postgresql/src/backend/utils/adt/lockfuncs.c

952 lines
24 KiB
C

/*-------------------------------------------------------------------------
*
* lockfuncs.c
* Functions for SQL access to various lock-manager capabilities.
*
* Copyright (c) 2002-2017, PostgreSQL Global Development Group
*
* IDENTIFICATION
* src/backend/utils/adt/lockfuncs.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/xact.h"
#include "catalog/pg_type.h"
#include "funcapi.h"
#include "miscadmin.h"
#include "storage/predicate_internals.h"
#include "utils/array.h"
#include "utils/builtins.h"
/* This must match enum LockTagType! */
const char *const LockTagTypeNames[] = {
"relation",
"extend",
"page",
"tuple",
"transactionid",
"virtualxid",
"speculative token",
"object",
"userlock",
"advisory"
};
/* This must match enum PredicateLockTargetType (predicate_internals.h) */
static const char *const PredicateLockTagTypeNames[] = {
"relation",
"page",
"tuple"
};
/* Working status for pg_lock_status */
typedef struct
{
LockData *lockData; /* state data from lmgr */
int currIdx; /* current PROCLOCK index */
PredicateLockData *predLockData; /* state data for pred locks */
int predLockIdx; /* current index for pred lock */
} PG_Lock_Status;
/* Number of columns in pg_locks output */
#define NUM_LOCK_STATUS_COLUMNS 15
/*
* VXIDGetDatum - Construct a text representation of a VXID
*
* This is currently only used in pg_lock_status, so we put it here.
*/
static Datum
VXIDGetDatum(BackendId bid, LocalTransactionId lxid)
{
/*
* The representation is "<bid>/<lxid>", decimal and unsigned decimal
* respectively. Note that elog.c also knows how to format a vxid.
*/
char vxidstr[32];
snprintf(vxidstr, sizeof(vxidstr), "%d/%u", bid, lxid);
return CStringGetTextDatum(vxidstr);
}
/*
* pg_lock_status - produce a view with one row per held or awaited lock mode
*/
Datum
pg_lock_status(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
PG_Lock_Status *mystatus;
LockData *lockData;
PredicateLockData *predLockData;
if (SRF_IS_FIRSTCALL())
{
TupleDesc tupdesc;
MemoryContext oldcontext;
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
* switch to memory context appropriate for multiple function calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* build tupdesc for result tuples */
/* this had better match function's declaration in pg_proc.h */
tupdesc = CreateTemplateTupleDesc(NUM_LOCK_STATUS_COLUMNS, false);
TupleDescInitEntry(tupdesc, (AttrNumber) 1, "locktype",
TEXTOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 2, "database",
OIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 3, "relation",
OIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 4, "page",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 5, "tuple",
INT2OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 6, "virtualxid",
TEXTOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 7, "transactionid",
XIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 8, "classid",
OIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 9, "objid",
OIDOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 10, "objsubid",
INT2OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 11, "virtualtransaction",
TEXTOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 12, "pid",
INT4OID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 13, "mode",
TEXTOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 14, "granted",
BOOLOID, -1, 0);
TupleDescInitEntry(tupdesc, (AttrNumber) 15, "fastpath",
BOOLOID, -1, 0);
funcctx->tuple_desc = BlessTupleDesc(tupdesc);
/*
* Collect all the locking information that we will format and send
* out as a result set.
*/
mystatus = (PG_Lock_Status *) palloc(sizeof(PG_Lock_Status));
funcctx->user_fctx = (void *) mystatus;
mystatus->lockData = GetLockStatusData();
mystatus->currIdx = 0;
mystatus->predLockData = GetPredicateLockStatusData();
mystatus->predLockIdx = 0;
MemoryContextSwitchTo(oldcontext);
}
funcctx = SRF_PERCALL_SETUP();
mystatus = (PG_Lock_Status *) funcctx->user_fctx;
lockData = mystatus->lockData;
while (mystatus->currIdx < lockData->nelements)
{
bool granted;
LOCKMODE mode = 0;
const char *locktypename;
char tnbuf[32];
Datum values[NUM_LOCK_STATUS_COLUMNS];
bool nulls[NUM_LOCK_STATUS_COLUMNS];
HeapTuple tuple;
Datum result;
LockInstanceData *instance;
instance = &(lockData->locks[mystatus->currIdx]);
/*
* Look to see if there are any held lock modes in this PROCLOCK. If
* so, report, and destructively modify lockData so we don't report
* again.
*/
granted = false;
if (instance->holdMask)
{
for (mode = 0; mode < MAX_LOCKMODES; mode++)
{
if (instance->holdMask & LOCKBIT_ON(mode))
{
granted = true;
instance->holdMask &= LOCKBIT_OFF(mode);
break;
}
}
}
/*
* If no (more) held modes to report, see if PROC is waiting for a
* lock on this lock.
*/
if (!granted)
{
if (instance->waitLockMode != NoLock)
{
/* Yes, so report it with proper mode */
mode = instance->waitLockMode;
/*
* We are now done with this PROCLOCK, so advance pointer to
* continue with next one on next call.
*/
mystatus->currIdx++;
}
else
{
/*
* Okay, we've displayed all the locks associated with this
* PROCLOCK, proceed to the next one.
*/
mystatus->currIdx++;
continue;
}
}
/*
* Form tuple with appropriate data.
*/
MemSet(values, 0, sizeof(values));
MemSet(nulls, false, sizeof(nulls));
if (instance->locktag.locktag_type <= LOCKTAG_LAST_TYPE)
locktypename = LockTagTypeNames[instance->locktag.locktag_type];
else
{
snprintf(tnbuf, sizeof(tnbuf), "unknown %d",
(int) instance->locktag.locktag_type);
locktypename = tnbuf;
}
values[0] = CStringGetTextDatum(locktypename);
switch ((LockTagType) instance->locktag.locktag_type)
{
case LOCKTAG_RELATION:
case LOCKTAG_RELATION_EXTEND:
values[1] = ObjectIdGetDatum(instance->locktag.locktag_field1);
values[2] = ObjectIdGetDatum(instance->locktag.locktag_field2);
nulls[3] = true;
nulls[4] = true;
nulls[5] = true;
nulls[6] = true;
nulls[7] = true;
nulls[8] = true;
nulls[9] = true;
break;
case LOCKTAG_PAGE:
values[1] = ObjectIdGetDatum(instance->locktag.locktag_field1);
values[2] = ObjectIdGetDatum(instance->locktag.locktag_field2);
values[3] = UInt32GetDatum(instance->locktag.locktag_field3);
nulls[4] = true;
nulls[5] = true;
nulls[6] = true;
nulls[7] = true;
nulls[8] = true;
nulls[9] = true;
break;
case LOCKTAG_TUPLE:
values[1] = ObjectIdGetDatum(instance->locktag.locktag_field1);
values[2] = ObjectIdGetDatum(instance->locktag.locktag_field2);
values[3] = UInt32GetDatum(instance->locktag.locktag_field3);
values[4] = UInt16GetDatum(instance->locktag.locktag_field4);
nulls[5] = true;
nulls[6] = true;
nulls[7] = true;
nulls[8] = true;
nulls[9] = true;
break;
case LOCKTAG_TRANSACTION:
values[6] =
TransactionIdGetDatum(instance->locktag.locktag_field1);
nulls[1] = true;
nulls[2] = true;
nulls[3] = true;
nulls[4] = true;
nulls[5] = true;
nulls[7] = true;
nulls[8] = true;
nulls[9] = true;
break;
case LOCKTAG_VIRTUALTRANSACTION:
values[5] = VXIDGetDatum(instance->locktag.locktag_field1,
instance->locktag.locktag_field2);
nulls[1] = true;
nulls[2] = true;
nulls[3] = true;
nulls[4] = true;
nulls[6] = true;
nulls[7] = true;
nulls[8] = true;
nulls[9] = true;
break;
case LOCKTAG_OBJECT:
case LOCKTAG_USERLOCK:
case LOCKTAG_ADVISORY:
default: /* treat unknown locktags like OBJECT */
values[1] = ObjectIdGetDatum(instance->locktag.locktag_field1);
values[7] = ObjectIdGetDatum(instance->locktag.locktag_field2);
values[8] = ObjectIdGetDatum(instance->locktag.locktag_field3);
values[9] = Int16GetDatum(instance->locktag.locktag_field4);
nulls[2] = true;
nulls[3] = true;
nulls[4] = true;
nulls[5] = true;
nulls[6] = true;
break;
}
values[10] = VXIDGetDatum(instance->backend, instance->lxid);
if (instance->pid != 0)
values[11] = Int32GetDatum(instance->pid);
else
nulls[11] = true;
values[12] = CStringGetTextDatum(GetLockmodeName(instance->locktag.locktag_lockmethodid, mode));
values[13] = BoolGetDatum(granted);
values[14] = BoolGetDatum(instance->fastpath);
tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls);
result = HeapTupleGetDatum(tuple);
SRF_RETURN_NEXT(funcctx, result);
}
/*
* Have returned all regular locks. Now start on the SIREAD predicate
* locks.
*/
predLockData = mystatus->predLockData;
if (mystatus->predLockIdx < predLockData->nelements)
{
PredicateLockTargetType lockType;
PREDICATELOCKTARGETTAG *predTag = &(predLockData->locktags[mystatus->predLockIdx]);
SERIALIZABLEXACT *xact = &(predLockData->xacts[mystatus->predLockIdx]);
Datum values[NUM_LOCK_STATUS_COLUMNS];
bool nulls[NUM_LOCK_STATUS_COLUMNS];
HeapTuple tuple;
Datum result;
mystatus->predLockIdx++;
/*
* Form tuple with appropriate data.
*/
MemSet(values, 0, sizeof(values));
MemSet(nulls, false, sizeof(nulls));
/* lock type */
lockType = GET_PREDICATELOCKTARGETTAG_TYPE(*predTag);
values[0] = CStringGetTextDatum(PredicateLockTagTypeNames[lockType]);
/* lock target */
values[1] = GET_PREDICATELOCKTARGETTAG_DB(*predTag);
values[2] = GET_PREDICATELOCKTARGETTAG_RELATION(*predTag);
if (lockType == PREDLOCKTAG_TUPLE)
values[4] = GET_PREDICATELOCKTARGETTAG_OFFSET(*predTag);
else
nulls[4] = true;
if ((lockType == PREDLOCKTAG_TUPLE) ||
(lockType == PREDLOCKTAG_PAGE))
values[3] = GET_PREDICATELOCKTARGETTAG_PAGE(*predTag);
else
nulls[3] = true;
/* these fields are targets for other types of locks */
nulls[5] = true; /* virtualxid */
nulls[6] = true; /* transactionid */
nulls[7] = true; /* classid */
nulls[8] = true; /* objid */
nulls[9] = true; /* objsubid */
/* lock holder */
values[10] = VXIDGetDatum(xact->vxid.backendId,
xact->vxid.localTransactionId);
if (xact->pid != 0)
values[11] = Int32GetDatum(xact->pid);
else
nulls[11] = true;
/*
* Lock mode. Currently all predicate locks are SIReadLocks, which are
* always held (never waiting) and have no fast path
*/
values[12] = CStringGetTextDatum("SIReadLock");
values[13] = BoolGetDatum(true);
values[14] = BoolGetDatum(false);
tuple = heap_form_tuple(funcctx->tuple_desc, values, nulls);
result = HeapTupleGetDatum(tuple);
SRF_RETURN_NEXT(funcctx, result);
}
SRF_RETURN_DONE(funcctx);
}
/*
* pg_blocking_pids - produce an array of the PIDs blocking given PID
*
* The reported PIDs are those that hold a lock conflicting with blocked_pid's
* current request (hard block), or are requesting such a lock and are ahead
* of blocked_pid in the lock's wait queue (soft block).
*
* In parallel-query cases, we report all PIDs blocking any member of the
* given PID's lock group, and the reported PIDs are those of the blocking
* PIDs' lock group leaders. This allows callers to compare the result to
* lists of clients' pg_backend_pid() results even during a parallel query.
*
* Parallel query makes it possible for there to be duplicate PIDs in the
* result (either because multiple waiters are blocked by same PID, or
* because multiple blockers have same group leader PID). We do not bother
* to eliminate such duplicates from the result.
*
* We need not consider predicate locks here, since those don't block anything.
*/
Datum
pg_blocking_pids(PG_FUNCTION_ARGS)
{
int blocked_pid = PG_GETARG_INT32(0);
Datum *arrayelems;
int narrayelems;
BlockedProcsData *lockData; /* state data from lmgr */
int i,
j;
/* Collect a snapshot of lock manager state */
lockData = GetBlockerStatusData(blocked_pid);
/* We can't need more output entries than there are reported PROCLOCKs */
arrayelems = (Datum *) palloc(lockData->nlocks * sizeof(Datum));
narrayelems = 0;
/* For each blocked proc in the lock group ... */
for (i = 0; i < lockData->nprocs; i++)
{
BlockedProcData *bproc = &lockData->procs[i];
LockInstanceData *instances = &lockData->locks[bproc->first_lock];
int *preceding_waiters = &lockData->waiter_pids[bproc->first_waiter];
LockInstanceData *blocked_instance;
LockMethod lockMethodTable;
int conflictMask;
/*
* Locate the blocked proc's own entry in the LockInstanceData array.
* There should be exactly one matching entry.
*/
blocked_instance = NULL;
for (j = 0; j < bproc->num_locks; j++)
{
LockInstanceData *instance = &(instances[j]);
if (instance->pid == bproc->pid)
{
Assert(blocked_instance == NULL);
blocked_instance = instance;
}
}
Assert(blocked_instance != NULL);
lockMethodTable = GetLockTagsMethodTable(&(blocked_instance->locktag));
conflictMask = lockMethodTable->conflictTab[blocked_instance->waitLockMode];
/* Now scan the PROCLOCK data for conflicting procs */
for (j = 0; j < bproc->num_locks; j++)
{
LockInstanceData *instance = &(instances[j]);
/* A proc never blocks itself, so ignore that entry */
if (instance == blocked_instance)
continue;
/* Members of same lock group never block each other, either */
if (instance->leaderPid == blocked_instance->leaderPid)
continue;
if (conflictMask & instance->holdMask)
{
/* hard block: blocked by lock already held by this entry */
}
else if (instance->waitLockMode != NoLock &&
(conflictMask & LOCKBIT_ON(instance->waitLockMode)))
{
/* conflict in lock requests; who's in front in wait queue? */
bool ahead = false;
int k;
for (k = 0; k < bproc->num_waiters; k++)
{
if (preceding_waiters[k] == instance->pid)
{
/* soft block: this entry is ahead of blocked proc */
ahead = true;
break;
}
}
if (!ahead)
continue; /* not blocked by this entry */
}
else
{
/* not blocked by this entry */
continue;
}
/* blocked by this entry, so emit a record */
arrayelems[narrayelems++] = Int32GetDatum(instance->leaderPid);
}
}
/* Assert we didn't overrun arrayelems[] */
Assert(narrayelems <= lockData->nlocks);
/* Construct array, using hardwired knowledge about int4 type */
PG_RETURN_ARRAYTYPE_P(construct_array(arrayelems, narrayelems,
INT4OID,
sizeof(int32), true, 'i'));
}
/*
* Functions for manipulating advisory locks
*
* We make use of the locktag fields as follows:
*
* field1: MyDatabaseId ... ensures locks are local to each database
* field2: first of 2 int4 keys, or high-order half of an int8 key
* field3: second of 2 int4 keys, or low-order half of an int8 key
* field4: 1 if using an int8 key, 2 if using 2 int4 keys
*/
#define SET_LOCKTAG_INT64(tag, key64) \
SET_LOCKTAG_ADVISORY(tag, \
MyDatabaseId, \
(uint32) ((key64) >> 32), \
(uint32) (key64), \
1)
#define SET_LOCKTAG_INT32(tag, key1, key2) \
SET_LOCKTAG_ADVISORY(tag, MyDatabaseId, key1, key2, 2)
static void
PreventAdvisoryLocksInParallelMode(void)
{
if (IsInParallelMode())
ereport(ERROR,
(errcode(ERRCODE_INVALID_TRANSACTION_STATE),
errmsg("cannot use advisory locks during a parallel operation")));
}
/*
* pg_advisory_lock(int8) - acquire exclusive lock on an int8 key
*/
Datum
pg_advisory_lock_int8(PG_FUNCTION_ARGS)
{
int64 key = PG_GETARG_INT64(0);
LOCKTAG tag;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT64(tag, key);
(void) LockAcquire(&tag, ExclusiveLock, true, false);
PG_RETURN_VOID();
}
/*
* pg_advisory_xact_lock(int8) - acquire xact scoped
* exclusive lock on an int8 key
*/
Datum
pg_advisory_xact_lock_int8(PG_FUNCTION_ARGS)
{
int64 key = PG_GETARG_INT64(0);
LOCKTAG tag;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT64(tag, key);
(void) LockAcquire(&tag, ExclusiveLock, false, false);
PG_RETURN_VOID();
}
/*
* pg_advisory_lock_shared(int8) - acquire share lock on an int8 key
*/
Datum
pg_advisory_lock_shared_int8(PG_FUNCTION_ARGS)
{
int64 key = PG_GETARG_INT64(0);
LOCKTAG tag;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT64(tag, key);
(void) LockAcquire(&tag, ShareLock, true, false);
PG_RETURN_VOID();
}
/*
* pg_advisory_xact_lock_shared(int8) - acquire xact scoped
* share lock on an int8 key
*/
Datum
pg_advisory_xact_lock_shared_int8(PG_FUNCTION_ARGS)
{
int64 key = PG_GETARG_INT64(0);
LOCKTAG tag;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT64(tag, key);
(void) LockAcquire(&tag, ShareLock, false, false);
PG_RETURN_VOID();
}
/*
* pg_try_advisory_lock(int8) - acquire exclusive lock on an int8 key, no wait
*
* Returns true if successful, false if lock not available
*/
Datum
pg_try_advisory_lock_int8(PG_FUNCTION_ARGS)
{
int64 key = PG_GETARG_INT64(0);
LOCKTAG tag;
LockAcquireResult res;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT64(tag, key);
res = LockAcquire(&tag, ExclusiveLock, true, true);
PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL);
}
/*
* pg_try_advisory_xact_lock(int8) - acquire xact scoped
* exclusive lock on an int8 key, no wait
*
* Returns true if successful, false if lock not available
*/
Datum
pg_try_advisory_xact_lock_int8(PG_FUNCTION_ARGS)
{
int64 key = PG_GETARG_INT64(0);
LOCKTAG tag;
LockAcquireResult res;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT64(tag, key);
res = LockAcquire(&tag, ExclusiveLock, false, true);
PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL);
}
/*
* pg_try_advisory_lock_shared(int8) - acquire share lock on an int8 key, no wait
*
* Returns true if successful, false if lock not available
*/
Datum
pg_try_advisory_lock_shared_int8(PG_FUNCTION_ARGS)
{
int64 key = PG_GETARG_INT64(0);
LOCKTAG tag;
LockAcquireResult res;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT64(tag, key);
res = LockAcquire(&tag, ShareLock, true, true);
PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL);
}
/*
* pg_try_advisory_xact_lock_shared(int8) - acquire xact scoped
* share lock on an int8 key, no wait
*
* Returns true if successful, false if lock not available
*/
Datum
pg_try_advisory_xact_lock_shared_int8(PG_FUNCTION_ARGS)
{
int64 key = PG_GETARG_INT64(0);
LOCKTAG tag;
LockAcquireResult res;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT64(tag, key);
res = LockAcquire(&tag, ShareLock, false, true);
PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL);
}
/*
* pg_advisory_unlock(int8) - release exclusive lock on an int8 key
*
* Returns true if successful, false if lock was not held
*/
Datum
pg_advisory_unlock_int8(PG_FUNCTION_ARGS)
{
int64 key = PG_GETARG_INT64(0);
LOCKTAG tag;
bool res;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT64(tag, key);
res = LockRelease(&tag, ExclusiveLock, true);
PG_RETURN_BOOL(res);
}
/*
* pg_advisory_unlock_shared(int8) - release share lock on an int8 key
*
* Returns true if successful, false if lock was not held
*/
Datum
pg_advisory_unlock_shared_int8(PG_FUNCTION_ARGS)
{
int64 key = PG_GETARG_INT64(0);
LOCKTAG tag;
bool res;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT64(tag, key);
res = LockRelease(&tag, ShareLock, true);
PG_RETURN_BOOL(res);
}
/*
* pg_advisory_lock(int4, int4) - acquire exclusive lock on 2 int4 keys
*/
Datum
pg_advisory_lock_int4(PG_FUNCTION_ARGS)
{
int32 key1 = PG_GETARG_INT32(0);
int32 key2 = PG_GETARG_INT32(1);
LOCKTAG tag;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT32(tag, key1, key2);
(void) LockAcquire(&tag, ExclusiveLock, true, false);
PG_RETURN_VOID();
}
/*
* pg_advisory_xact_lock(int4, int4) - acquire xact scoped
* exclusive lock on 2 int4 keys
*/
Datum
pg_advisory_xact_lock_int4(PG_FUNCTION_ARGS)
{
int32 key1 = PG_GETARG_INT32(0);
int32 key2 = PG_GETARG_INT32(1);
LOCKTAG tag;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT32(tag, key1, key2);
(void) LockAcquire(&tag, ExclusiveLock, false, false);
PG_RETURN_VOID();
}
/*
* pg_advisory_lock_shared(int4, int4) - acquire share lock on 2 int4 keys
*/
Datum
pg_advisory_lock_shared_int4(PG_FUNCTION_ARGS)
{
int32 key1 = PG_GETARG_INT32(0);
int32 key2 = PG_GETARG_INT32(1);
LOCKTAG tag;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT32(tag, key1, key2);
(void) LockAcquire(&tag, ShareLock, true, false);
PG_RETURN_VOID();
}
/*
* pg_advisory_xact_lock_shared(int4, int4) - acquire xact scoped
* share lock on 2 int4 keys
*/
Datum
pg_advisory_xact_lock_shared_int4(PG_FUNCTION_ARGS)
{
int32 key1 = PG_GETARG_INT32(0);
int32 key2 = PG_GETARG_INT32(1);
LOCKTAG tag;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT32(tag, key1, key2);
(void) LockAcquire(&tag, ShareLock, false, false);
PG_RETURN_VOID();
}
/*
* pg_try_advisory_lock(int4, int4) - acquire exclusive lock on 2 int4 keys, no wait
*
* Returns true if successful, false if lock not available
*/
Datum
pg_try_advisory_lock_int4(PG_FUNCTION_ARGS)
{
int32 key1 = PG_GETARG_INT32(0);
int32 key2 = PG_GETARG_INT32(1);
LOCKTAG tag;
LockAcquireResult res;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT32(tag, key1, key2);
res = LockAcquire(&tag, ExclusiveLock, true, true);
PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL);
}
/*
* pg_try_advisory_xact_lock(int4, int4) - acquire xact scoped
* exclusive lock on 2 int4 keys, no wait
*
* Returns true if successful, false if lock not available
*/
Datum
pg_try_advisory_xact_lock_int4(PG_FUNCTION_ARGS)
{
int32 key1 = PG_GETARG_INT32(0);
int32 key2 = PG_GETARG_INT32(1);
LOCKTAG tag;
LockAcquireResult res;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT32(tag, key1, key2);
res = LockAcquire(&tag, ExclusiveLock, false, true);
PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL);
}
/*
* pg_try_advisory_lock_shared(int4, int4) - acquire share lock on 2 int4 keys, no wait
*
* Returns true if successful, false if lock not available
*/
Datum
pg_try_advisory_lock_shared_int4(PG_FUNCTION_ARGS)
{
int32 key1 = PG_GETARG_INT32(0);
int32 key2 = PG_GETARG_INT32(1);
LOCKTAG tag;
LockAcquireResult res;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT32(tag, key1, key2);
res = LockAcquire(&tag, ShareLock, true, true);
PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL);
}
/*
* pg_try_advisory_xact_lock_shared(int4, int4) - acquire xact scoped
* share lock on 2 int4 keys, no wait
*
* Returns true if successful, false if lock not available
*/
Datum
pg_try_advisory_xact_lock_shared_int4(PG_FUNCTION_ARGS)
{
int32 key1 = PG_GETARG_INT32(0);
int32 key2 = PG_GETARG_INT32(1);
LOCKTAG tag;
LockAcquireResult res;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT32(tag, key1, key2);
res = LockAcquire(&tag, ShareLock, false, true);
PG_RETURN_BOOL(res != LOCKACQUIRE_NOT_AVAIL);
}
/*
* pg_advisory_unlock(int4, int4) - release exclusive lock on 2 int4 keys
*
* Returns true if successful, false if lock was not held
*/
Datum
pg_advisory_unlock_int4(PG_FUNCTION_ARGS)
{
int32 key1 = PG_GETARG_INT32(0);
int32 key2 = PG_GETARG_INT32(1);
LOCKTAG tag;
bool res;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT32(tag, key1, key2);
res = LockRelease(&tag, ExclusiveLock, true);
PG_RETURN_BOOL(res);
}
/*
* pg_advisory_unlock_shared(int4, int4) - release share lock on 2 int4 keys
*
* Returns true if successful, false if lock was not held
*/
Datum
pg_advisory_unlock_shared_int4(PG_FUNCTION_ARGS)
{
int32 key1 = PG_GETARG_INT32(0);
int32 key2 = PG_GETARG_INT32(1);
LOCKTAG tag;
bool res;
PreventAdvisoryLocksInParallelMode();
SET_LOCKTAG_INT32(tag, key1, key2);
res = LockRelease(&tag, ShareLock, true);
PG_RETURN_BOOL(res);
}
/*
* pg_advisory_unlock_all() - release all advisory locks
*/
Datum
pg_advisory_unlock_all(PG_FUNCTION_ARGS)
{
LockReleaseSession(USER_LOCKMETHOD);
PG_RETURN_VOID();
}