postgresql/src/backend/executor/tqueue.c
Robert Haas 6e71dd7ce9 Modify tqueue infrastructure to support transient record types.
Commit 4a4e6893aa, which introduced this
mechanism, failed to account for the fact that the RECORD pseudo-type
uses transient typmods that are only meaningful within a single
backend.  Transferring such tuples without modification between two
cooperating backends does not work.  This commit installs a system
for passing the tuple descriptors over the same shm_mq being used to
send the tuples themselves.  The two sides might not assign the same
transient typmod to any given tuple descriptor, so we must also
substitute the appropriate receiver-side typmod for the one used by
the sender.  That adds some CPU overhead, but still seems better than
being unable to pass records between cooperating parallel processes.

Along the way, move the logic for handling multiple tuple queues from
tqueue.c to nodeGather.c; tqueue.c now provides a TupleQueueReader,
which reads from a single queue, rather than a TupleQueueFunnel, which
potentially reads from multiple queues.  This change was suggested
previously as a way to make sure that nodeGather.c rather than tqueue.c
had policy control over the order in which to read from queues, but
it wasn't clear to me until now how good an idea it was.  typmod
mapping needs to be performed separately for each queue, and it is
much simpler if the tqueue.c code handles that and leaves multiplexing
multiple queues to higher layers of the stack.
2015-11-06 16:58:45 -05:00

1018 lines
28 KiB
C

/*-------------------------------------------------------------------------
*
* tqueue.c
* Use shm_mq to send & receive tuples between parallel backends
*
* A DestReceiver of type DestTupleQueue, which is a TQueueDestReceiver
* under the hood, writes tuples from the executor to a shm_mq. If
* necessary, it also writes control messages describing transient
* record types used within the tuple.
*
* A TupleQueueReader reads tuples, and if any are sent control messages,
* from a shm_mq and returns the tuples. If transient record types are
* in use, it registers those types based on the received control messages
* and rewrites the typemods sent by the remote side to the corresponding
* local record typemods.
*
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/executor/tqueue.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "catalog/pg_type.h"
#include "executor/tqueue.h"
#include "funcapi.h"
#include "lib/stringinfo.h"
#include "miscadmin.h"
#include "utils/array.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/rangetypes.h"
#include "utils/syscache.h"
#include "utils/typcache.h"
typedef enum
{
TQUEUE_REMAP_NONE, /* no special processing required */
TQUEUE_REMAP_ARRAY, /* array */
TQUEUE_REMAP_RANGE, /* range */
TQUEUE_REMAP_RECORD /* composite type, named or anonymous */
} RemapClass;
typedef struct
{
int natts;
RemapClass mapping[FLEXIBLE_ARRAY_MEMBER];
} RemapInfo;
typedef struct
{
DestReceiver pub;
shm_mq_handle *handle;
MemoryContext tmpcontext;
HTAB *recordhtab;
char mode;
TupleDesc tupledesc;
RemapInfo *remapinfo;
} TQueueDestReceiver;
typedef struct RecordTypemodMap
{
int remotetypmod;
int localtypmod;
} RecordTypemodMap;
struct TupleQueueReader
{
shm_mq_handle *queue;
char mode;
TupleDesc tupledesc;
RemapInfo *remapinfo;
HTAB *typmodmap;
};
#define TUPLE_QUEUE_MODE_CONTROL 'c'
#define TUPLE_QUEUE_MODE_DATA 'd'
static void tqueueWalk(TQueueDestReceiver * tqueue, RemapClass walktype,
Datum value);
static void tqueueWalkRecord(TQueueDestReceiver * tqueue, Datum value);
static void tqueueWalkArray(TQueueDestReceiver * tqueue, Datum value);
static void tqueueWalkRange(TQueueDestReceiver * tqueue, Datum value);
static void tqueueSendTypmodInfo(TQueueDestReceiver * tqueue, int typmod,
TupleDesc tupledesc);
static void TupleQueueHandleControlMessage(TupleQueueReader *reader,
Size nbytes, char *data);
static HeapTuple TupleQueueHandleDataMessage(TupleQueueReader *reader,
Size nbytes, HeapTupleHeader data);
static HeapTuple TupleQueueRemapTuple(TupleQueueReader *reader,
TupleDesc tupledesc, RemapInfo * remapinfo,
HeapTuple tuple);
static Datum TupleQueueRemap(TupleQueueReader *reader, RemapClass remapclass,
Datum value);
static Datum TupleQueueRemapArray(TupleQueueReader *reader, Datum value);
static Datum TupleQueueRemapRange(TupleQueueReader *reader, Datum value);
static Datum TupleQueueRemapRecord(TupleQueueReader *reader, Datum value);
static RemapClass GetRemapClass(Oid typeid);
static RemapInfo *BuildRemapInfo(TupleDesc tupledesc);
/*
* Receive a tuple.
*
* This is, at core, pretty simple: just send the tuple to the designated
* shm_mq. The complicated part is that if the tuple contains transient
* record types (see lookup_rowtype_tupdesc), we need to send control
* information to the shm_mq receiver so that those typemods can be correctly
* interpreted, as they are merely held in a backend-local cache. Worse, the
* record type may not at the top level: we could have a range over an array
* type over a range type over a range type over an array type over a record,
* or something like that.
*/
static void
tqueueReceiveSlot(TupleTableSlot *slot, DestReceiver *self)
{
TQueueDestReceiver *tqueue = (TQueueDestReceiver *) self;
TupleDesc tupledesc = slot->tts_tupleDescriptor;
HeapTuple tuple;
HeapTupleHeader tup;
/*
* Test to see whether the tupledesc has changed; if so, set up for the
* new tupledesc. This is a strange test both because the executor really
* shouldn't change the tupledesc, and also because it would be unsafe if
* the old tupledesc could be freed and a new one allocated at the same
* address. But since some very old code in printtup.c uses this test, we
* adopt it here as well.
*/
if (tqueue->tupledesc != tupledesc ||
tqueue->remapinfo->natts != tupledesc->natts)
{
if (tqueue->remapinfo != NULL)
pfree(tqueue->remapinfo);
tqueue->remapinfo = BuildRemapInfo(tupledesc);
}
tuple = ExecMaterializeSlot(slot);
tup = tuple->t_data;
/*
* When, because of the types being transmitted, no record typemod mapping
* can be needed, we can skip a good deal of work.
*/
if (tqueue->remapinfo != NULL)
{
RemapInfo *remapinfo = tqueue->remapinfo;
AttrNumber i;
MemoryContext oldcontext = NULL;
/* Deform the tuple so we can examine it, if not done already. */
slot_getallattrs(slot);
/* Iterate over each attribute and search it for transient typemods. */
Assert(slot->tts_tupleDescriptor->natts == remapinfo->natts);
for (i = 0; i < remapinfo->natts; ++i)
{
/* Ignore nulls and types that don't need special handling. */
if (slot->tts_isnull[i] ||
remapinfo->mapping[i] == TQUEUE_REMAP_NONE)
continue;
/* Switch to temporary memory context to avoid leaking. */
if (oldcontext == NULL)
{
if (tqueue->tmpcontext == NULL)
tqueue->tmpcontext =
AllocSetContextCreate(TopMemoryContext,
"tqueue temporary context",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
oldcontext = MemoryContextSwitchTo(tqueue->tmpcontext);
}
/* Invoke the appropriate walker function. */
tqueueWalk(tqueue, remapinfo->mapping[i], slot->tts_values[i]);
}
/* If we used the temp context, reset it and restore prior context. */
if (oldcontext != NULL)
{
MemoryContextSwitchTo(oldcontext);
MemoryContextReset(tqueue->tmpcontext);
}
/* If we entered control mode, switch back to data mode. */
if (tqueue->mode != TUPLE_QUEUE_MODE_DATA)
{
tqueue->mode = TUPLE_QUEUE_MODE_DATA;
shm_mq_send(tqueue->handle, sizeof(char), &tqueue->mode, false);
}
}
/* Send the tuple itself. */
shm_mq_send(tqueue->handle, tuple->t_len, tuple->t_data, false);
}
/*
* Invoke the appropriate walker function based on the given RemapClass.
*/
static void
tqueueWalk(TQueueDestReceiver * tqueue, RemapClass walktype, Datum value)
{
check_stack_depth();
switch (walktype)
{
case TQUEUE_REMAP_NONE:
break;
case TQUEUE_REMAP_ARRAY:
tqueueWalkArray(tqueue, value);
break;
case TQUEUE_REMAP_RANGE:
tqueueWalkRange(tqueue, value);
break;
case TQUEUE_REMAP_RECORD:
tqueueWalkRecord(tqueue, value);
break;
}
}
/*
* Walk a record and send control messages for transient record types
* contained therein.
*/
static void
tqueueWalkRecord(TQueueDestReceiver * tqueue, Datum value)
{
HeapTupleHeader tup;
Oid typeid;
Oid typmod;
TupleDesc tupledesc;
RemapInfo *remapinfo;
/* Extract typmod from tuple. */
tup = DatumGetHeapTupleHeader(value);
typeid = HeapTupleHeaderGetTypeId(tup);
typmod = HeapTupleHeaderGetTypMod(tup);
/* Look up tuple descriptor in typecache. */
tupledesc = lookup_rowtype_tupdesc(typeid, typmod);
/*
* If this is a transient record time, send its TupleDesc as a control
* message. (tqueueSendTypemodInfo is smart enough to do this only once
* per typmod.)
*/
if (typeid == RECORDOID)
tqueueSendTypmodInfo(tqueue, typmod, tupledesc);
/*
* Build the remap information for this tupledesc. We might want to think
* about keeping a cache of this information keyed by typeid and typemod,
* but let's keep it simple for now.
*/
remapinfo = BuildRemapInfo(tupledesc);
/*
* If remapping is required, deform the tuple and process each field. When
* BuildRemapInfo is null, the data types are such that there can be no
* transient record types here, so we can skip all this work.
*/
if (remapinfo != NULL)
{
Datum *values;
bool *isnull;
HeapTupleData tdata;
AttrNumber i;
/* Deform the tuple so we can check each column within. */
values = palloc(tupledesc->natts * sizeof(Datum));
isnull = palloc(tupledesc->natts * sizeof(bool));
tdata.t_len = HeapTupleHeaderGetDatumLength(tup);
ItemPointerSetInvalid(&(tdata.t_self));
tdata.t_tableOid = InvalidOid;
tdata.t_data = tup;
heap_deform_tuple(&tdata, tupledesc, values, isnull);
/* Recursively check each non-NULL attribute. */
for (i = 0; i < tupledesc->natts; ++i)
if (!isnull[i])
tqueueWalk(tqueue, remapinfo->mapping[i], values[i]);
}
/* Release reference count acquired by lookup_rowtype_tupdesc. */
DecrTupleDescRefCount(tupledesc);
}
/*
* Walk a record and send control messages for transient record types
* contained therein.
*/
static void
tqueueWalkArray(TQueueDestReceiver * tqueue, Datum value)
{
ArrayType *arr = DatumGetArrayTypeP(value);
Oid typeid = ARR_ELEMTYPE(arr);
RemapClass remapclass;
int16 typlen;
bool typbyval;
char typalign;
Datum *elem_values;
bool *elem_nulls;
int num_elems;
int i;
remapclass = GetRemapClass(typeid);
/*
* If the elements of the array don't need to be walked, we shouldn't have
* been called in the first place: GetRemapClass should have returned NULL
* when asked about this array type.
*/
Assert(remapclass != TQUEUE_REMAP_NONE);
/* Deconstruct the array. */
get_typlenbyvalalign(typeid, &typlen, &typbyval, &typalign);
deconstruct_array(arr, typeid, typlen, typbyval, typalign,
&elem_values, &elem_nulls, &num_elems);
/* Walk each element. */
for (i = 0; i < num_elems; ++i)
if (!elem_nulls[i])
tqueueWalk(tqueue, remapclass, elem_values[i]);
}
/*
* Walk a range type and send control messages for transient record types
* contained therein.
*/
static void
tqueueWalkRange(TQueueDestReceiver * tqueue, Datum value)
{
RangeType *range = DatumGetRangeType(value);
Oid typeid = RangeTypeGetOid(range);
RemapClass remapclass;
TypeCacheEntry *typcache;
RangeBound lower;
RangeBound upper;
bool empty;
/*
* Extract the lower and upper bounds. It might be worth implementing
* some caching scheme here so that we don't look up the same typeids in
* the type cache repeatedly, but for now let's keep it simple.
*/
typcache = lookup_type_cache(typeid, TYPECACHE_RANGE_INFO);
if (typcache->rngelemtype == NULL)
elog(ERROR, "type %u is not a range type", typeid);
range_deserialize(typcache, range, &lower, &upper, &empty);
/* Nothing to do for an empty range. */
if (empty)
return;
/*
* If the range bounds don't need to be walked, we shouldn't have been
* called in the first place: GetRemapClass should have returned NULL when
* asked about this range type.
*/
remapclass = GetRemapClass(typeid);
Assert(remapclass != TQUEUE_REMAP_NONE);
/* Walk each bound, if present. */
if (!upper.infinite)
tqueueWalk(tqueue, remapclass, upper.val);
if (!lower.infinite)
tqueueWalk(tqueue, remapclass, lower.val);
}
/*
* Send tuple descriptor information for a transient typemod, unless we've
* already done so previously.
*/
static void
tqueueSendTypmodInfo(TQueueDestReceiver * tqueue, int typmod,
TupleDesc tupledesc)
{
StringInfoData buf;
bool found;
AttrNumber i;
/* Initialize hash table if not done yet. */
if (tqueue->recordhtab == NULL)
{
HASHCTL ctl;
ctl.keysize = sizeof(int);
ctl.entrysize = sizeof(int);
ctl.hcxt = TopMemoryContext;
tqueue->recordhtab = hash_create("tqueue record hashtable",
100, &ctl, HASH_ELEM | HASH_CONTEXT);
}
/* Have we already seen this record type? If not, must report it. */
hash_search(tqueue->recordhtab, &typmod, HASH_ENTER, &found);
if (found)
return;
/* If message queue is in data mode, switch to control mode. */
if (tqueue->mode != TUPLE_QUEUE_MODE_CONTROL)
{
tqueue->mode = TUPLE_QUEUE_MODE_CONTROL;
shm_mq_send(tqueue->handle, sizeof(char), &tqueue->mode, false);
}
/* Assemble a control message. */
initStringInfo(&buf);
appendBinaryStringInfo(&buf, (char *) &typmod, sizeof(int));
appendBinaryStringInfo(&buf, (char *) &tupledesc->natts, sizeof(int));
appendBinaryStringInfo(&buf, (char *) &tupledesc->tdhasoid,
sizeof(bool));
for (i = 0; i < tupledesc->natts; ++i)
appendBinaryStringInfo(&buf, (char *) tupledesc->attrs[i],
sizeof(FormData_pg_attribute));
/* Send control message. */
shm_mq_send(tqueue->handle, buf.len, buf.data, false);
}
/*
* Prepare to receive tuples from executor.
*/
static void
tqueueStartupReceiver(DestReceiver *self, int operation, TupleDesc typeinfo)
{
/* do nothing */
}
/*
* Clean up at end of an executor run
*/
static void
tqueueShutdownReceiver(DestReceiver *self)
{
TQueueDestReceiver *tqueue = (TQueueDestReceiver *) self;
shm_mq_detach(shm_mq_get_queue(tqueue->handle));
}
/*
* Destroy receiver when done with it
*/
static void
tqueueDestroyReceiver(DestReceiver *self)
{
TQueueDestReceiver *tqueue = (TQueueDestReceiver *) self;
if (tqueue->tmpcontext != NULL)
MemoryContextDelete(tqueue->tmpcontext);
if (tqueue->recordhtab != NULL)
hash_destroy(tqueue->recordhtab);
if (tqueue->remapinfo != NULL)
pfree(tqueue->remapinfo);
pfree(self);
}
/*
* Create a DestReceiver that writes tuples to a tuple queue.
*/
DestReceiver *
CreateTupleQueueDestReceiver(shm_mq_handle *handle)
{
TQueueDestReceiver *self;
self = (TQueueDestReceiver *) palloc0(sizeof(TQueueDestReceiver));
self->pub.receiveSlot = tqueueReceiveSlot;
self->pub.rStartup = tqueueStartupReceiver;
self->pub.rShutdown = tqueueShutdownReceiver;
self->pub.rDestroy = tqueueDestroyReceiver;
self->pub.mydest = DestTupleQueue;
self->handle = handle;
self->tmpcontext = NULL;
self->recordhtab = NULL;
self->mode = TUPLE_QUEUE_MODE_DATA;
self->remapinfo = NULL;
return (DestReceiver *) self;
}
/*
* Create a tuple queue reader.
*/
TupleQueueReader *
CreateTupleQueueReader(shm_mq_handle *handle, TupleDesc tupledesc)
{
TupleQueueReader *reader = palloc0(sizeof(TupleQueueReader));
reader->queue = handle;
reader->mode = TUPLE_QUEUE_MODE_DATA;
reader->tupledesc = tupledesc;
reader->remapinfo = BuildRemapInfo(tupledesc);
return reader;
}
/*
* Destroy a tuple queue reader.
*/
void
DestroyTupleQueueReader(TupleQueueReader *reader)
{
shm_mq_detach(shm_mq_get_queue(reader->queue));
if (reader->remapinfo != NULL)
pfree(reader->remapinfo);
pfree(reader);
}
/*
* Fetch a tuple from a tuple queue reader.
*
* Even when shm_mq_receive() returns SHM_MQ_WOULD_BLOCK, this can still
* accumulate bytes from a partially-read message, so it's useful to call
* this with nowait = true even if nothing is returned.
*
* The return value is NULL if there are no remaining queues or if
* nowait = true and no tuple is ready to return. *done, if not NULL,
* is set to true when queue is detached and otherwise to false.
*/
HeapTuple
TupleQueueReaderNext(TupleQueueReader *reader, bool nowait, bool *done)
{
shm_mq_result result;
if (done != NULL)
*done = false;
for (;;)
{
Size nbytes;
void *data;
/* Attempt to read a message. */
result = shm_mq_receive(reader->queue, &nbytes, &data, true);
/* If queue is detached, set *done and return NULL. */
if (result == SHM_MQ_DETACHED)
{
if (done != NULL)
*done = true;
return NULL;
}
/* In non-blocking mode, bail out if no message ready yet. */
if (result == SHM_MQ_WOULD_BLOCK)
return NULL;
Assert(result == SHM_MQ_SUCCESS);
/*
* OK, we got a message. Process it.
*
* One-byte messages are mode switch messages, so that we can switch
* between "control" and "data" mode. When in "data" mode, each
* message (unless exactly one byte) is a tuple. When in "control"
* mode, each message provides a transient-typmod-to-tupledesc mapping
* so we can interpret future tuples.
*/
if (nbytes == 1)
{
/* Mode switch message. */
reader->mode = ((char *) data)[0];
}
else if (reader->mode == TUPLE_QUEUE_MODE_DATA)
{
/* Tuple data. */
return TupleQueueHandleDataMessage(reader, nbytes, data);
}
else if (reader->mode == TUPLE_QUEUE_MODE_CONTROL)
{
/* Control message, describing a transient record type. */
TupleQueueHandleControlMessage(reader, nbytes, data);
}
else
elog(ERROR, "invalid mode: %d", (int) reader->mode);
}
}
/*
* Handle a data message - that is, a tuple - from the remote side.
*/
static HeapTuple
TupleQueueHandleDataMessage(TupleQueueReader *reader,
Size nbytes,
HeapTupleHeader data)
{
HeapTupleData htup;
ItemPointerSetInvalid(&htup.t_self);
htup.t_tableOid = InvalidOid;
htup.t_len = nbytes;
htup.t_data = data;
return TupleQueueRemapTuple(reader, reader->tupledesc, reader->remapinfo,
&htup);
}
/*
* Remap tuple typmods per control information received from remote side.
*/
static HeapTuple
TupleQueueRemapTuple(TupleQueueReader *reader, TupleDesc tupledesc,
RemapInfo * remapinfo, HeapTuple tuple)
{
Datum *values;
bool *isnull;
bool dirty = false;
int i;
/*
* If no remapping is necessary, just copy the tuple into a single
* palloc'd chunk, as caller will expect.
*/
if (remapinfo == NULL)
return heap_copytuple(tuple);
/* Deform tuple so we can remap record typmods for individual attrs. */
values = palloc(tupledesc->natts * sizeof(Datum));
isnull = palloc(tupledesc->natts * sizeof(bool));
heap_deform_tuple(tuple, tupledesc, values, isnull);
Assert(tupledesc->natts == remapinfo->natts);
/* Recursively check each non-NULL attribute. */
for (i = 0; i < tupledesc->natts; ++i)
{
if (isnull[i] || remapinfo->mapping[i] == TQUEUE_REMAP_NONE)
continue;
values[i] = TupleQueueRemap(reader, remapinfo->mapping[i], values[i]);
dirty = true;
}
/* Reform the modified tuple. */
return heap_form_tuple(tupledesc, values, isnull);
}
/*
* Remap a value based on the specified remap class.
*/
static Datum
TupleQueueRemap(TupleQueueReader *reader, RemapClass remapclass, Datum value)
{
check_stack_depth();
switch (remapclass)
{
case TQUEUE_REMAP_NONE:
/* caller probably shouldn't have called us at all, but... */
return value;
case TQUEUE_REMAP_ARRAY:
return TupleQueueRemapArray(reader, value);
case TQUEUE_REMAP_RANGE:
return TupleQueueRemapRange(reader, value);
case TQUEUE_REMAP_RECORD:
return TupleQueueRemapRecord(reader, value);
}
}
/*
* Remap an array.
*/
static Datum
TupleQueueRemapArray(TupleQueueReader *reader, Datum value)
{
ArrayType *arr = DatumGetArrayTypeP(value);
Oid typeid = ARR_ELEMTYPE(arr);
RemapClass remapclass;
int16 typlen;
bool typbyval;
char typalign;
Datum *elem_values;
bool *elem_nulls;
int num_elems;
int i;
remapclass = GetRemapClass(typeid);
/*
* If the elements of the array don't need to be walked, we shouldn't have
* been called in the first place: GetRemapClass should have returned NULL
* when asked about this array type.
*/
Assert(remapclass != TQUEUE_REMAP_NONE);
/* Deconstruct the array. */
get_typlenbyvalalign(typeid, &typlen, &typbyval, &typalign);
deconstruct_array(arr, typeid, typlen, typbyval, typalign,
&elem_values, &elem_nulls, &num_elems);
/* Remap each element. */
for (i = 0; i < num_elems; ++i)
if (!elem_nulls[i])
elem_values[i] = TupleQueueRemap(reader, remapclass,
elem_values[i]);
/* Reconstruct and return the array. */
arr = construct_md_array(elem_values, elem_nulls,
ARR_NDIM(arr), ARR_DIMS(arr), ARR_LBOUND(arr),
typeid, typlen, typbyval, typalign);
return PointerGetDatum(arr);
}
/*
* Remap a range type.
*/
static Datum
TupleQueueRemapRange(TupleQueueReader *reader, Datum value)
{
RangeType *range = DatumGetRangeType(value);
Oid typeid = RangeTypeGetOid(range);
RemapClass remapclass;
TypeCacheEntry *typcache;
RangeBound lower;
RangeBound upper;
bool empty;
/*
* Extract the lower and upper bounds. As in tqueueWalkRange, some
* caching might be a good idea here.
*/
typcache = lookup_type_cache(typeid, TYPECACHE_RANGE_INFO);
if (typcache->rngelemtype == NULL)
elog(ERROR, "type %u is not a range type", typeid);
range_deserialize(typcache, range, &lower, &upper, &empty);
/* Nothing to do for an empty range. */
if (empty)
return value;
/*
* If the range bounds don't need to be walked, we shouldn't have been
* called in the first place: GetRemapClass should have returned NULL when
* asked about this range type.
*/
remapclass = GetRemapClass(typeid);
Assert(remapclass != TQUEUE_REMAP_NONE);
/* Remap each bound, if present. */
if (!upper.infinite)
upper.val = TupleQueueRemap(reader, remapclass, upper.val);
if (!lower.infinite)
lower.val = TupleQueueRemap(reader, remapclass, lower.val);
/* And reserialize. */
range = range_serialize(typcache, &lower, &upper, empty);
return RangeTypeGetDatum(range);
}
/*
* Remap a record.
*/
static Datum
TupleQueueRemapRecord(TupleQueueReader *reader, Datum value)
{
HeapTupleHeader tup;
Oid typeid;
int typmod;
RecordTypemodMap *mapent;
TupleDesc tupledesc;
RemapInfo *remapinfo;
HeapTupleData htup;
HeapTuple atup;
/* Fetch type OID and typemod. */
tup = DatumGetHeapTupleHeader(value);
typeid = HeapTupleHeaderGetTypeId(tup);
typmod = HeapTupleHeaderGetTypMod(tup);
/* If transient record, replace remote typmod with local typmod. */
if (typeid == RECORDOID)
{
Assert(reader->typmodmap != NULL);
mapent = hash_search(reader->typmodmap, &typmod,
HASH_FIND, NULL);
if (mapent == NULL)
elog(ERROR, "found unrecognized remote typmod %d", typmod);
typmod = mapent->localtypmod;
}
/*
* Fetch tupledesc and compute remap info. We should probably cache this
* so that we don't have to keep recomputing it.
*/
tupledesc = lookup_rowtype_tupdesc(typeid, typmod);
remapinfo = BuildRemapInfo(tupledesc);
DecrTupleDescRefCount(tupledesc);
/* Remap tuple. */
ItemPointerSetInvalid(&htup.t_self);
htup.t_tableOid = InvalidOid;
htup.t_len = HeapTupleHeaderGetDatumLength(tup);
htup.t_data = tup;
atup = TupleQueueRemapTuple(reader, tupledesc, remapinfo, &htup);
HeapTupleHeaderSetTypeId(atup->t_data, typeid);
HeapTupleHeaderSetTypMod(atup->t_data, typmod);
HeapTupleHeaderSetDatumLength(atup->t_data, htup.t_len);
/* And return the results. */
return HeapTupleHeaderGetDatum(atup->t_data);
}
/*
* Handle a control message from the tuple queue reader.
*
* Control messages are sent when the remote side is sending tuples that
* contain transient record types. We need to arrange to bless those
* record types locally and translate between remote and local typmods.
*/
static void
TupleQueueHandleControlMessage(TupleQueueReader *reader, Size nbytes,
char *data)
{
int natts;
int remotetypmod;
bool hasoid;
char *buf = data;
int rc = 0;
int i;
Form_pg_attribute *attrs;
MemoryContext oldcontext;
TupleDesc tupledesc;
RecordTypemodMap *mapent;
bool found;
/* Extract remote typmod. */
memcpy(&remotetypmod, &buf[rc], sizeof(int));
rc += sizeof(int);
/* Extract attribute count. */
memcpy(&natts, &buf[rc], sizeof(int));
rc += sizeof(int);
/* Extract hasoid flag. */
memcpy(&hasoid, &buf[rc], sizeof(bool));
rc += sizeof(bool);
/* Extract attribute details. */
oldcontext = MemoryContextSwitchTo(CurTransactionContext);
attrs = palloc(natts * sizeof(Form_pg_attribute));
for (i = 0; i < natts; ++i)
{
attrs[i] = palloc(sizeof(FormData_pg_attribute));
memcpy(attrs[i], &buf[rc], sizeof(FormData_pg_attribute));
rc += sizeof(FormData_pg_attribute);
}
MemoryContextSwitchTo(oldcontext);
/* We should have read the whole message. */
Assert(rc == nbytes);
/* Construct TupleDesc. */
tupledesc = CreateTupleDesc(natts, hasoid, attrs);
tupledesc = BlessTupleDesc(tupledesc);
/* Create map if it doesn't exist already. */
if (reader->typmodmap == NULL)
{
HASHCTL ctl;
ctl.keysize = sizeof(int);
ctl.entrysize = sizeof(RecordTypemodMap);
ctl.hcxt = CurTransactionContext;
reader->typmodmap = hash_create("typmodmap hashtable",
100, &ctl, HASH_ELEM | HASH_CONTEXT);
}
/* Create map entry. */
mapent = hash_search(reader->typmodmap, &remotetypmod, HASH_ENTER,
&found);
if (found)
elog(ERROR, "duplicate message for typmod %d",
remotetypmod);
mapent->localtypmod = tupledesc->tdtypmod;
elog(DEBUG3, "mapping remote typmod %d to local typmod %d",
remotetypmod, tupledesc->tdtypmod);
}
/*
* Build a mapping indicating what remapping class applies to each attribute
* described by a tupledesc.
*/
static RemapInfo *
BuildRemapInfo(TupleDesc tupledesc)
{
RemapInfo *remapinfo;
Size size;
AttrNumber i;
bool noop = true;
StringInfoData buf;
initStringInfo(&buf);
size = offsetof(RemapInfo, mapping) +
sizeof(RemapClass) * tupledesc->natts;
remapinfo = MemoryContextAllocZero(TopMemoryContext, size);
remapinfo->natts = tupledesc->natts;
for (i = 0; i < tupledesc->natts; ++i)
{
Form_pg_attribute attr = tupledesc->attrs[i];
if (attr->attisdropped)
{
remapinfo->mapping[i] = TQUEUE_REMAP_NONE;
continue;
}
remapinfo->mapping[i] = GetRemapClass(attr->atttypid);
if (remapinfo->mapping[i] != TQUEUE_REMAP_NONE)
noop = false;
}
if (noop)
{
appendStringInfo(&buf, "noop");
pfree(remapinfo);
remapinfo = NULL;
}
return remapinfo;
}
/*
* Determine the remap class assocociated with a particular data type.
*
* Transient record types need to have the typmod applied on the sending side
* replaced with a value on the receiving side that has the same meaning.
*
* Arrays, range types, and all record types (including named composite types)
* need to searched for transient record values buried within them.
* Surprisingly, a walker is required even when the indicated type is a
* composite type, because the actual value may be a compatible transient
* record type.
*/
static RemapClass
GetRemapClass(Oid typeid)
{
RemapClass forceResult = TQUEUE_REMAP_NONE;
RemapClass innerResult = TQUEUE_REMAP_NONE;
for (;;)
{
HeapTuple tup;
Form_pg_type typ;
/* Simple cases. */
if (typeid == RECORDOID)
{
innerResult = TQUEUE_REMAP_RECORD;
break;
}
if (typeid == RECORDARRAYOID)
{
innerResult = TQUEUE_REMAP_ARRAY;
break;
}
/* Otherwise, we need a syscache lookup to figure it out. */
tup = SearchSysCache1(TYPEOID, ObjectIdGetDatum(typeid));
if (!HeapTupleIsValid(tup))
elog(ERROR, "cache lookup failed for type %u", typeid);
typ = (Form_pg_type) GETSTRUCT(tup);
/* Look through domains to underlying base type. */
if (typ->typtype == TYPTYPE_DOMAIN)
{
typeid = typ->typbasetype;
ReleaseSysCache(tup);
continue;
}
/*
* Look through arrays to underlying base type, but the final return
* value must be either TQUEUE_REMAP_ARRAY or TQUEUE_REMAP_NONE. (If
* this is an array of integers, for example, we don't need to walk
* it.)
*/
if (OidIsValid(typ->typelem) && typ->typlen == -1)
{
typeid = typ->typelem;
ReleaseSysCache(tup);
if (forceResult == TQUEUE_REMAP_NONE)
forceResult = TQUEUE_REMAP_ARRAY;
continue;
}
/*
* Similarly, look through ranges to the underlying base type, but the
* final return value must be either TQUEUE_REMAP_RANGE or
* TQUEUE_REMAP_NONE.
*/
if (typ->typtype == TYPTYPE_RANGE)
{
ReleaseSysCache(tup);
if (forceResult == TQUEUE_REMAP_NONE)
forceResult = TQUEUE_REMAP_RANGE;
typeid = get_range_subtype(typeid);
continue;
}
/* Walk composite types. Nothing else needs special handling. */
if (typ->typtype == TYPTYPE_COMPOSITE)
innerResult = TQUEUE_REMAP_RECORD;
ReleaseSysCache(tup);
break;
}
if (innerResult != TQUEUE_REMAP_NONE && forceResult != TQUEUE_REMAP_NONE)
return forceResult;
return innerResult;
}