postgresql/src/backend/executor/nodeNestloop.c

412 lines
11 KiB
C

/*-------------------------------------------------------------------------
*
* nodeNestloop.c
* routines to support nest-loop joins
*
* Portions Copyright (c) 1996-2022, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/nodeNestloop.c
*
*-------------------------------------------------------------------------
*/
/*
* INTERFACE ROUTINES
* ExecNestLoop - process a nestloop join of two plans
* ExecInitNestLoop - initialize the join
* ExecEndNestLoop - shut down the join
*/
#include "postgres.h"
#include "executor/execdebug.h"
#include "executor/nodeNestloop.h"
#include "miscadmin.h"
#include "utils/memutils.h"
/* ----------------------------------------------------------------
* ExecNestLoop(node)
*
* old comments
* Returns the tuple joined from inner and outer tuples which
* satisfies the qualification clause.
*
* It scans the inner relation to join with current outer tuple.
*
* If none is found, next tuple from the outer relation is retrieved
* and the inner relation is scanned from the beginning again to join
* with the outer tuple.
*
* NULL is returned if all the remaining outer tuples are tried and
* all fail to join with the inner tuples.
*
* NULL is also returned if there is no tuple from inner relation.
*
* Conditions:
* -- outerTuple contains current tuple from outer relation and
* the right son(inner relation) maintains "cursor" at the tuple
* returned previously.
* This is achieved by maintaining a scan position on the outer
* relation.
*
* Initial States:
* -- the outer child and the inner child
* are prepared to return the first tuple.
* ----------------------------------------------------------------
*/
static TupleTableSlot *
ExecNestLoop(PlanState *pstate)
{
NestLoopState *node = castNode(NestLoopState, pstate);
NestLoop *nl;
PlanState *innerPlan;
PlanState *outerPlan;
TupleTableSlot *outerTupleSlot;
TupleTableSlot *innerTupleSlot;
ExprState *joinqual;
ExprState *otherqual;
ExprContext *econtext;
ListCell *lc;
CHECK_FOR_INTERRUPTS();
/*
* get information from the node
*/
ENL1_printf("getting info from node");
nl = (NestLoop *) node->js.ps.plan;
joinqual = node->js.joinqual;
otherqual = node->js.ps.qual;
outerPlan = outerPlanState(node);
innerPlan = innerPlanState(node);
econtext = node->js.ps.ps_ExprContext;
/*
* Reset per-tuple memory context to free any expression evaluation
* storage allocated in the previous tuple cycle.
*/
ResetExprContext(econtext);
/*
* Ok, everything is setup for the join so now loop until we return a
* qualifying join tuple.
*/
ENL1_printf("entering main loop");
for (;;)
{
/*
* If we don't have an outer tuple, get the next one and reset the
* inner scan.
*/
if (node->nl_NeedNewOuter)
{
ENL1_printf("getting new outer tuple");
outerTupleSlot = ExecProcNode(outerPlan);
/*
* if there are no more outer tuples, then the join is complete..
*/
if (TupIsNull(outerTupleSlot))
{
ENL1_printf("no outer tuple, ending join");
return NULL;
}
ENL1_printf("saving new outer tuple information");
econtext->ecxt_outertuple = outerTupleSlot;
node->nl_NeedNewOuter = false;
node->nl_MatchedOuter = false;
/*
* fetch the values of any outer Vars that must be passed to the
* inner scan, and store them in the appropriate PARAM_EXEC slots.
*/
foreach(lc, nl->nestParams)
{
NestLoopParam *nlp = (NestLoopParam *) lfirst(lc);
int paramno = nlp->paramno;
ParamExecData *prm;
prm = &(econtext->ecxt_param_exec_vals[paramno]);
/* Param value should be an OUTER_VAR var */
Assert(IsA(nlp->paramval, Var));
Assert(nlp->paramval->varno == OUTER_VAR);
Assert(nlp->paramval->varattno > 0);
prm->value = slot_getattr(outerTupleSlot,
nlp->paramval->varattno,
&(prm->isnull));
/* Flag parameter value as changed */
innerPlan->chgParam = bms_add_member(innerPlan->chgParam,
paramno);
}
/*
* now rescan the inner plan
*/
ENL1_printf("rescanning inner plan");
ExecReScan(innerPlan);
}
/*
* we have an outerTuple, try to get the next inner tuple.
*/
ENL1_printf("getting new inner tuple");
innerTupleSlot = ExecProcNode(innerPlan);
econtext->ecxt_innertuple = innerTupleSlot;
if (TupIsNull(innerTupleSlot))
{
ENL1_printf("no inner tuple, need new outer tuple");
node->nl_NeedNewOuter = true;
if (!node->nl_MatchedOuter &&
(node->js.jointype == JOIN_LEFT ||
node->js.jointype == JOIN_ANTI))
{
/*
* We are doing an outer join and there were no join matches
* for this outer tuple. Generate a fake join tuple with
* nulls for the inner tuple, and return it if it passes the
* non-join quals.
*/
econtext->ecxt_innertuple = node->nl_NullInnerTupleSlot;
ENL1_printf("testing qualification for outer-join tuple");
if (otherqual == NULL || ExecQual(otherqual, econtext))
{
/*
* qualification was satisfied so we project and return
* the slot containing the result tuple using
* ExecProject().
*/
ENL1_printf("qualification succeeded, projecting tuple");
return ExecProject(node->js.ps.ps_ProjInfo);
}
else
InstrCountFiltered2(node, 1);
}
/*
* Otherwise just return to top of loop for a new outer tuple.
*/
continue;
}
/*
* at this point we have a new pair of inner and outer tuples so we
* test the inner and outer tuples to see if they satisfy the node's
* qualification.
*
* Only the joinquals determine MatchedOuter status, but all quals
* must pass to actually return the tuple.
*/
ENL1_printf("testing qualification");
if (ExecQual(joinqual, econtext))
{
node->nl_MatchedOuter = true;
/* In an antijoin, we never return a matched tuple */
if (node->js.jointype == JOIN_ANTI)
{
node->nl_NeedNewOuter = true;
continue; /* return to top of loop */
}
/*
* If we only need to join to the first matching inner tuple, then
* consider returning this one, but after that continue with next
* outer tuple.
*/
if (node->js.single_match)
node->nl_NeedNewOuter = true;
if (otherqual == NULL || ExecQual(otherqual, econtext))
{
/*
* qualification was satisfied so we project and return the
* slot containing the result tuple using ExecProject().
*/
ENL1_printf("qualification succeeded, projecting tuple");
return ExecProject(node->js.ps.ps_ProjInfo);
}
else
InstrCountFiltered2(node, 1);
}
else
InstrCountFiltered1(node, 1);
/*
* Tuple fails qual, so free per-tuple memory and try again.
*/
ResetExprContext(econtext);
ENL1_printf("qualification failed, looping");
}
}
/* ----------------------------------------------------------------
* ExecInitNestLoop
* ----------------------------------------------------------------
*/
NestLoopState *
ExecInitNestLoop(NestLoop *node, EState *estate, int eflags)
{
NestLoopState *nlstate;
/* check for unsupported flags */
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
NL1_printf("ExecInitNestLoop: %s\n",
"initializing node");
/*
* create state structure
*/
nlstate = makeNode(NestLoopState);
nlstate->js.ps.plan = (Plan *) node;
nlstate->js.ps.state = estate;
nlstate->js.ps.ExecProcNode = ExecNestLoop;
/*
* Miscellaneous initialization
*
* create expression context for node
*/
ExecAssignExprContext(estate, &nlstate->js.ps);
/*
* initialize child nodes
*
* If we have no parameters to pass into the inner rel from the outer,
* tell the inner child that cheap rescans would be good. If we do have
* such parameters, then there is no point in REWIND support at all in the
* inner child, because it will always be rescanned with fresh parameter
* values.
*/
outerPlanState(nlstate) = ExecInitNode(outerPlan(node), estate, eflags);
if (node->nestParams == NIL)
eflags |= EXEC_FLAG_REWIND;
else
eflags &= ~EXEC_FLAG_REWIND;
innerPlanState(nlstate) = ExecInitNode(innerPlan(node), estate, eflags);
/*
* Initialize result slot, type and projection.
*/
ExecInitResultTupleSlotTL(&nlstate->js.ps, &TTSOpsVirtual);
ExecAssignProjectionInfo(&nlstate->js.ps, NULL);
/*
* initialize child expressions
*/
nlstate->js.ps.qual =
ExecInitQual(node->join.plan.qual, (PlanState *) nlstate);
nlstate->js.jointype = node->join.jointype;
nlstate->js.joinqual =
ExecInitQual(node->join.joinqual, (PlanState *) nlstate);
/*
* detect whether we need only consider the first matching inner tuple
*/
nlstate->js.single_match = (node->join.inner_unique ||
node->join.jointype == JOIN_SEMI);
/* set up null tuples for outer joins, if needed */
switch (node->join.jointype)
{
case JOIN_INNER:
case JOIN_SEMI:
break;
case JOIN_LEFT:
case JOIN_ANTI:
nlstate->nl_NullInnerTupleSlot =
ExecInitNullTupleSlot(estate,
ExecGetResultType(innerPlanState(nlstate)),
&TTSOpsVirtual);
break;
default:
elog(ERROR, "unrecognized join type: %d",
(int) node->join.jointype);
}
/*
* finally, wipe the current outer tuple clean.
*/
nlstate->nl_NeedNewOuter = true;
nlstate->nl_MatchedOuter = false;
NL1_printf("ExecInitNestLoop: %s\n",
"node initialized");
return nlstate;
}
/* ----------------------------------------------------------------
* ExecEndNestLoop
*
* closes down scans and frees allocated storage
* ----------------------------------------------------------------
*/
void
ExecEndNestLoop(NestLoopState *node)
{
NL1_printf("ExecEndNestLoop: %s\n",
"ending node processing");
/*
* Free the exprcontext
*/
ExecFreeExprContext(&node->js.ps);
/*
* clean out the tuple table
*/
ExecClearTuple(node->js.ps.ps_ResultTupleSlot);
/*
* close down subplans
*/
ExecEndNode(outerPlanState(node));
ExecEndNode(innerPlanState(node));
NL1_printf("ExecEndNestLoop: %s\n",
"node processing ended");
}
/* ----------------------------------------------------------------
* ExecReScanNestLoop
* ----------------------------------------------------------------
*/
void
ExecReScanNestLoop(NestLoopState *node)
{
PlanState *outerPlan = outerPlanState(node);
/*
* If outerPlan->chgParam is not null then plan will be automatically
* re-scanned by first ExecProcNode.
*/
if (outerPlan->chgParam == NULL)
ExecReScan(outerPlan);
/*
* innerPlan is re-scanned for each new outer tuple and MUST NOT be
* re-scanned from here or you'll get troubles from inner index scans when
* outer Vars are used as run-time keys...
*/
node->nl_NeedNewOuter = true;
node->nl_MatchedOuter = false;
}