postgresql/src/backend/executor/execParallel.c

878 lines
27 KiB
C

/*-------------------------------------------------------------------------
*
* execParallel.c
* Support routines for parallel execution.
*
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* This file contains routines that are intended to support setting up,
* using, and tearing down a ParallelContext from within the PostgreSQL
* executor. The ParallelContext machinery will handle starting the
* workers and ensuring that their state generally matches that of the
* leader; see src/backend/access/transam/README.parallel for details.
* However, we must save and restore relevant executor state, such as
* any ParamListInfo associated with the query, buffer usage info, and
* the actual plan to be passed down to the worker.
*
* IDENTIFICATION
* src/backend/executor/execParallel.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "executor/execParallel.h"
#include "executor/executor.h"
#include "executor/nodeBitmapHeapscan.h"
#include "executor/nodeCustom.h"
#include "executor/nodeForeignscan.h"
#include "executor/nodeSeqscan.h"
#include "executor/nodeIndexscan.h"
#include "executor/nodeIndexonlyscan.h"
#include "executor/tqueue.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "storage/spin.h"
#include "tcop/tcopprot.h"
#include "utils/dsa.h"
#include "utils/memutils.h"
#include "utils/snapmgr.h"
#include "pgstat.h"
/*
* Magic numbers for parallel executor communication. We use constants
* greater than any 32-bit integer here so that values < 2^32 can be used
* by individual parallel nodes to store their own state.
*/
#define PARALLEL_KEY_PLANNEDSTMT UINT64CONST(0xE000000000000001)
#define PARALLEL_KEY_PARAMS UINT64CONST(0xE000000000000002)
#define PARALLEL_KEY_BUFFER_USAGE UINT64CONST(0xE000000000000003)
#define PARALLEL_KEY_TUPLE_QUEUE UINT64CONST(0xE000000000000004)
#define PARALLEL_KEY_INSTRUMENTATION UINT64CONST(0xE000000000000005)
#define PARALLEL_KEY_DSA UINT64CONST(0xE000000000000006)
#define PARALLEL_KEY_QUERY_TEXT UINT64CONST(0xE000000000000007)
#define PARALLEL_TUPLE_QUEUE_SIZE 65536
/*
* DSM structure for accumulating per-PlanState instrumentation.
*
* instrument_options: Same meaning here as in instrument.c.
*
* instrument_offset: Offset, relative to the start of this structure,
* of the first Instrumentation object. This will depend on the length of
* the plan_node_id array.
*
* num_workers: Number of workers.
*
* num_plan_nodes: Number of plan nodes.
*
* plan_node_id: Array of plan nodes for which we are gathering instrumentation
* from parallel workers. The length of this array is given by num_plan_nodes.
*/
struct SharedExecutorInstrumentation
{
int instrument_options;
int instrument_offset;
int num_workers;
int num_plan_nodes;
int plan_node_id[FLEXIBLE_ARRAY_MEMBER];
/* array of num_plan_nodes * num_workers Instrumentation objects follows */
};
#define GetInstrumentationArray(sei) \
(AssertVariableIsOfTypeMacro(sei, SharedExecutorInstrumentation *), \
(Instrumentation *) (((char *) sei) + sei->instrument_offset))
/* Context object for ExecParallelEstimate. */
typedef struct ExecParallelEstimateContext
{
ParallelContext *pcxt;
int nnodes;
} ExecParallelEstimateContext;
/* Context object for ExecParallelInitializeDSM. */
typedef struct ExecParallelInitializeDSMContext
{
ParallelContext *pcxt;
SharedExecutorInstrumentation *instrumentation;
int nnodes;
} ExecParallelInitializeDSMContext;
/* Helper functions that run in the parallel leader. */
static char *ExecSerializePlan(Plan *plan, EState *estate);
static bool ExecParallelEstimate(PlanState *node,
ExecParallelEstimateContext *e);
static bool ExecParallelInitializeDSM(PlanState *node,
ExecParallelInitializeDSMContext *d);
static shm_mq_handle **ExecParallelSetupTupleQueues(ParallelContext *pcxt,
bool reinitialize);
static bool ExecParallelRetrieveInstrumentation(PlanState *planstate,
SharedExecutorInstrumentation *instrumentation);
/* Helper functions that run in the parallel worker. */
static void ParallelQueryMain(dsm_segment *seg, shm_toc *toc);
static DestReceiver *ExecParallelGetReceiver(dsm_segment *seg, shm_toc *toc);
/*
* Create a serialized representation of the plan to be sent to each worker.
*/
static char *
ExecSerializePlan(Plan *plan, EState *estate)
{
PlannedStmt *pstmt;
ListCell *tlist;
/* We can't scribble on the original plan, so make a copy. */
plan = copyObject(plan);
/*
* The worker will start its own copy of the executor, and that copy will
* insert a junk filter if the toplevel node has any resjunk entries. We
* don't want that to happen, because while resjunk columns shouldn't be
* sent back to the user, here the tuples are coming back to another
* backend which may very well need them. So mutate the target list
* accordingly. This is sort of a hack; there might be better ways to do
* this...
*/
foreach(tlist, plan->targetlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(tlist);
tle->resjunk = false;
}
/*
* Create a dummy PlannedStmt. Most of the fields don't need to be valid
* for our purposes, but the worker will need at least a minimal
* PlannedStmt to start the executor.
*/
pstmt = makeNode(PlannedStmt);
pstmt->commandType = CMD_SELECT;
pstmt->queryId = 0;
pstmt->hasReturning = false;
pstmt->hasModifyingCTE = false;
pstmt->canSetTag = true;
pstmt->transientPlan = false;
pstmt->dependsOnRole = false;
pstmt->parallelModeNeeded = false;
pstmt->planTree = plan;
pstmt->rtable = estate->es_range_table;
pstmt->resultRelations = NIL;
pstmt->nonleafResultRelations = NIL;
pstmt->subplans = estate->es_plannedstmt->subplans;
pstmt->rewindPlanIDs = NULL;
pstmt->rowMarks = NIL;
pstmt->relationOids = NIL;
pstmt->invalItems = NIL; /* workers can't replan anyway... */
pstmt->nParamExec = estate->es_plannedstmt->nParamExec;
pstmt->utilityStmt = NULL;
pstmt->stmt_location = -1;
pstmt->stmt_len = -1;
/* Return serialized copy of our dummy PlannedStmt. */
return nodeToString(pstmt);
}
/*
* Ordinary plan nodes won't do anything here, but parallel-aware plan nodes
* may need some state which is shared across all parallel workers. Before
* we size the DSM, give them a chance to call shm_toc_estimate_chunk or
* shm_toc_estimate_keys on &pcxt->estimator.
*
* While we're at it, count the number of PlanState nodes in the tree, so
* we know how many SharedPlanStateInstrumentation structures we need.
*/
static bool
ExecParallelEstimate(PlanState *planstate, ExecParallelEstimateContext *e)
{
if (planstate == NULL)
return false;
/* Count this node. */
e->nnodes++;
/* Call estimators for parallel-aware nodes. */
if (planstate->plan->parallel_aware)
{
switch (nodeTag(planstate))
{
case T_SeqScanState:
ExecSeqScanEstimate((SeqScanState *) planstate,
e->pcxt);
break;
case T_IndexScanState:
ExecIndexScanEstimate((IndexScanState *) planstate,
e->pcxt);
break;
case T_IndexOnlyScanState:
ExecIndexOnlyScanEstimate((IndexOnlyScanState *) planstate,
e->pcxt);
break;
case T_ForeignScanState:
ExecForeignScanEstimate((ForeignScanState *) planstate,
e->pcxt);
break;
case T_CustomScanState:
ExecCustomScanEstimate((CustomScanState *) planstate,
e->pcxt);
break;
case T_BitmapHeapScanState:
ExecBitmapHeapEstimate((BitmapHeapScanState *) planstate,
e->pcxt);
break;
default:
break;
}
}
return planstate_tree_walker(planstate, ExecParallelEstimate, e);
}
/*
* Initialize the dynamic shared memory segment that will be used to control
* parallel execution.
*/
static bool
ExecParallelInitializeDSM(PlanState *planstate,
ExecParallelInitializeDSMContext *d)
{
if (planstate == NULL)
return false;
/* If instrumentation is enabled, initialize slot for this node. */
if (d->instrumentation != NULL)
d->instrumentation->plan_node_id[d->nnodes] =
planstate->plan->plan_node_id;
/* Count this node. */
d->nnodes++;
/*
* Call initializers for parallel-aware plan nodes.
*
* Ordinary plan nodes won't do anything here, but parallel-aware plan
* nodes may need to initialize shared state in the DSM before parallel
* workers are available. They can allocate the space they previously
* estimated using shm_toc_allocate, and add the keys they previously
* estimated using shm_toc_insert, in each case targeting pcxt->toc.
*/
if (planstate->plan->parallel_aware)
{
switch (nodeTag(planstate))
{
case T_SeqScanState:
ExecSeqScanInitializeDSM((SeqScanState *) planstate,
d->pcxt);
break;
case T_IndexScanState:
ExecIndexScanInitializeDSM((IndexScanState *) planstate,
d->pcxt);
break;
case T_IndexOnlyScanState:
ExecIndexOnlyScanInitializeDSM((IndexOnlyScanState *) planstate,
d->pcxt);
break;
case T_ForeignScanState:
ExecForeignScanInitializeDSM((ForeignScanState *) planstate,
d->pcxt);
break;
case T_CustomScanState:
ExecCustomScanInitializeDSM((CustomScanState *) planstate,
d->pcxt);
break;
case T_BitmapHeapScanState:
ExecBitmapHeapInitializeDSM((BitmapHeapScanState *) planstate,
d->pcxt);
break;
default:
break;
}
}
return planstate_tree_walker(planstate, ExecParallelInitializeDSM, d);
}
/*
* It sets up the response queues for backend workers to return tuples
* to the main backend and start the workers.
*/
static shm_mq_handle **
ExecParallelSetupTupleQueues(ParallelContext *pcxt, bool reinitialize)
{
shm_mq_handle **responseq;
char *tqueuespace;
int i;
/* Skip this if no workers. */
if (pcxt->nworkers == 0)
return NULL;
/* Allocate memory for shared memory queue handles. */
responseq = (shm_mq_handle **)
palloc(pcxt->nworkers * sizeof(shm_mq_handle *));
/*
* If not reinitializing, allocate space from the DSM for the queues;
* otherwise, find the already allocated space.
*/
if (!reinitialize)
tqueuespace =
shm_toc_allocate(pcxt->toc,
mul_size(PARALLEL_TUPLE_QUEUE_SIZE,
pcxt->nworkers));
else
tqueuespace = shm_toc_lookup(pcxt->toc, PARALLEL_KEY_TUPLE_QUEUE);
/* Create the queues, and become the receiver for each. */
for (i = 0; i < pcxt->nworkers; ++i)
{
shm_mq *mq;
mq = shm_mq_create(tqueuespace +
((Size) i) * PARALLEL_TUPLE_QUEUE_SIZE,
(Size) PARALLEL_TUPLE_QUEUE_SIZE);
shm_mq_set_receiver(mq, MyProc);
responseq[i] = shm_mq_attach(mq, pcxt->seg, NULL);
}
/* Add array of queues to shm_toc, so others can find it. */
if (!reinitialize)
shm_toc_insert(pcxt->toc, PARALLEL_KEY_TUPLE_QUEUE, tqueuespace);
/* Return array of handles. */
return responseq;
}
/*
* Re-initialize the parallel executor info such that it can be reused by
* workers.
*/
void
ExecParallelReinitialize(ParallelExecutorInfo *pei)
{
ReinitializeParallelDSM(pei->pcxt);
pei->tqueue = ExecParallelSetupTupleQueues(pei->pcxt, true);
pei->finished = false;
}
/*
* Sets up the required infrastructure for backend workers to perform
* execution and return results to the main backend.
*/
ParallelExecutorInfo *
ExecInitParallelPlan(PlanState *planstate, EState *estate, int nworkers)
{
ParallelExecutorInfo *pei;
ParallelContext *pcxt;
ExecParallelEstimateContext e;
ExecParallelInitializeDSMContext d;
char *pstmt_data;
char *pstmt_space;
char *param_space;
BufferUsage *bufusage_space;
SharedExecutorInstrumentation *instrumentation = NULL;
int pstmt_len;
int param_len;
int instrumentation_len = 0;
int instrument_offset = 0;
Size dsa_minsize = dsa_minimum_size();
char *query_string;
int query_len;
/* Allocate object for return value. */
pei = palloc0(sizeof(ParallelExecutorInfo));
pei->finished = false;
pei->planstate = planstate;
/* Fix up and serialize plan to be sent to workers. */
pstmt_data = ExecSerializePlan(planstate->plan, estate);
/* Create a parallel context. */
pcxt = CreateParallelContext(ParallelQueryMain, nworkers);
pei->pcxt = pcxt;
/*
* Before telling the parallel context to create a dynamic shared memory
* segment, we need to figure out how big it should be. Estimate space
* for the various things we need to store.
*/
/* Estimate space for query text. */
query_len = strlen(estate->es_sourceText);
shm_toc_estimate_chunk(&pcxt->estimator, query_len);
shm_toc_estimate_keys(&pcxt->estimator, 1);
/* Estimate space for serialized PlannedStmt. */
pstmt_len = strlen(pstmt_data) + 1;
shm_toc_estimate_chunk(&pcxt->estimator, pstmt_len);
shm_toc_estimate_keys(&pcxt->estimator, 1);
/* Estimate space for serialized ParamListInfo. */
param_len = EstimateParamListSpace(estate->es_param_list_info);
shm_toc_estimate_chunk(&pcxt->estimator, param_len);
shm_toc_estimate_keys(&pcxt->estimator, 1);
/*
* Estimate space for BufferUsage.
*
* If EXPLAIN is not in use and there are no extensions loaded that care,
* we could skip this. But we have no way of knowing whether anyone's
* looking at pgBufferUsage, so do it unconditionally.
*/
shm_toc_estimate_chunk(&pcxt->estimator,
mul_size(sizeof(BufferUsage), pcxt->nworkers));
shm_toc_estimate_keys(&pcxt->estimator, 1);
/* Estimate space for tuple queues. */
shm_toc_estimate_chunk(&pcxt->estimator,
mul_size(PARALLEL_TUPLE_QUEUE_SIZE, pcxt->nworkers));
shm_toc_estimate_keys(&pcxt->estimator, 1);
/*
* Give parallel-aware nodes a chance to add to the estimates, and get a
* count of how many PlanState nodes there are.
*/
e.pcxt = pcxt;
e.nnodes = 0;
ExecParallelEstimate(planstate, &e);
/* Estimate space for instrumentation, if required. */
if (estate->es_instrument)
{
instrumentation_len =
offsetof(SharedExecutorInstrumentation, plan_node_id) +
sizeof(int) * e.nnodes;
instrumentation_len = MAXALIGN(instrumentation_len);
instrument_offset = instrumentation_len;
instrumentation_len +=
mul_size(sizeof(Instrumentation),
mul_size(e.nnodes, nworkers));
shm_toc_estimate_chunk(&pcxt->estimator, instrumentation_len);
shm_toc_estimate_keys(&pcxt->estimator, 1);
}
/* Estimate space for DSA area. */
shm_toc_estimate_chunk(&pcxt->estimator, dsa_minsize);
shm_toc_estimate_keys(&pcxt->estimator, 1);
/* Everyone's had a chance to ask for space, so now create the DSM. */
InitializeParallelDSM(pcxt);
/*
* OK, now we have a dynamic shared memory segment, and it should be big
* enough to store all of the data we estimated we would want to put into
* it, plus whatever general stuff (not specifically executor-related) the
* ParallelContext itself needs to store there. None of the space we
* asked for has been allocated or initialized yet, though, so do that.
*/
/* Store query string */
query_string = shm_toc_allocate(pcxt->toc, query_len);
memcpy(query_string, estate->es_sourceText, query_len);
shm_toc_insert(pcxt->toc, PARALLEL_KEY_QUERY_TEXT, query_string);
/* Store serialized PlannedStmt. */
pstmt_space = shm_toc_allocate(pcxt->toc, pstmt_len);
memcpy(pstmt_space, pstmt_data, pstmt_len);
shm_toc_insert(pcxt->toc, PARALLEL_KEY_PLANNEDSTMT, pstmt_space);
/* Store serialized ParamListInfo. */
param_space = shm_toc_allocate(pcxt->toc, param_len);
shm_toc_insert(pcxt->toc, PARALLEL_KEY_PARAMS, param_space);
SerializeParamList(estate->es_param_list_info, &param_space);
/* Allocate space for each worker's BufferUsage; no need to initialize. */
bufusage_space = shm_toc_allocate(pcxt->toc,
mul_size(sizeof(BufferUsage), pcxt->nworkers));
shm_toc_insert(pcxt->toc, PARALLEL_KEY_BUFFER_USAGE, bufusage_space);
pei->buffer_usage = bufusage_space;
/* Set up tuple queues. */
pei->tqueue = ExecParallelSetupTupleQueues(pcxt, false);
/*
* If instrumentation options were supplied, allocate space for the data.
* It only gets partially initialized here; the rest happens during
* ExecParallelInitializeDSM.
*/
if (estate->es_instrument)
{
Instrumentation *instrument;
int i;
instrumentation = shm_toc_allocate(pcxt->toc, instrumentation_len);
instrumentation->instrument_options = estate->es_instrument;
instrumentation->instrument_offset = instrument_offset;
instrumentation->num_workers = nworkers;
instrumentation->num_plan_nodes = e.nnodes;
instrument = GetInstrumentationArray(instrumentation);
for (i = 0; i < nworkers * e.nnodes; ++i)
InstrInit(&instrument[i], estate->es_instrument);
shm_toc_insert(pcxt->toc, PARALLEL_KEY_INSTRUMENTATION,
instrumentation);
pei->instrumentation = instrumentation;
}
/*
* Create a DSA area that can be used by the leader and all workers.
* (However, if we failed to create a DSM and are using private memory
* instead, then skip this.)
*/
if (pcxt->seg != NULL)
{
char *area_space;
area_space = shm_toc_allocate(pcxt->toc, dsa_minsize);
shm_toc_insert(pcxt->toc, PARALLEL_KEY_DSA, area_space);
pei->area = dsa_create_in_place(area_space, dsa_minsize,
LWTRANCHE_PARALLEL_QUERY_DSA,
pcxt->seg);
}
/*
* Make the area available to executor nodes running in the leader. See
* also ParallelQueryMain which makes it available to workers.
*/
estate->es_query_dsa = pei->area;
/*
* Give parallel-aware nodes a chance to initialize their shared data.
* This also initializes the elements of instrumentation->ps_instrument,
* if it exists.
*/
d.pcxt = pcxt;
d.instrumentation = instrumentation;
d.nnodes = 0;
ExecParallelInitializeDSM(planstate, &d);
/*
* Make sure that the world hasn't shifted under our feat. This could
* probably just be an Assert(), but let's be conservative for now.
*/
if (e.nnodes != d.nnodes)
elog(ERROR, "inconsistent count of PlanState nodes");
/* OK, we're ready to rock and roll. */
return pei;
}
/*
* Copy instrumentation information about this node and its descendants from
* dynamic shared memory.
*/
static bool
ExecParallelRetrieveInstrumentation(PlanState *planstate,
SharedExecutorInstrumentation *instrumentation)
{
Instrumentation *instrument;
int i;
int n;
int ibytes;
int plan_node_id = planstate->plan->plan_node_id;
MemoryContext oldcontext;
/* Find the instrumentation for this node. */
for (i = 0; i < instrumentation->num_plan_nodes; ++i)
if (instrumentation->plan_node_id[i] == plan_node_id)
break;
if (i >= instrumentation->num_plan_nodes)
elog(ERROR, "plan node %d not found", plan_node_id);
/* Accumulate the statistics from all workers. */
instrument = GetInstrumentationArray(instrumentation);
instrument += i * instrumentation->num_workers;
for (n = 0; n < instrumentation->num_workers; ++n)
InstrAggNode(planstate->instrument, &instrument[n]);
/*
* Also store the per-worker detail.
*
* Worker instrumentation should be allocated in the same context as
* the regular instrumentation information, which is the per-query
* context. Switch into per-query memory context.
*/
oldcontext = MemoryContextSwitchTo(planstate->state->es_query_cxt);
ibytes = mul_size(instrumentation->num_workers, sizeof(Instrumentation));
planstate->worker_instrument =
palloc(ibytes + offsetof(WorkerInstrumentation, instrument));
MemoryContextSwitchTo(oldcontext);
planstate->worker_instrument->num_workers = instrumentation->num_workers;
memcpy(&planstate->worker_instrument->instrument, instrument, ibytes);
return planstate_tree_walker(planstate, ExecParallelRetrieveInstrumentation,
instrumentation);
}
/*
* Finish parallel execution. We wait for parallel workers to finish, and
* accumulate their buffer usage and instrumentation.
*/
void
ExecParallelFinish(ParallelExecutorInfo *pei)
{
int i;
if (pei->finished)
return;
/* First, wait for the workers to finish. */
WaitForParallelWorkersToFinish(pei->pcxt);
/* Next, accumulate buffer usage. */
for (i = 0; i < pei->pcxt->nworkers_launched; ++i)
InstrAccumParallelQuery(&pei->buffer_usage[i]);
/* Finally, accumulate instrumentation, if any. */
if (pei->instrumentation)
ExecParallelRetrieveInstrumentation(pei->planstate,
pei->instrumentation);
pei->finished = true;
}
/*
* Clean up whatever ParallelExecutorInfo resources still exist after
* ExecParallelFinish. We separate these routines because someone might
* want to examine the contents of the DSM after ExecParallelFinish and
* before calling this routine.
*/
void
ExecParallelCleanup(ParallelExecutorInfo *pei)
{
if (pei->area != NULL)
{
dsa_detach(pei->area);
pei->area = NULL;
}
if (pei->pcxt != NULL)
{
DestroyParallelContext(pei->pcxt);
pei->pcxt = NULL;
}
pfree(pei);
}
/*
* Create a DestReceiver to write tuples we produce to the shm_mq designated
* for that purpose.
*/
static DestReceiver *
ExecParallelGetReceiver(dsm_segment *seg, shm_toc *toc)
{
char *mqspace;
shm_mq *mq;
mqspace = shm_toc_lookup(toc, PARALLEL_KEY_TUPLE_QUEUE);
mqspace += ParallelWorkerNumber * PARALLEL_TUPLE_QUEUE_SIZE;
mq = (shm_mq *) mqspace;
shm_mq_set_sender(mq, MyProc);
return CreateTupleQueueDestReceiver(shm_mq_attach(mq, seg, NULL));
}
/*
* Create a QueryDesc for the PlannedStmt we are to execute, and return it.
*/
static QueryDesc *
ExecParallelGetQueryDesc(shm_toc *toc, DestReceiver *receiver,
int instrument_options)
{
char *pstmtspace;
char *paramspace;
PlannedStmt *pstmt;
ParamListInfo paramLI;
char *queryString;
/* Get the query string from shared memory */
queryString = shm_toc_lookup(toc, PARALLEL_KEY_QUERY_TEXT);
/* Reconstruct leader-supplied PlannedStmt. */
pstmtspace = shm_toc_lookup(toc, PARALLEL_KEY_PLANNEDSTMT);
pstmt = (PlannedStmt *) stringToNode(pstmtspace);
/* Reconstruct ParamListInfo. */
paramspace = shm_toc_lookup(toc, PARALLEL_KEY_PARAMS);
paramLI = RestoreParamList(&paramspace);
/*
* Create a QueryDesc for the query.
*
* It's not obvious how to obtain the query string from here; and even if
* we could copying it would take more cycles than not copying it. But
* it's a bit unsatisfying to just use a dummy string here, so consider
* revising this someday.
*/
return CreateQueryDesc(pstmt,
queryString,
GetActiveSnapshot(), InvalidSnapshot,
receiver, paramLI, NULL, instrument_options);
}
/*
* Copy instrumentation information from this node and its descendants into
* dynamic shared memory, so that the parallel leader can retrieve it.
*/
static bool
ExecParallelReportInstrumentation(PlanState *planstate,
SharedExecutorInstrumentation *instrumentation)
{
int i;
int plan_node_id = planstate->plan->plan_node_id;
Instrumentation *instrument;
InstrEndLoop(planstate->instrument);
/*
* If we shuffled the plan_node_id values in ps_instrument into sorted
* order, we could use binary search here. This might matter someday if
* we're pushing down sufficiently large plan trees. For now, do it the
* slow, dumb way.
*/
for (i = 0; i < instrumentation->num_plan_nodes; ++i)
if (instrumentation->plan_node_id[i] == plan_node_id)
break;
if (i >= instrumentation->num_plan_nodes)
elog(ERROR, "plan node %d not found", plan_node_id);
/*
* Add our statistics to the per-node, per-worker totals. It's possible
* that this could happen more than once if we relaunched workers.
*/
instrument = GetInstrumentationArray(instrumentation);
instrument += i * instrumentation->num_workers;
Assert(IsParallelWorker());
Assert(ParallelWorkerNumber < instrumentation->num_workers);
InstrAggNode(&instrument[ParallelWorkerNumber], planstate->instrument);
return planstate_tree_walker(planstate, ExecParallelReportInstrumentation,
instrumentation);
}
/*
* Initialize the PlanState and its descendants with the information
* retrieved from shared memory. This has to be done once the PlanState
* is allocated and initialized by executor; that is, after ExecutorStart().
*/
static bool
ExecParallelInitializeWorker(PlanState *planstate, shm_toc *toc)
{
if (planstate == NULL)
return false;
/* Call initializers for parallel-aware plan nodes. */
if (planstate->plan->parallel_aware)
{
switch (nodeTag(planstate))
{
case T_SeqScanState:
ExecSeqScanInitializeWorker((SeqScanState *) planstate, toc);
break;
case T_IndexScanState:
ExecIndexScanInitializeWorker((IndexScanState *) planstate, toc);
break;
case T_IndexOnlyScanState:
ExecIndexOnlyScanInitializeWorker((IndexOnlyScanState *) planstate, toc);
break;
case T_ForeignScanState:
ExecForeignScanInitializeWorker((ForeignScanState *) planstate,
toc);
break;
case T_CustomScanState:
ExecCustomScanInitializeWorker((CustomScanState *) planstate,
toc);
break;
case T_BitmapHeapScanState:
ExecBitmapHeapInitializeWorker(
(BitmapHeapScanState *) planstate, toc);
break;
default:
break;
}
}
return planstate_tree_walker(planstate, ExecParallelInitializeWorker, toc);
}
/*
* Main entrypoint for parallel query worker processes.
*
* We reach this function from ParallelWorkerMain, so the setup necessary to
* create a sensible parallel environment has already been done;
* ParallelWorkerMain worries about stuff like the transaction state, combo
* CID mappings, and GUC values, so we don't need to deal with any of that
* here.
*
* Our job is to deal with concerns specific to the executor. The parallel
* group leader will have stored a serialized PlannedStmt, and it's our job
* to execute that plan and write the resulting tuples to the appropriate
* tuple queue. Various bits of supporting information that we need in order
* to do this are also stored in the dsm_segment and can be accessed through
* the shm_toc.
*/
static void
ParallelQueryMain(dsm_segment *seg, shm_toc *toc)
{
BufferUsage *buffer_usage;
DestReceiver *receiver;
QueryDesc *queryDesc;
SharedExecutorInstrumentation *instrumentation;
int instrument_options = 0;
void *area_space;
dsa_area *area;
/* Set up DestReceiver, SharedExecutorInstrumentation, and QueryDesc. */
receiver = ExecParallelGetReceiver(seg, toc);
instrumentation = shm_toc_lookup(toc, PARALLEL_KEY_INSTRUMENTATION);
if (instrumentation != NULL)
instrument_options = instrumentation->instrument_options;
queryDesc = ExecParallelGetQueryDesc(toc, receiver, instrument_options);
/* Setting debug_query_string for individual workers */
debug_query_string = queryDesc->sourceText;
/* Report workers' query for monitoring purposes */
pgstat_report_activity(STATE_RUNNING, debug_query_string);
/* Prepare to track buffer usage during query execution. */
InstrStartParallelQuery();
/* Attach to the dynamic shared memory area. */
area_space = shm_toc_lookup(toc, PARALLEL_KEY_DSA);
area = dsa_attach_in_place(area_space, seg);
/* Start up the executor */
ExecutorStart(queryDesc, 0);
/* Special executor initialization steps for parallel workers */
queryDesc->planstate->state->es_query_dsa = area;
ExecParallelInitializeWorker(queryDesc->planstate, toc);
/* Run the plan */
ExecutorRun(queryDesc, ForwardScanDirection, 0L, true);
/* Shut down the executor */
ExecutorFinish(queryDesc);
/* Report buffer usage during parallel execution. */
buffer_usage = shm_toc_lookup(toc, PARALLEL_KEY_BUFFER_USAGE);
InstrEndParallelQuery(&buffer_usage[ParallelWorkerNumber]);
/* Report instrumentation data if any instrumentation options are set. */
if (instrumentation != NULL)
ExecParallelReportInstrumentation(queryDesc->planstate,
instrumentation);
/* Must do this after capturing instrumentation. */
ExecutorEnd(queryDesc);
/* Cleanup. */
dsa_detach(area);
FreeQueryDesc(queryDesc);
(*receiver->rDestroy) (receiver);
}