postgresql/src/backend/utils/adt/int8.c
Neil Conway e2ded829f6 Revise int2/int4/int8/float4/float8 input routines to allow for
any amount of leading or trailing whitespace (where "whitespace"
is defined by isspace()). This is for SQL conformance, as well
as consistency with other numeric types (e.g. oid, numeric).

Also refactor pg_atoi() to avoid looking at errno where not
necessary, and add a bunch of regression tests for the input
to these types.
2004-03-11 02:11:14 +00:00

1031 lines
18 KiB
C

/*-------------------------------------------------------------------------
*
* int8.c
* Internal 64-bit integer operations
*
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/utils/adt/int8.c,v 1.52 2004/03/11 02:11:13 neilc Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <ctype.h>
#include <limits.h>
#include <math.h>
#include "funcapi.h"
#include "libpq/pqformat.h"
#include "utils/int8.h"
#define MAXINT8LEN 25
typedef struct
{
int64 current;
int64 finish;
int64 step;
} generate_series_fctx;
/***********************************************************************
**
** Routines for 64-bit integers.
**
***********************************************************************/
/*----------------------------------------------------------
* Formatting and conversion routines.
*---------------------------------------------------------*/
/*
* scanint8 --- try to parse a string into an int8.
*
* If errorOK is false, ereport a useful error message if the string is bad.
* If errorOK is true, just return "false" for bad input.
*/
bool
scanint8(const char *str, bool errorOK, int64 *result)
{
const char *ptr = str;
int64 tmp = 0;
int sign = 1;
/*
* Do our own scan, rather than relying on sscanf which might be
* broken for long long.
*/
/* skip leading spaces */
while (*ptr && isspace((unsigned char) *ptr))
ptr++;
/* handle sign */
if (*ptr == '-')
{
ptr++;
sign = -1;
/*
* Do an explicit check for INT64_MIN. Ugly though this is, it's
* cleaner than trying to get the loop below to handle it
* portably.
*/
#ifndef INT64_IS_BUSTED
if (strcmp(ptr, "9223372036854775808") == 0)
{
*result = -INT64CONST(0x7fffffffffffffff) - 1;
return true;
}
#endif
}
else if (*ptr == '+')
ptr++;
/* require at least one digit */
if (!isdigit((unsigned char) *ptr))
{
if (errorOK)
return false;
else
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type bigint: \"%s\"", str)));
}
/* process digits */
while (*ptr && isdigit((unsigned char) *ptr))
{
int64 newtmp = tmp * 10 + (*ptr++ - '0');
if ((newtmp / 10) != tmp) /* overflow? */
{
if (errorOK)
return false;
else
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
}
tmp = newtmp;
}
/* allow trailing whitespace, but not other trailing chars */
while (*ptr != '\0' && isspace(*ptr))
ptr++;
if (*ptr != '\0')
{
if (errorOK)
return false;
else
ereport(ERROR,
(errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
errmsg("invalid input syntax for type bigint: \"%s\"", str)));
}
*result = (sign < 0) ? -tmp : tmp;
return true;
}
/* int8in()
*/
Datum
int8in(PG_FUNCTION_ARGS)
{
char *str = PG_GETARG_CSTRING(0);
int64 result;
(void) scanint8(str, false, &result);
PG_RETURN_INT64(result);
}
/* int8out()
*/
Datum
int8out(PG_FUNCTION_ARGS)
{
int64 val = PG_GETARG_INT64(0);
char *result;
int len;
char buf[MAXINT8LEN + 1];
if ((len = snprintf(buf, MAXINT8LEN, INT64_FORMAT, val)) < 0)
elog(ERROR, "could not format int8");
result = pstrdup(buf);
PG_RETURN_CSTRING(result);
}
/*
* int8recv - converts external binary format to int8
*/
Datum
int8recv(PG_FUNCTION_ARGS)
{
StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
PG_RETURN_INT64(pq_getmsgint64(buf));
}
/*
* int8send - converts int8 to binary format
*/
Datum
int8send(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
StringInfoData buf;
pq_begintypsend(&buf);
pq_sendint64(&buf, arg1);
PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}
/*----------------------------------------------------------
* Relational operators for int8s, including cross-data-type comparisons.
*---------------------------------------------------------*/
/* int8relop()
* Is val1 relop val2?
*/
Datum
int8eq(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int8ne(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int8lt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int8gt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int8le(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int8ge(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int84relop()
* Is 64-bit val1 relop 32-bit val2?
*/
Datum
int84eq(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int84ne(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int84lt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int84gt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int84le(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int84ge(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int48relop()
* Is 32-bit val1 relop 64-bit val2?
*/
Datum
int48eq(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int48ne(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int48lt(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int48gt(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int48le(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int48ge(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int82relop()
* Is 64-bit val1 relop 16-bit val2?
*/
Datum
int82eq(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int82ne(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int82lt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int82gt(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int82le(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int82ge(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int16 val2 = PG_GETARG_INT16(1);
PG_RETURN_BOOL(val1 >= val2);
}
/* int28relop()
* Is 16-bit val1 relop 64-bit val2?
*/
Datum
int28eq(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 == val2);
}
Datum
int28ne(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 != val2);
}
Datum
int28lt(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 < val2);
}
Datum
int28gt(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 > val2);
}
Datum
int28le(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 <= val2);
}
Datum
int28ge(PG_FUNCTION_ARGS)
{
int16 val1 = PG_GETARG_INT16(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_BOOL(val1 >= val2);
}
/*----------------------------------------------------------
* Arithmetic operators on 64-bit integers.
*---------------------------------------------------------*/
Datum
int8um(PG_FUNCTION_ARGS)
{
int64 val = PG_GETARG_INT64(0);
PG_RETURN_INT64(-val);
}
Datum
int8up(PG_FUNCTION_ARGS)
{
int64 val = PG_GETARG_INT64(0);
PG_RETURN_INT64(val);
}
Datum
int8pl(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(val1 + val2);
}
Datum
int8mi(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(val1 - val2);
}
Datum
int8mul(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(val1 * val2);
}
Datum
int8div(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
if (val2 == 0)
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
PG_RETURN_INT64(val1 / val2);
}
/* int8abs()
* Absolute value
*/
Datum
int8abs(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
PG_RETURN_INT64((arg1 < 0) ? -arg1 : arg1);
}
/* int8mod()
* Modulo operation.
*/
Datum
int8mod(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
int64 result;
if (val2 == 0)
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
result = val1 / val2;
result *= val2;
result = val1 - result;
PG_RETURN_INT64(result);
}
Datum
int8inc(PG_FUNCTION_ARGS)
{
int64 arg = PG_GETARG_INT64(0);
PG_RETURN_INT64(arg + 1);
}
Datum
int8larger(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
int64 result;
result = ((val1 > val2) ? val1 : val2);
PG_RETURN_INT64(result);
}
Datum
int8smaller(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int64 val2 = PG_GETARG_INT64(1);
int64 result;
result = ((val1 < val2) ? val1 : val2);
PG_RETURN_INT64(result);
}
Datum
int84pl(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_INT64(val1 + val2);
}
Datum
int84mi(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_INT64(val1 - val2);
}
Datum
int84mul(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
PG_RETURN_INT64(val1 * val2);
}
Datum
int84div(PG_FUNCTION_ARGS)
{
int64 val1 = PG_GETARG_INT64(0);
int32 val2 = PG_GETARG_INT32(1);
if (val2 == 0)
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
PG_RETURN_INT64(val1 / val2);
}
Datum
int48pl(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(val1 + val2);
}
Datum
int48mi(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(val1 - val2);
}
Datum
int48mul(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(val1 * val2);
}
Datum
int48div(PG_FUNCTION_ARGS)
{
int32 val1 = PG_GETARG_INT32(0);
int64 val2 = PG_GETARG_INT64(1);
if (val2 == 0)
ereport(ERROR,
(errcode(ERRCODE_DIVISION_BY_ZERO),
errmsg("division by zero")));
PG_RETURN_INT64(val1 / val2);
}
/* Binary arithmetics
*
* int8and - returns arg1 & arg2
* int8or - returns arg1 | arg2
* int8xor - returns arg1 # arg2
* int8not - returns ~arg1
* int8shl - returns arg1 << arg2
* int8shr - returns arg1 >> arg2
*/
Datum
int8and(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(arg1 & arg2);
}
Datum
int8or(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(arg1 | arg2);
}
Datum
int8xor(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int64 arg2 = PG_GETARG_INT64(1);
PG_RETURN_INT64(arg1 ^ arg2);
}
Datum
int8not(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
PG_RETURN_INT64(~arg1);
}
Datum
int8shl(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT64(arg1 << arg2);
}
Datum
int8shr(PG_FUNCTION_ARGS)
{
int64 arg1 = PG_GETARG_INT64(0);
int32 arg2 = PG_GETARG_INT32(1);
PG_RETURN_INT64(arg1 >> arg2);
}
/*----------------------------------------------------------
* Conversion operators.
*---------------------------------------------------------*/
Datum
int48(PG_FUNCTION_ARGS)
{
int32 val = PG_GETARG_INT32(0);
PG_RETURN_INT64((int64) val);
}
Datum
int84(PG_FUNCTION_ARGS)
{
int64 val = PG_GETARG_INT64(0);
int32 result;
result = (int32) val;
/* Test for overflow by reverse-conversion. */
if ((int64) result != val)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT32(result);
}
Datum
int28(PG_FUNCTION_ARGS)
{
int16 val = PG_GETARG_INT16(0);
PG_RETURN_INT64((int64) val);
}
Datum
int82(PG_FUNCTION_ARGS)
{
int64 val = PG_GETARG_INT64(0);
int16 result;
result = (int16) val;
/* Test for overflow by reverse-conversion. */
if ((int64) result != val)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT16(result);
}
Datum
i8tod(PG_FUNCTION_ARGS)
{
int64 val = PG_GETARG_INT64(0);
float8 result;
result = val;
PG_RETURN_FLOAT8(result);
}
/* dtoi8()
* Convert float8 to 8-byte integer.
*/
Datum
dtoi8(PG_FUNCTION_ARGS)
{
float8 val = PG_GETARG_FLOAT8(0);
int64 result;
/* Round val to nearest integer (but it's still in float form) */
val = rint(val);
/*
* Does it fit in an int64? Avoid assuming that we have handy
* constants defined for the range boundaries, instead test for
* overflow by reverse-conversion.
*/
result = (int64) val;
if ((float8) result != val)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT64(result);
}
Datum
i8tof(PG_FUNCTION_ARGS)
{
int64 val = PG_GETARG_INT64(0);
float4 result;
result = val;
PG_RETURN_FLOAT4(result);
}
/* ftoi8()
* Convert float4 to 8-byte integer.
*/
Datum
ftoi8(PG_FUNCTION_ARGS)
{
float4 val = PG_GETARG_FLOAT4(0);
int64 result;
float8 dval;
/* Round val to nearest integer (but it's still in float form) */
dval = rint(val);
/*
* Does it fit in an int64? Avoid assuming that we have handy
* constants defined for the range boundaries, instead test for
* overflow by reverse-conversion.
*/
result = (int64) dval;
if ((float8) result != dval)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("integer out of range")));
PG_RETURN_INT64(result);
}
Datum
i8tooid(PG_FUNCTION_ARGS)
{
int64 val = PG_GETARG_INT64(0);
Oid result;
result = (Oid) val;
/* Test for overflow by reverse-conversion. */
if ((int64) result != val)
ereport(ERROR,
(errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("OID out of range")));
PG_RETURN_OID(result);
}
Datum
oidtoi8(PG_FUNCTION_ARGS)
{
Oid val = PG_GETARG_OID(0);
PG_RETURN_INT64((int64) val);
}
Datum
text_int8(PG_FUNCTION_ARGS)
{
text *str = PG_GETARG_TEXT_P(0);
int len;
char *s;
Datum result;
len = (VARSIZE(str) - VARHDRSZ);
s = palloc(len + 1);
memcpy(s, VARDATA(str), len);
*(s + len) = '\0';
result = DirectFunctionCall1(int8in, CStringGetDatum(s));
pfree(s);
return result;
}
Datum
int8_text(PG_FUNCTION_ARGS)
{
/* val is int64, but easier to leave it as Datum */
Datum val = PG_GETARG_DATUM(0);
char *s;
int len;
text *result;
s = DatumGetCString(DirectFunctionCall1(int8out, val));
len = strlen(s);
result = (text *) palloc(VARHDRSZ + len);
VARATT_SIZEP(result) = len + VARHDRSZ;
memcpy(VARDATA(result), s, len);
pfree(s);
PG_RETURN_TEXT_P(result);
}
/*
* non-persistent numeric series generator
*/
Datum
generate_series_int8(PG_FUNCTION_ARGS)
{
return generate_series_step_int8(fcinfo);
}
Datum
generate_series_step_int8(PG_FUNCTION_ARGS)
{
FuncCallContext *funcctx;
generate_series_fctx *fctx;
int64 result;
MemoryContext oldcontext;
/* stuff done only on the first call of the function */
if (SRF_IS_FIRSTCALL())
{
int64 start = PG_GETARG_INT64(0);
int64 finish = PG_GETARG_INT64(1);
int64 step = 1;
/* see if we were given an explicit step size */
if (PG_NARGS() == 3)
step = PG_GETARG_INT64(2);
if (step == 0)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("step size may not equal zero")));
/* create a function context for cross-call persistence */
funcctx = SRF_FIRSTCALL_INIT();
/*
* switch to memory context appropriate for multiple function
* calls
*/
oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
/* allocate memory for user context */
fctx = (generate_series_fctx *) palloc(sizeof(generate_series_fctx));
/*
* Use fctx to keep state from call to call.
* Seed current with the original start value
*/
fctx->current = start;
fctx->finish = finish;
fctx->step = step;
funcctx->user_fctx = fctx;
MemoryContextSwitchTo(oldcontext);
}
/* stuff done on every call of the function */
funcctx = SRF_PERCALL_SETUP();
/*
* get the saved state and use current as the result for
* this iteration
*/
fctx = funcctx->user_fctx;
result = fctx->current;
if ((fctx->step > 0 && fctx->current <= fctx->finish) ||
(fctx->step < 0 && fctx->current >= fctx->finish))
{
/* increment current in preparation for next iteration */
fctx->current += fctx->step;
/* do when there is more left to send */
SRF_RETURN_NEXT(funcctx, Int64GetDatum(result));
}
else
/* do when there is no more left */
SRF_RETURN_DONE(funcctx);
}