postgresql/src/backend/access/heap/heaptoast.c
Tom Lane 3ed2005ff5 Introduce macros for typalign and typstorage constants.
Our usual practice for "poor man's enum" catalog columns is to define
macros for the possible values and use those, not literal constants,
in C code.  But for some reason lost in the mists of time, this was
never done for typalign/attalign or typstorage/attstorage.  It's never
too late to make it better though, so let's do that.

The reason I got interested in this right now is the need to duplicate
some uses of the TYPSTORAGE constants in an upcoming ALTER TYPE patch.
But in general, this sort of change aids greppability and readability,
so it's a good idea even without any specific motivation.

I may have missed a few places that could be converted, and it's even
more likely that pending patches will re-introduce some hard-coded
references.  But that's not fatal --- there's no expectation that
we'd actually change any of these values.  We can clean up stragglers
over time.

Discussion: https://postgr.es/m/16457.1583189537@sss.pgh.pa.us
2020-03-04 10:34:25 -05:00

794 lines
23 KiB
C

/*-------------------------------------------------------------------------
*
* heaptoast.c
* Heap-specific definitions for external and compressed storage
* of variable size attributes.
*
* Copyright (c) 2000-2020, PostgreSQL Global Development Group
*
*
* IDENTIFICATION
* src/backend/access/heap/heaptoast.c
*
*
* INTERFACE ROUTINES
* heap_toast_insert_or_update -
* Try to make a given tuple fit into one page by compressing
* or moving off attributes
*
* heap_toast_delete -
* Reclaim toast storage when a tuple is deleted
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/detoast.h"
#include "access/genam.h"
#include "access/heapam.h"
#include "access/heaptoast.h"
#include "access/toast_helper.h"
#include "access/toast_internals.h"
#include "utils/fmgroids.h"
/* ----------
* heap_toast_delete -
*
* Cascaded delete toast-entries on DELETE
* ----------
*/
void
heap_toast_delete(Relation rel, HeapTuple oldtup, bool is_speculative)
{
TupleDesc tupleDesc;
Datum toast_values[MaxHeapAttributeNumber];
bool toast_isnull[MaxHeapAttributeNumber];
/*
* We should only ever be called for tuples of plain relations or
* materialized views --- recursing on a toast rel is bad news.
*/
Assert(rel->rd_rel->relkind == RELKIND_RELATION ||
rel->rd_rel->relkind == RELKIND_MATVIEW);
/*
* Get the tuple descriptor and break down the tuple into fields.
*
* NOTE: it's debatable whether to use heap_deform_tuple() here or just
* heap_getattr() only the varlena columns. The latter could win if there
* are few varlena columns and many non-varlena ones. However,
* heap_deform_tuple costs only O(N) while the heap_getattr way would cost
* O(N^2) if there are many varlena columns, so it seems better to err on
* the side of linear cost. (We won't even be here unless there's at
* least one varlena column, by the way.)
*/
tupleDesc = rel->rd_att;
Assert(tupleDesc->natts <= MaxHeapAttributeNumber);
heap_deform_tuple(oldtup, tupleDesc, toast_values, toast_isnull);
/* Do the real work. */
toast_delete_external(rel, toast_values, toast_isnull, is_speculative);
}
/* ----------
* heap_toast_insert_or_update -
*
* Delete no-longer-used toast-entries and create new ones to
* make the new tuple fit on INSERT or UPDATE
*
* Inputs:
* newtup: the candidate new tuple to be inserted
* oldtup: the old row version for UPDATE, or NULL for INSERT
* options: options to be passed to heap_insert() for toast rows
* Result:
* either newtup if no toasting is needed, or a palloc'd modified tuple
* that is what should actually get stored
*
* NOTE: neither newtup nor oldtup will be modified. This is a change
* from the pre-8.1 API of this routine.
* ----------
*/
HeapTuple
heap_toast_insert_or_update(Relation rel, HeapTuple newtup, HeapTuple oldtup,
int options)
{
HeapTuple result_tuple;
TupleDesc tupleDesc;
int numAttrs;
Size maxDataLen;
Size hoff;
bool toast_isnull[MaxHeapAttributeNumber];
bool toast_oldisnull[MaxHeapAttributeNumber];
Datum toast_values[MaxHeapAttributeNumber];
Datum toast_oldvalues[MaxHeapAttributeNumber];
ToastAttrInfo toast_attr[MaxHeapAttributeNumber];
ToastTupleContext ttc;
/*
* Ignore the INSERT_SPECULATIVE option. Speculative insertions/super
* deletions just normally insert/delete the toast values. It seems
* easiest to deal with that here, instead on, potentially, multiple
* callers.
*/
options &= ~HEAP_INSERT_SPECULATIVE;
/*
* We should only ever be called for tuples of plain relations or
* materialized views --- recursing on a toast rel is bad news.
*/
Assert(rel->rd_rel->relkind == RELKIND_RELATION ||
rel->rd_rel->relkind == RELKIND_MATVIEW);
/*
* Get the tuple descriptor and break down the tuple(s) into fields.
*/
tupleDesc = rel->rd_att;
numAttrs = tupleDesc->natts;
Assert(numAttrs <= MaxHeapAttributeNumber);
heap_deform_tuple(newtup, tupleDesc, toast_values, toast_isnull);
if (oldtup != NULL)
heap_deform_tuple(oldtup, tupleDesc, toast_oldvalues, toast_oldisnull);
/* ----------
* Prepare for toasting
* ----------
*/
ttc.ttc_rel = rel;
ttc.ttc_values = toast_values;
ttc.ttc_isnull = toast_isnull;
if (oldtup == NULL)
{
ttc.ttc_oldvalues = NULL;
ttc.ttc_oldisnull = NULL;
}
else
{
ttc.ttc_oldvalues = toast_oldvalues;
ttc.ttc_oldisnull = toast_oldisnull;
}
ttc.ttc_attr = toast_attr;
toast_tuple_init(&ttc);
/* ----------
* Compress and/or save external until data fits into target length
*
* 1: Inline compress attributes with attstorage EXTENDED, and store very
* large attributes with attstorage EXTENDED or EXTERNAL external
* immediately
* 2: Store attributes with attstorage EXTENDED or EXTERNAL external
* 3: Inline compress attributes with attstorage MAIN
* 4: Store attributes with attstorage MAIN external
* ----------
*/
/* compute header overhead --- this should match heap_form_tuple() */
hoff = SizeofHeapTupleHeader;
if ((ttc.ttc_flags & TOAST_HAS_NULLS) != 0)
hoff += BITMAPLEN(numAttrs);
hoff = MAXALIGN(hoff);
/* now convert to a limit on the tuple data size */
maxDataLen = RelationGetToastTupleTarget(rel, TOAST_TUPLE_TARGET) - hoff;
/*
* Look for attributes with attstorage EXTENDED to compress. Also find
* large attributes with attstorage EXTENDED or EXTERNAL, and store them
* external.
*/
while (heap_compute_data_size(tupleDesc,
toast_values, toast_isnull) > maxDataLen)
{
int biggest_attno;
biggest_attno = toast_tuple_find_biggest_attribute(&ttc, true, false);
if (biggest_attno < 0)
break;
/*
* Attempt to compress it inline, if it has attstorage EXTENDED
*/
if (TupleDescAttr(tupleDesc, biggest_attno)->attstorage == TYPSTORAGE_EXTENDED)
toast_tuple_try_compression(&ttc, biggest_attno);
else
{
/*
* has attstorage EXTERNAL, ignore on subsequent compression
* passes
*/
toast_attr[biggest_attno].tai_colflags |= TOASTCOL_INCOMPRESSIBLE;
}
/*
* If this value is by itself more than maxDataLen (after compression
* if any), push it out to the toast table immediately, if possible.
* This avoids uselessly compressing other fields in the common case
* where we have one long field and several short ones.
*
* XXX maybe the threshold should be less than maxDataLen?
*/
if (toast_attr[biggest_attno].tai_size > maxDataLen &&
rel->rd_rel->reltoastrelid != InvalidOid)
toast_tuple_externalize(&ttc, biggest_attno, options);
}
/*
* Second we look for attributes of attstorage EXTENDED or EXTERNAL that
* are still inline, and make them external. But skip this if there's no
* toast table to push them to.
*/
while (heap_compute_data_size(tupleDesc,
toast_values, toast_isnull) > maxDataLen &&
rel->rd_rel->reltoastrelid != InvalidOid)
{
int biggest_attno;
biggest_attno = toast_tuple_find_biggest_attribute(&ttc, false, false);
if (biggest_attno < 0)
break;
toast_tuple_externalize(&ttc, biggest_attno, options);
}
/*
* Round 3 - this time we take attributes with storage MAIN into
* compression
*/
while (heap_compute_data_size(tupleDesc,
toast_values, toast_isnull) > maxDataLen)
{
int biggest_attno;
biggest_attno = toast_tuple_find_biggest_attribute(&ttc, true, true);
if (biggest_attno < 0)
break;
toast_tuple_try_compression(&ttc, biggest_attno);
}
/*
* Finally we store attributes of type MAIN externally. At this point we
* increase the target tuple size, so that MAIN attributes aren't stored
* externally unless really necessary.
*/
maxDataLen = TOAST_TUPLE_TARGET_MAIN - hoff;
while (heap_compute_data_size(tupleDesc,
toast_values, toast_isnull) > maxDataLen &&
rel->rd_rel->reltoastrelid != InvalidOid)
{
int biggest_attno;
biggest_attno = toast_tuple_find_biggest_attribute(&ttc, false, true);
if (biggest_attno < 0)
break;
toast_tuple_externalize(&ttc, biggest_attno, options);
}
/*
* In the case we toasted any values, we need to build a new heap tuple
* with the changed values.
*/
if ((ttc.ttc_flags & TOAST_NEEDS_CHANGE) != 0)
{
HeapTupleHeader olddata = newtup->t_data;
HeapTupleHeader new_data;
int32 new_header_len;
int32 new_data_len;
int32 new_tuple_len;
/*
* Calculate the new size of the tuple.
*
* Note: we used to assume here that the old tuple's t_hoff must equal
* the new_header_len value, but that was incorrect. The old tuple
* might have a smaller-than-current natts, if there's been an ALTER
* TABLE ADD COLUMN since it was stored; and that would lead to a
* different conclusion about the size of the null bitmap, or even
* whether there needs to be one at all.
*/
new_header_len = SizeofHeapTupleHeader;
if ((ttc.ttc_flags & TOAST_HAS_NULLS) != 0)
new_header_len += BITMAPLEN(numAttrs);
new_header_len = MAXALIGN(new_header_len);
new_data_len = heap_compute_data_size(tupleDesc,
toast_values, toast_isnull);
new_tuple_len = new_header_len + new_data_len;
/*
* Allocate and zero the space needed, and fill HeapTupleData fields.
*/
result_tuple = (HeapTuple) palloc0(HEAPTUPLESIZE + new_tuple_len);
result_tuple->t_len = new_tuple_len;
result_tuple->t_self = newtup->t_self;
result_tuple->t_tableOid = newtup->t_tableOid;
new_data = (HeapTupleHeader) ((char *) result_tuple + HEAPTUPLESIZE);
result_tuple->t_data = new_data;
/*
* Copy the existing tuple header, but adjust natts and t_hoff.
*/
memcpy(new_data, olddata, SizeofHeapTupleHeader);
HeapTupleHeaderSetNatts(new_data, numAttrs);
new_data->t_hoff = new_header_len;
/* Copy over the data, and fill the null bitmap if needed */
heap_fill_tuple(tupleDesc,
toast_values,
toast_isnull,
(char *) new_data + new_header_len,
new_data_len,
&(new_data->t_infomask),
((ttc.ttc_flags & TOAST_HAS_NULLS) != 0) ?
new_data->t_bits : NULL);
}
else
result_tuple = newtup;
toast_tuple_cleanup(&ttc);
return result_tuple;
}
/* ----------
* toast_flatten_tuple -
*
* "Flatten" a tuple to contain no out-of-line toasted fields.
* (This does not eliminate compressed or short-header datums.)
*
* Note: we expect the caller already checked HeapTupleHasExternal(tup),
* so there is no need for a short-circuit path.
* ----------
*/
HeapTuple
toast_flatten_tuple(HeapTuple tup, TupleDesc tupleDesc)
{
HeapTuple new_tuple;
int numAttrs = tupleDesc->natts;
int i;
Datum toast_values[MaxTupleAttributeNumber];
bool toast_isnull[MaxTupleAttributeNumber];
bool toast_free[MaxTupleAttributeNumber];
/*
* Break down the tuple into fields.
*/
Assert(numAttrs <= MaxTupleAttributeNumber);
heap_deform_tuple(tup, tupleDesc, toast_values, toast_isnull);
memset(toast_free, 0, numAttrs * sizeof(bool));
for (i = 0; i < numAttrs; i++)
{
/*
* Look at non-null varlena attributes
*/
if (!toast_isnull[i] && TupleDescAttr(tupleDesc, i)->attlen == -1)
{
struct varlena *new_value;
new_value = (struct varlena *) DatumGetPointer(toast_values[i]);
if (VARATT_IS_EXTERNAL(new_value))
{
new_value = detoast_external_attr(new_value);
toast_values[i] = PointerGetDatum(new_value);
toast_free[i] = true;
}
}
}
/*
* Form the reconfigured tuple.
*/
new_tuple = heap_form_tuple(tupleDesc, toast_values, toast_isnull);
/*
* Be sure to copy the tuple's identity fields. We also make a point of
* copying visibility info, just in case anybody looks at those fields in
* a syscache entry.
*/
new_tuple->t_self = tup->t_self;
new_tuple->t_tableOid = tup->t_tableOid;
new_tuple->t_data->t_choice = tup->t_data->t_choice;
new_tuple->t_data->t_ctid = tup->t_data->t_ctid;
new_tuple->t_data->t_infomask &= ~HEAP_XACT_MASK;
new_tuple->t_data->t_infomask |=
tup->t_data->t_infomask & HEAP_XACT_MASK;
new_tuple->t_data->t_infomask2 &= ~HEAP2_XACT_MASK;
new_tuple->t_data->t_infomask2 |=
tup->t_data->t_infomask2 & HEAP2_XACT_MASK;
/*
* Free allocated temp values
*/
for (i = 0; i < numAttrs; i++)
if (toast_free[i])
pfree(DatumGetPointer(toast_values[i]));
return new_tuple;
}
/* ----------
* toast_flatten_tuple_to_datum -
*
* "Flatten" a tuple containing out-of-line toasted fields into a Datum.
* The result is always palloc'd in the current memory context.
*
* We have a general rule that Datums of container types (rows, arrays,
* ranges, etc) must not contain any external TOAST pointers. Without
* this rule, we'd have to look inside each Datum when preparing a tuple
* for storage, which would be expensive and would fail to extend cleanly
* to new sorts of container types.
*
* However, we don't want to say that tuples represented as HeapTuples
* can't contain toasted fields, so instead this routine should be called
* when such a HeapTuple is being converted into a Datum.
*
* While we're at it, we decompress any compressed fields too. This is not
* necessary for correctness, but reflects an expectation that compression
* will be more effective if applied to the whole tuple not individual
* fields. We are not so concerned about that that we want to deconstruct
* and reconstruct tuples just to get rid of compressed fields, however.
* So callers typically won't call this unless they see that the tuple has
* at least one external field.
*
* On the other hand, in-line short-header varlena fields are left alone.
* If we "untoasted" them here, they'd just get changed back to short-header
* format anyway within heap_fill_tuple.
* ----------
*/
Datum
toast_flatten_tuple_to_datum(HeapTupleHeader tup,
uint32 tup_len,
TupleDesc tupleDesc)
{
HeapTupleHeader new_data;
int32 new_header_len;
int32 new_data_len;
int32 new_tuple_len;
HeapTupleData tmptup;
int numAttrs = tupleDesc->natts;
int i;
bool has_nulls = false;
Datum toast_values[MaxTupleAttributeNumber];
bool toast_isnull[MaxTupleAttributeNumber];
bool toast_free[MaxTupleAttributeNumber];
/* Build a temporary HeapTuple control structure */
tmptup.t_len = tup_len;
ItemPointerSetInvalid(&(tmptup.t_self));
tmptup.t_tableOid = InvalidOid;
tmptup.t_data = tup;
/*
* Break down the tuple into fields.
*/
Assert(numAttrs <= MaxTupleAttributeNumber);
heap_deform_tuple(&tmptup, tupleDesc, toast_values, toast_isnull);
memset(toast_free, 0, numAttrs * sizeof(bool));
for (i = 0; i < numAttrs; i++)
{
/*
* Look at non-null varlena attributes
*/
if (toast_isnull[i])
has_nulls = true;
else if (TupleDescAttr(tupleDesc, i)->attlen == -1)
{
struct varlena *new_value;
new_value = (struct varlena *) DatumGetPointer(toast_values[i]);
if (VARATT_IS_EXTERNAL(new_value) ||
VARATT_IS_COMPRESSED(new_value))
{
new_value = detoast_attr(new_value);
toast_values[i] = PointerGetDatum(new_value);
toast_free[i] = true;
}
}
}
/*
* Calculate the new size of the tuple.
*
* This should match the reconstruction code in
* heap_toast_insert_or_update.
*/
new_header_len = SizeofHeapTupleHeader;
if (has_nulls)
new_header_len += BITMAPLEN(numAttrs);
new_header_len = MAXALIGN(new_header_len);
new_data_len = heap_compute_data_size(tupleDesc,
toast_values, toast_isnull);
new_tuple_len = new_header_len + new_data_len;
new_data = (HeapTupleHeader) palloc0(new_tuple_len);
/*
* Copy the existing tuple header, but adjust natts and t_hoff.
*/
memcpy(new_data, tup, SizeofHeapTupleHeader);
HeapTupleHeaderSetNatts(new_data, numAttrs);
new_data->t_hoff = new_header_len;
/* Set the composite-Datum header fields correctly */
HeapTupleHeaderSetDatumLength(new_data, new_tuple_len);
HeapTupleHeaderSetTypeId(new_data, tupleDesc->tdtypeid);
HeapTupleHeaderSetTypMod(new_data, tupleDesc->tdtypmod);
/* Copy over the data, and fill the null bitmap if needed */
heap_fill_tuple(tupleDesc,
toast_values,
toast_isnull,
(char *) new_data + new_header_len,
new_data_len,
&(new_data->t_infomask),
has_nulls ? new_data->t_bits : NULL);
/*
* Free allocated temp values
*/
for (i = 0; i < numAttrs; i++)
if (toast_free[i])
pfree(DatumGetPointer(toast_values[i]));
return PointerGetDatum(new_data);
}
/* ----------
* toast_build_flattened_tuple -
*
* Build a tuple containing no out-of-line toasted fields.
* (This does not eliminate compressed or short-header datums.)
*
* This is essentially just like heap_form_tuple, except that it will
* expand any external-data pointers beforehand.
*
* It's not very clear whether it would be preferable to decompress
* in-line compressed datums while at it. For now, we don't.
* ----------
*/
HeapTuple
toast_build_flattened_tuple(TupleDesc tupleDesc,
Datum *values,
bool *isnull)
{
HeapTuple new_tuple;
int numAttrs = tupleDesc->natts;
int num_to_free;
int i;
Datum new_values[MaxTupleAttributeNumber];
Pointer freeable_values[MaxTupleAttributeNumber];
/*
* We can pass the caller's isnull array directly to heap_form_tuple, but
* we potentially need to modify the values array.
*/
Assert(numAttrs <= MaxTupleAttributeNumber);
memcpy(new_values, values, numAttrs * sizeof(Datum));
num_to_free = 0;
for (i = 0; i < numAttrs; i++)
{
/*
* Look at non-null varlena attributes
*/
if (!isnull[i] && TupleDescAttr(tupleDesc, i)->attlen == -1)
{
struct varlena *new_value;
new_value = (struct varlena *) DatumGetPointer(new_values[i]);
if (VARATT_IS_EXTERNAL(new_value))
{
new_value = detoast_external_attr(new_value);
new_values[i] = PointerGetDatum(new_value);
freeable_values[num_to_free++] = (Pointer) new_value;
}
}
}
/*
* Form the reconfigured tuple.
*/
new_tuple = heap_form_tuple(tupleDesc, new_values, isnull);
/*
* Free allocated temp values
*/
for (i = 0; i < num_to_free; i++)
pfree(freeable_values[i]);
return new_tuple;
}
/*
* Fetch a TOAST slice from a heap table.
*
* toastrel is the relation from which chunks are to be fetched.
* valueid identifies the TOAST value from which chunks are being fetched.
* attrsize is the total size of the TOAST value.
* sliceoffset is the byte offset within the TOAST value from which to fetch.
* slicelength is the number of bytes to be fetched from the TOAST value.
* result is the varlena into which the results should be written.
*/
void
heap_fetch_toast_slice(Relation toastrel, Oid valueid, int32 attrsize,
int32 sliceoffset, int32 slicelength,
struct varlena *result)
{
Relation *toastidxs;
ScanKeyData toastkey[3];
TupleDesc toasttupDesc = toastrel->rd_att;
int nscankeys;
SysScanDesc toastscan;
HeapTuple ttup;
int32 expectedchunk;
int32 totalchunks = ((attrsize - 1) / TOAST_MAX_CHUNK_SIZE) + 1;
int startchunk;
int endchunk;
int num_indexes;
int validIndex;
SnapshotData SnapshotToast;
/* Look for the valid index of toast relation */
validIndex = toast_open_indexes(toastrel,
AccessShareLock,
&toastidxs,
&num_indexes);
startchunk = sliceoffset / TOAST_MAX_CHUNK_SIZE;
endchunk = (sliceoffset + slicelength - 1) / TOAST_MAX_CHUNK_SIZE;
Assert(endchunk <= totalchunks);
/* Set up a scan key to fetch from the index. */
ScanKeyInit(&toastkey[0],
(AttrNumber) 1,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(valueid));
/*
* No additional condition if fetching all chunks. Otherwise, use an
* equality condition for one chunk, and a range condition otherwise.
*/
if (startchunk == 0 && endchunk == totalchunks - 1)
nscankeys = 1;
else if (startchunk == endchunk)
{
ScanKeyInit(&toastkey[1],
(AttrNumber) 2,
BTEqualStrategyNumber, F_INT4EQ,
Int32GetDatum(startchunk));
nscankeys = 2;
}
else
{
ScanKeyInit(&toastkey[1],
(AttrNumber) 2,
BTGreaterEqualStrategyNumber, F_INT4GE,
Int32GetDatum(startchunk));
ScanKeyInit(&toastkey[2],
(AttrNumber) 2,
BTLessEqualStrategyNumber, F_INT4LE,
Int32GetDatum(endchunk));
nscankeys = 3;
}
/* Prepare for scan */
init_toast_snapshot(&SnapshotToast);
toastscan = systable_beginscan_ordered(toastrel, toastidxs[validIndex],
&SnapshotToast, nscankeys, toastkey);
/*
* Read the chunks by index
*
* The index is on (valueid, chunkidx) so they will come in order
*/
expectedchunk = startchunk;
while ((ttup = systable_getnext_ordered(toastscan, ForwardScanDirection)) != NULL)
{
int32 curchunk;
Pointer chunk;
bool isnull;
char *chunkdata;
int32 chunksize;
int32 expected_size;
int32 chcpystrt;
int32 chcpyend;
/*
* Have a chunk, extract the sequence number and the data
*/
curchunk = DatumGetInt32(fastgetattr(ttup, 2, toasttupDesc, &isnull));
Assert(!isnull);
chunk = DatumGetPointer(fastgetattr(ttup, 3, toasttupDesc, &isnull));
Assert(!isnull);
if (!VARATT_IS_EXTENDED(chunk))
{
chunksize = VARSIZE(chunk) - VARHDRSZ;
chunkdata = VARDATA(chunk);
}
else if (VARATT_IS_SHORT(chunk))
{
/* could happen due to heap_form_tuple doing its thing */
chunksize = VARSIZE_SHORT(chunk) - VARHDRSZ_SHORT;
chunkdata = VARDATA_SHORT(chunk);
}
else
{
/* should never happen */
elog(ERROR, "found toasted toast chunk for toast value %u in %s",
valueid, RelationGetRelationName(toastrel));
chunksize = 0; /* keep compiler quiet */
chunkdata = NULL;
}
/*
* Some checks on the data we've found
*/
if (curchunk != expectedchunk)
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg_internal("unexpected chunk number %d (expected %d) for toast value %u in %s",
curchunk, expectedchunk, valueid,
RelationGetRelationName(toastrel))));
if (curchunk > endchunk)
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg_internal("unexpected chunk number %d (out of range %d..%d) for toast value %u in %s",
curchunk,
startchunk, endchunk, valueid,
RelationGetRelationName(toastrel))));
expected_size = curchunk < totalchunks - 1 ? TOAST_MAX_CHUNK_SIZE
: attrsize - ((totalchunks - 1) * TOAST_MAX_CHUNK_SIZE);
if (chunksize != expected_size)
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg_internal("unexpected chunk size %d (expected %d) in chunk %d of %d for toast value %u in %s",
chunksize, expected_size,
curchunk, totalchunks, valueid,
RelationGetRelationName(toastrel))));
/*
* Copy the data into proper place in our result
*/
chcpystrt = 0;
chcpyend = chunksize - 1;
if (curchunk == startchunk)
chcpystrt = sliceoffset % TOAST_MAX_CHUNK_SIZE;
if (curchunk == endchunk)
chcpyend = (sliceoffset + slicelength - 1) % TOAST_MAX_CHUNK_SIZE;
memcpy(VARDATA(result) +
(curchunk * TOAST_MAX_CHUNK_SIZE - sliceoffset) + chcpystrt,
chunkdata + chcpystrt,
(chcpyend - chcpystrt) + 1);
expectedchunk++;
}
/*
* Final checks that we successfully fetched the datum
*/
if (expectedchunk != (endchunk + 1))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg_internal("missing chunk number %d for toast value %u in %s",
expectedchunk, valueid,
RelationGetRelationName(toastrel))));
/* End scan and close indexes. */
systable_endscan_ordered(toastscan);
toast_close_indexes(toastidxs, num_indexes, AccessShareLock);
}