequery = (Node *) query;
/*
* Check that we got something reasonable. These first two cases should
* be prevented by the grammar.
*/
if (!IsA(query, Query))
elog(ERROR, "unexpected non-Query statement in WITH");
if (query->utilityStmt != NULL)
elog(ERROR, "unexpected utility statement in WITH");
/*
* We disallow data-modifying WITH except at the top level of a query,
* because it's not clear when such a modification should be executed.
*/
if (query->commandType != CMD_SELECT &&
pstate->parentParseState != NULL)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("WITH clause containing a data-modifying statement must be at the top level"),
parser_errposition(pstate, cte->location)));
/*
* CTE queries are always marked not canSetTag. (Currently this only
* matters for data-modifying statements, for which the flag will be
* propagated to the ModifyTable plan node.)
*/
query->canSetTag = false;
if (!cte->cterecursive)
{
/* Compute the output column names/types if not done yet */
analyzeCTETargetList(pstate, cte, GetCTETargetList(cte));
}
else
{
/*
* Verify that the previously determined output column types and
* collations match what the query really produced. We have to check
* this because the recursive term could have overridden the
* non-recursive term, and we don't have any easy way to fix that.
*/
ListCell *lctlist,
*lctyp,
*lctypmod,
*lccoll;
int varattno;
lctyp = list_head(cte->ctecoltypes);
lctypmod = list_head(cte->ctecoltypmods);
lccoll = list_head(cte->ctecolcollations);
varattno = 0;
foreach(lctlist, GetCTETargetList(cte))
{
TargetEntry *te = (TargetEntry *) lfirst(lctlist);
Node *texpr;
if (te->resjunk)
continue;
varattno++;
Assert(varattno == te->resno);
if (lctyp == NULL || lctypmod == NULL || lccoll == NULL) /* shouldn't happen */
elog(ERROR, "wrong number of output columns in WITH");
texpr = (Node *) te->expr;
if (exprType(texpr) != lfirst_oid(lctyp) ||
exprTypmod(texpr) != lfirst_int(lctypmod))
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("recursive query \"%s\" column %d has type %s in non-recursive term but type %s overall",
cte->ctename, varattno,
format_type_with_typemod(lfirst_oid(lctyp),
lfirst_int(lctypmod)),
format_type_with_typemod(exprType(texpr),
exprTypmod(texpr))),
errhint("Cast the output of the non-recursive term to the correct type."),
parser_errposition(pstate, exprLocation(texpr))));
if (exprCollation(texpr) != lfirst_oid(lccoll))
ereport(ERROR,
(errcode(ERRCODE_COLLATION_MISMATCH),
errmsg("recursive query \"%s\" column %d has collation \"%s\" in non-recursive term but collation \"%s\" overall",
cte->ctename, varattno,
get_collation_name(lfirst_oid(lccoll)),
get_collation_name(exprCollation(texpr))),
errhint("Use the COLLATE clause to set the collation of the non-recursive term."),
parser_errposition(pstate, exprLocation(texpr))));
lctyp = lnext(cte->ctecoltypes, lctyp);
lctypmod = lnext(cte->ctecoltypmods, lctypmod);
lccoll = lnext(cte->ctecolcollations, lccoll);
}
if (lctyp != NULL || lctypmod != NULL || lccoll != NULL) /* shouldn't happen */
elog(ERROR, "wrong number of output columns in WITH");
}
/*
* Now make validity checks on the SEARCH and CYCLE clauses, if present.
*/
if (search_clause || cycle_clause)
{
Query *ctequery;
SetOperationStmt *sos;
if (!cte->cterecursive)
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("WITH query is not recursive"),
parser_errposition(pstate, cte->location)));
/*
* SQL requires a WITH list element (CTE) to be "expandable" in order
* to allow a search or cycle clause. That is a stronger requirement
* than just being recursive. It basically means the query expression
* looks like
*
* non-recursive query UNION [ALL] recursive query
*
* and that the recursive query is not itself a set operation.
*
* As of this writing, most of these criteria are already satisfied by
* all recursive CTEs allowed by PostgreSQL. In the future, if
* further variants recursive CTEs are accepted, there might be
* further checks required here to determine what is "expandable".
*/
ctequery = castNode(Query, cte->ctequery);
Assert(ctequery->setOperations);
sos = castNode(SetOperationStmt, ctequery->setOperations);
/*
* This left side check is not required for expandability, but
* rewriteSearchAndCycle() doesn't currently have support for it, so
* we catch it here.
*/
if (!IsA(sos->larg, RangeTblRef))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("with a SEARCH or CYCLE clause, the left side of the UNION must be a SELECT")));
if (!IsA(sos->rarg, RangeTblRef))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("with a SEARCH or CYCLE clause, the right side of the UNION must be a SELECT")));
}
if (search_clause)
{
ListCell *lc;
List *seen = NIL;
foreach(lc, search_clause->search_col_list)
{
String *colname = lfirst_node(String, lc);
if (!list_member(cte->ctecolnames, colname))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("search column \"%s\" not in WITH query column list",
strVal(colname)),
parser_errposition(pstate, search_clause->location)));
if (list_member(seen, colname))
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_COLUMN),
errmsg("search column \"%s\" specified more than once",
strVal(colname)),
parser_errposition(pstate, search_clause->location)));
seen = lappend(seen, colname);
}
if (list_member(cte->ctecolnames, makeString(search_clause->search_seq_column)))
ereport(ERROR,
errcode(ERRCODE_SYNTAX_ERROR),
errmsg("search sequence column name \"%s\" already used in WITH query column list",
search_clause->search_seq_column),
parser_errposition(pstate, search_clause->location));
}
if (cycle_clause)
{
ListCell *lc;
List *seen = NIL;
foreach(lc, cycle_clause->cycle_col_list)
{
String *colname = lfirst_node(String, lc);
if (!list_member(cte->ctecolnames, colname))
ereport(ERROR,
(errcode(ERRCODE_SYNTAX_ERROR),
errmsg("cycle column \"%s\" not in WITH query column list",
strVal(colname)),
parser_errposition(pstate, cycle_clause->location)));
if (list_member(seen, colname))
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_COLUMN),
errmsg("cycle column \"%s\" specified more than once",
strVal(colname)),
parser_errposition(pstate, cycle_clause->location)));
seen = lappend(seen, colname);
}
if (list_member(cte->ctecolnames, makeString(cycle_clause->cycle_mark_column)))
ereport(ERROR,
errcode(ERRCODE_SYNTAX_ERROR),
errmsg("cycle mark column name \"%s\" already used in WITH query column list",
cycle_clause->cycle_mark_column),
parser_errposition(pstate, cycle_clause->location));
if (list_member(cte->ctecolnames, makeString(cycle_clause->cycle_path_column)))
ereport(ERROR,
errcode(ERRCODE_SYNTAX_ERROR),
errmsg("cycle path column name \"%s\" already used in WITH query column list",
cycle_clause->cycle_path_column),
parser_errposition(pstate, cycle_clause->location));
if (strcmp(cycle_clause->cycle_mark_column,
cycle_clause->cycle_path_column) == 0)
ereport(ERROR,
errcode(ERRCODE_SYNTAX_ERROR),
errmsg("cycle mark column name and cycle path column name are the same"),
parser_errposition(pstate, cycle_clause->location));
}
if (search_clause && cycle_clause)
{
if (strcmp(search_clause->search_seq_column,
cycle_clause->cycle_mark_column) == 0)
ereport(ERROR,
errcode(ERRCODE_SYNTAX_ERROR),
errmsg("search sequence column name and cycle mark column name are the same"),
parser_errposition(pstate, search_clause->location));
if (strcmp(search_clause->search_seq_column,
cycle_clause->cycle_path_column) == 0)
ereport(ERROR,
errcode(ERRCODE_SYNTAX_ERROR),
errmsg("search sequence column name and cycle path column name are the same"),
parser_errposition(pstate, search_clause->location));
}
}
/*
* Compute derived fields of a CTE, given the transformed output targetlist
*
* For a nonrecursive CTE, this is called after transforming the CTE's query.
* For a recursive CTE, we call it after transforming the non-recursive term,
* and pass the targetlist emitted by the non-recursive term only.
*
* Note: in the recursive case, the passed pstate is actually the one being
* used to analyze the CTE's query, so it is one level lower down than in
* the nonrecursive case. This doesn't matter since we only use it for
* error message context anyway.
*/
void
analyzeCTETargetList(ParseState *pstate, CommonTableExpr *cte, List *tlist)
{
int numaliases;
int varattno;
ListCell *tlistitem;
/* Not done already ... */
Assert(cte->ctecolnames == NIL);
/*
* We need to determine column names, types, and collations. The alias
* column names override anything coming from the query itself. (Note:
* the SQL spec says that the alias list must be empty or exactly as long
* as the output column set; but we allow it to be shorter for consistency
* with Alias handling.)
*/
cte->ctecolnames = copyObject(cte->aliascolnames);
cte->ctecoltypes = cte->ctecoltypmods = cte->ctecolcollations = NIL;
numaliases = list_length(cte->aliascolnames);
varattno = 0;
foreach(tlistitem, tlist)
{
TargetEntry *te = (TargetEntry *) lfirst(tlistitem);
Oid coltype;
int32 coltypmod;
Oid colcoll;
if (te->resjunk)
continue;
varattno++;
Assert(varattno == te->resno);
if (varattno > numaliases)
{
char *attrname;
attrname = pstrdup(te->resname);
cte->ctecolnames = lappend(cte->ctecolnames, makeString(attrname));
}
coltype = exprType((Node *) te->expr);
coltypmod = exprTypmod((Node *) te->expr);
colcoll = exprCollation((Node *) te->expr);
/*
* If the CTE is recursive, force the exposed column type of any
* "unknown" column to "text". We must deal with this here because
* we're called on the non-recursive term before there's been any
* attempt to force unknown output columns to some other type. We
* have to resolve unknowns before looking at the recursive term.
*
* The column might contain 'foo' COLLATE "bar", so don't override
* collation if it's already set.
*/
if (cte->cterecursive && coltype == UNKNOWNOID)
{
coltype = TEXTOID;
coltypmod = -1; /* should be -1 already, but be sure */
if (!OidIsValid(colcoll))
colcoll = DEFAULT_COLLATION_OID;
}
cte->ctecoltypes = lappend_oid(cte->ctecoltypes, coltype);
cte->ctecoltypmods = lappend_int(cte->ctecoltypmods, coltypmod);
cte->ctecolcollations = lappend_oid(cte->ctecolcollations, colcoll);
}
if (varattno < numaliases)
ereport(ERROR,
(errcode(ERRCODE_INVALID_COLUMN_REFERENCE),
errmsg("WITH query \"%s\" has %d columns available but %d columns specified",
cte->ctename, varattno, numaliases),
parser_errposition(pstate, cte->location)));
}
/*
* Identify the cross-references of a list of WITH RECURSIVE items,
* and sort into an order that has no forward references.
*/
static void
makeDependencyGraph(CteState *cstate)
{
int i;
for (i = 0; i < cstate->numitems; i++)
{
CommonTableExpr *cte = cstate->items[i].cte;
cstate->curitem = i;
cstate->innerwiths = NIL;
makeDependencyGraphWalker((Node *) cte->ctequery, cstate);
Assert(cstate->innerwiths == NIL);
}
TopologicalSort(cstate->pstate, cstate->items, cstate->numitems);
}
/*
* Tree walker function to detect cross-references and self-references of the
* CTEs in a WITH RECURSIVE list.
*/
static bool
makeDependencyGraphWalker(Node *node, CteState *cstate)
{
if (node == NULL)
return false;
if (IsA(node, RangeVar))
{
RangeVar *rv = (RangeVar *) node;
/* If unqualified name, might be a CTE reference */
if (!rv->schemaname)
{
ListCell *lc;
int i;
/* ... but first see if it's captured by an inner WITH */
foreach(lc, cstate->innerwiths)
{
List *withlist = (List *) lfirst(lc);
ListCell *lc2;
foreach(lc2, withlist)
{
CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc2);
if (strcmp(rv->relname, cte->ctename) == 0)
return false; /* yes, so bail out */
}
}
/* No, could be a reference to the query level we are working on */
for (i = 0; i < cstate->numitems; i++)
{
CommonTableExpr *cte = cstate->items[i].cte;
if (strcmp(rv->relname, cte->ctename) == 0)
{
int myindex = cstate->curitem;
if (i != myindex)
{
/* Add cross-item dependency */
cstate->items[myindex].depends_on =
bms_add_member(cstate->items[myindex].depends_on,
cstate->items[i].id);
}
else
{
/* Found out this one is self-referential */
cte->cterecursive = true;
}
break;
}
}
}
return false;
}
if (IsA(node, SelectStmt))
{
SelectStmt *stmt = (SelectStmt *) node;
ListCell *lc;
if (stmt->withClause)
{
if (stmt->withClause->recursive)
{
/*
* In the RECURSIVE case, all query names of the WITH are
* visible to all WITH items as well as the main query. So
* push them all on, process, pop them all off.
*/
cstate->innerwiths = lcons(stmt->withClause->ctes,
cstate->innerwiths);
foreach(lc, stmt->withClause->ctes)
{
CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
(void) makeDependencyGraphWalker(cte->ctequery, cstate);
}
(void) raw_expression_tree_walker(node,
makeDependencyGraphWalker,
(void *) cstate);
cstate->innerwiths = list_delete_first(cstate->innerwiths);
}
else
{
/*
* In the non-RECURSIVE case, query names are visible to the
* WITH items after them and to the main query.
*/
cstate->innerwiths = lcons(NIL, cstate->innerwiths);
foreach(lc, stmt->withClause->ctes)
{
CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
ListCell *cell1;
(void) makeDependencyGraphWalker(cte->ctequery, cstate);
/* note that recursion could mutate innerwiths list */
cell1 = list_head(cstate->innerwiths);
lfirst(cell1) = lappend((List *) lfirst(cell1), cte);
}
(void) raw_expression_tree_walker(node,
makeDependencyGraphWalker,
(void *) cstate);
cstate->innerwiths = list_delete_first(cstate->innerwiths);
}
/* We're done examining the SelectStmt */
return false;
}
/* if no WITH clause, just fall through for normal processing */
}
if (IsA(node, WithClause))
{
/*
* Prevent raw_expression_tree_walker from recursing directly into a
* WITH clause. We need that to happen only under the control of the
* code above.
*/
return false;
}
return raw_expression_tree_walker(node,
makeDependencyGraphWalker,
(void *) cstate);
}
/*
* Sort by dependencies, using a standard topological sort operation
*/
static void
TopologicalSort(ParseState *pstate, CteItem *items, int numitems)
{
int i,
j;
/* for each position in sequence ... */
for (i = 0; i < numitems; i++)
{
/* ... scan the remaining items to find one that has no dependencies */
for (j = i; j < numitems; j++)
{
if (bms_is_empty(items[j].depends_on))
break;
}
/* if we didn't find one, the dependency graph has a cycle */
if (j >= numitems)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("mutual recursion between WITH items is not implemented"),
parser_errposition(pstate, items[i].cte->location)));
/*
* Found one. Move it to front and remove it from every other item's
* dependencies.
*/
if (i != j)
{
CteItem tmp;
tmp = items[i];
items[i] = items[j];
items[j] = tmp;
}
/*
* Items up through i are known to have no dependencies left, so we
* can skip them in this loop.
*/
for (j = i + 1; j < numitems; j++)
{
items[j].depends_on = bms_del_member(items[j].depends_on,
items[i].id);
}
}
}
/*
* Check that recursive queries are well-formed.
*/
static void
checkWellFormedRecursion(CteState *cstate)
{
int i;
for (i = 0; i < cstate->numitems; i++)
{
CommonTableExpr *cte = cstate->items[i].cte;
SelectStmt *stmt = (SelectStmt *) cte->ctequery;
Assert(!IsA(stmt, Query)); /* not analyzed yet */
/* Ignore items that weren't found to be recursive */
if (!cte->cterecursive)
continue;
/* Must be a SELECT statement */
if (!IsA(stmt, SelectStmt))
ereport(ERROR,
(errcode(ERRCODE_INVALID_RECURSION),
errmsg("recursive query \"%s\" must not contain data-modifying statements",
cte->ctename),
parser_errposition(cstate->pstate, cte->location)));
/* Must have top-level UNION */
if (stmt->op != SETOP_UNION)
ereport(ERROR,
(errcode(ERRCODE_INVALID_RECURSION),
errmsg("recursive query \"%s\" does not have the form non-recursive-term UNION [ALL] recursive-term",
cte->ctename),
parser_errposition(cstate->pstate, cte->location)));
/* The left-hand operand mustn't contain self-reference at all */
cstate->curitem = i;
cstate->innerwiths = NIL;
cstate->selfrefcount = 0;
cstate->context = RECURSION_NONRECURSIVETERM;
checkWellFormedRecursionWalker((Node *) stmt->larg, cstate);
Assert(cstate->innerwiths == NIL);
/* Right-hand operand should contain one reference in a valid place */
cstate->curitem = i;
cstate->innerwiths = NIL;
cstate->selfrefcount = 0;
cstate->context = RECURSION_OK;
checkWellFormedRecursionWalker((Node *) stmt->rarg, cstate);
Assert(cstate->innerwiths == NIL);
if (cstate->selfrefcount != 1) /* shouldn't happen */
elog(ERROR, "missing recursive reference");
/* WITH mustn't contain self-reference, either */
if (stmt->withClause)
{
cstate->curitem = i;
cstate->innerwiths = NIL;
cstate->selfrefcount = 0;
cstate->context = RECURSION_SUBLINK;
checkWellFormedRecursionWalker((Node *) stmt->withClause->ctes,
cstate);
Assert(cstate->innerwiths == NIL);
}
/*
* Disallow ORDER BY and similar decoration atop the UNION. These
* don't make sense because it's impossible to figure out what they
* mean when we have only part of the recursive query's results. (If
* we did allow them, we'd have to check for recursive references
* inside these subtrees.)
*/
if (stmt->sortClause)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("ORDER BY in a recursive query is not implemented"),
parser_errposition(cstate->pstate,
exprLocation((Node *) stmt->sortClause))));
if (stmt->limitOffset)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("OFFSET in a recursive query is not implemented"),
parser_errposition(cstate->pstate,
exprLocation(stmt->limitOffset))));
if (stmt->limitCount)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("LIMIT in a recursive query is not implemented"),
parser_errposition(cstate->pstate,
exprLocation(stmt->limitCount))));
if (stmt->lockingClause)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("FOR UPDATE/SHARE in a recursive query is not implemented"),
parser_errposition(cstate->pstate,
exprLocation((Node *) stmt->lockingClause))));
}
}
/*
* Tree walker function to detect invalid self-references in a recursive query.
*/
static bool
checkWellFormedRecursionWalker(Node *node, CteState *cstate)
{
RecursionContext save_context = cstate->context;
if (node == NULL)
return false;
if (IsA(node, RangeVar))
{
RangeVar *rv = (RangeVar *) node;
/* If unqualified name, might be a CTE reference */
if (!rv->schemaname)
{
ListCell *lc;
CommonTableExpr *mycte;
/* ... but first see if it's captured by an inner WITH */
foreach(lc, cstate->innerwiths)
{
List *withlist = (List *) lfirst(lc);
ListCell *lc2;
foreach(lc2, withlist)
{
CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc2);
if (strcmp(rv->relname, cte->ctename) == 0)
return false; /* yes, so bail out */
}
}
/* No, could be a reference to the query level we are working on */
mycte = cstate->items[cstate->curitem].cte;
if (strcmp(rv->relname, mycte->ctename) == 0)
{
/* Found a recursive reference to the active query */
if (cstate->context != RECURSION_OK)
ereport(ERROR,
(errcode(ERRCODE_INVALID_RECURSION),
errmsg(recursion_errormsgs[cstate->context],
mycte->ctename),
parser_errposition(cstate->pstate,
rv->location)));
/* Count references */
if (++(cstate->selfrefcount) > 1)
ereport(ERROR,
(errcode(ERRCODE_INVALID_RECURSION),
errmsg("recursive reference to query \"%s\" must not appear more than once",
mycte->ctename),
parser_errposition(cstate->pstate,
rv->location)));
}
}
return false;
}
if (IsA(node, SelectStmt))
{
SelectStmt *stmt = (SelectStmt *) node;
ListCell *lc;
if (stmt->withClause)
{
if (stmt->withClause->recursive)
{
/*
* In the RECURSIVE case, all query names of the WITH are
* visible to all WITH items as well as the main query. So
* push them all on, process, pop them all off.
*/
cstate->innerwiths = lcons(stmt->withClause->ctes,
cstate->innerwiths);
foreach(lc, stmt->withClause->ctes)
{
CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
(void) checkWellFormedRecursionWalker(cte->ctequery, cstate);
}
checkWellFormedSelectStmt(stmt, cstate);
cstate->innerwiths = list_delete_first(cstate->innerwiths);
}
else
{
/*
* In the non-RECURSIVE case, query names are visible to the
* WITH items after them and to the main query.
*/
cstate->innerwiths = lcons(NIL, cstate->innerwiths);
foreach(lc, stmt->withClause->ctes)
{
CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
ListCell *cell1;
(void) checkWellFormedRecursionWalker(cte->ctequery, cstate);
/* note that recursion could mutate innerwiths list */
cell1 = list_head(cstate->innerwiths);
lfirst(cell1) = lappend((List *) lfirst(cell1), cte);
}
checkWellFormedSelectStmt(stmt, cstate);
cstate->innerwiths = list_delete_first(cstate->innerwiths);
}
}
else
checkWellFormedSelectStmt(stmt, cstate);
/* We're done examining the SelectStmt */
return false;
}
if (IsA(node, WithClause))
{
/*
* Prevent raw_expression_tree_walker from recursing directly into a
* WITH clause. We need that to happen only under the control of the
* code above.
*/
return false;
}
if (IsA(node, JoinExpr))
{
JoinExpr *j = (JoinExpr *) node;
switch (j->jointype)
{
case JOIN_INNER:
checkWellFormedRecursionWalker(j->larg, cstate);
checkWellFormedRecursionWalker(j->rarg, cstate);
checkWellFormedRecursionWalker(j->quals, cstate);
break;
case JOIN_LEFT:
checkWellFormedRecursionWalker(j->larg, cstate);
if (save_context == RECURSION_OK)
cstate->context = RECURSION_OUTERJOIN;
checkWellFormedRecursionWalker(j->rarg, cstate);
cstate->context = save_context;
checkWellFormedRecursionWalker(j->quals, cstate);
break;
case JOIN_FULL:
if (save_context == RECURSION_OK)
cstate->context = RECURSION_OUTERJOIN;
checkWellFormedRecursionWalker(j->larg, cstate);
checkWellFormedRecursionWalker(j->rarg, cstate);
cstate->context = save_context;
checkWellFormedRecursionWalker(j->quals, cstate);
break;
case JOIN_RIGHT:
if (save_context == RECURSION_OK)
cstate->context = RECURSION_OUTERJOIN;
checkWellFormedRecursionWalker(j->larg, cstate);
cstate->context = save_context;
checkWellFormedRecursionWalker(j->rarg, cstate);
checkWellFormedRecursionWalker(j->quals, cstate);
break;
default:
elog(ERROR, "unrecognized join type: %d",
(int) j->jointype);
}
return false;
}
if (IsA(node, SubLink))
{
SubLink *sl = (SubLink *) node;
/*
* we intentionally override outer context, since subquery is
* independent
*/
cstate->context = RECURSION_SUBLINK;
checkWellFormedRecursionWalker(sl->subselect, cstate);
cstate->context = save_context;
checkWellFormedRecursionWalker(sl->testexpr, cstate);
return false;
}
return raw_expression_tree_walker(node,
checkWellFormedRecursionWalker,
(void *) cstate);
}
/*
* subroutine for checkWellFormedRecursionWalker: process a SelectStmt
* without worrying about its WITH clause
*/
static void
checkWellFormedSelectStmt(SelectStmt *stmt, CteState *cstate)
{
RecursionContext save_context = cstate->context;
if (save_context != RECURSION_OK)
{
/* just recurse without changing state */
raw_expression_tree_walker((Node *) stmt,
checkWellFormedRecursionWalker,
(void *) cstate);
}
else
{
switch (stmt->op)
{
case SETOP_NONE:
case SETOP_UNION:
raw_expression_tree_walker((Node *) stmt,
checkWellFormedRecursionWalker,
(void *) cstate);
break;
case SETOP_INTERSECT:
if (stmt->all)
cstate->context = RECURSION_INTERSECT;
checkWellFormedRecursionWalker((Node *) stmt->larg,
cstate);
checkWellFormedRecursionWalker((Node *) stmt->rarg,
cstate);
cstate->context = save_context;
checkWellFormedRecursionWalker((Node *) stmt->sortClause,
cstate);
checkWellFormedRecursionWalker((Node *) stmt->limitOffset,
cstate);
checkWellFormedRecursionWalker((Node *) stmt->limitCount,
cstate);
checkWellFormedRecursionWalker((Node *) stmt->lockingClause,
cstate);
/* stmt->withClause is intentionally ignored here */
break;
case SETOP_EXCEPT:
if (stmt->all)
cstate->context = RECURSION_EXCEPT;
checkWellFormedRecursionWalker((Node *) stmt->larg,
cstate);
cstate->context = RECURSION_EXCEPT;
checkWellFormedRecursionWalker((Node *) stmt->rarg,
cstate);
cstate->context = save_context;
checkWellFormedRecursionWalker((Node *) stmt->sortClause,
cstate);
checkWellFormedRecursionWalker((Node *) stmt->limitOffset,
cstate);
checkWellFormedRecursionWalker((Node *) stmt->limitCount,
cstate);
checkWellFormedRecursionWalker((Node *) stmt->lockingClause,
cstate);
/* stmt->withClause is intentionally ignored here */
break;
default:
elog(ERROR, "unrecognized set op: %d",
(int) stmt->op);
}
}
}