postgresql/src/backend/access/heap/hio.c

686 lines
23 KiB
C

/*-------------------------------------------------------------------------
*
* hio.c
* POSTGRES heap access method input/output code.
*
* Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/access/heap/hio.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/heapam.h"
#include "access/hio.h"
#include "access/htup_details.h"
#include "access/visibilitymap.h"
#include "storage/bufmgr.h"
#include "storage/freespace.h"
#include "storage/lmgr.h"
#include "storage/smgr.h"
/*
* RelationPutHeapTuple - place tuple at specified page
*
* !!! EREPORT(ERROR) IS DISALLOWED HERE !!! Must PANIC on failure!!!
*
* Note - caller must hold BUFFER_LOCK_EXCLUSIVE on the buffer.
*/
void
RelationPutHeapTuple(Relation relation,
Buffer buffer,
HeapTuple tuple,
bool token)
{
Page pageHeader;
OffsetNumber offnum;
/*
* A tuple that's being inserted speculatively should already have its
* token set.
*/
Assert(!token || HeapTupleHeaderIsSpeculative(tuple->t_data));
/*
* Do not allow tuples with invalid combinations of hint bits to be placed
* on a page. These combinations are detected as corruption by the
* contrib/amcheck logic, so if you disable one or both of these
* assertions, make corresponding changes there.
*/
Assert(!((tuple->t_data->t_infomask & HEAP_XMAX_LOCK_ONLY) &&
(tuple->t_data->t_infomask2 & HEAP_KEYS_UPDATED)));
Assert(!((tuple->t_data->t_infomask & HEAP_XMAX_COMMITTED) &&
(tuple->t_data->t_infomask & HEAP_XMAX_IS_MULTI)));
/* Add the tuple to the page */
pageHeader = BufferGetPage(buffer);
offnum = PageAddItem(pageHeader, (Item) tuple->t_data,
tuple->t_len, InvalidOffsetNumber, false, true);
if (offnum == InvalidOffsetNumber)
elog(PANIC, "failed to add tuple to page");
/* Update tuple->t_self to the actual position where it was stored */
ItemPointerSet(&(tuple->t_self), BufferGetBlockNumber(buffer), offnum);
/*
* Insert the correct position into CTID of the stored tuple, too (unless
* this is a speculative insertion, in which case the token is held in
* CTID field instead)
*/
if (!token)
{
ItemId itemId = PageGetItemId(pageHeader, offnum);
HeapTupleHeader item = (HeapTupleHeader) PageGetItem(pageHeader, itemId);
item->t_ctid = tuple->t_self;
}
}
/*
* Read in a buffer in mode, using bulk-insert strategy if bistate isn't NULL.
*/
static Buffer
ReadBufferBI(Relation relation, BlockNumber targetBlock,
ReadBufferMode mode, BulkInsertState bistate)
{
Buffer buffer;
/* If not bulk-insert, exactly like ReadBuffer */
if (!bistate)
return ReadBufferExtended(relation, MAIN_FORKNUM, targetBlock,
mode, NULL);
/* If we have the desired block already pinned, re-pin and return it */
if (bistate->current_buf != InvalidBuffer)
{
if (BufferGetBlockNumber(bistate->current_buf) == targetBlock)
{
/*
* Currently the LOCK variants are only used for extending
* relation, which should never reach this branch.
*/
Assert(mode != RBM_ZERO_AND_LOCK &&
mode != RBM_ZERO_AND_CLEANUP_LOCK);
IncrBufferRefCount(bistate->current_buf);
return bistate->current_buf;
}
/* ... else drop the old buffer */
ReleaseBuffer(bistate->current_buf);
bistate->current_buf = InvalidBuffer;
}
/* Perform a read using the buffer strategy */
buffer = ReadBufferExtended(relation, MAIN_FORKNUM, targetBlock,
mode, bistate->strategy);
/* Save the selected block as target for future inserts */
IncrBufferRefCount(buffer);
bistate->current_buf = buffer;
return buffer;
}
/*
* For each heap page which is all-visible, acquire a pin on the appropriate
* visibility map page, if we haven't already got one.
*
* buffer2 may be InvalidBuffer, if only one buffer is involved. buffer1
* must not be InvalidBuffer. If both buffers are specified, block1 must
* be less than block2.
*/
static void
GetVisibilityMapPins(Relation relation, Buffer buffer1, Buffer buffer2,
BlockNumber block1, BlockNumber block2,
Buffer *vmbuffer1, Buffer *vmbuffer2)
{
bool need_to_pin_buffer1;
bool need_to_pin_buffer2;
Assert(BufferIsValid(buffer1));
Assert(buffer2 == InvalidBuffer || block1 <= block2);
while (1)
{
/* Figure out which pins we need but don't have. */
need_to_pin_buffer1 = PageIsAllVisible(BufferGetPage(buffer1))
&& !visibilitymap_pin_ok(block1, *vmbuffer1);
need_to_pin_buffer2 = buffer2 != InvalidBuffer
&& PageIsAllVisible(BufferGetPage(buffer2))
&& !visibilitymap_pin_ok(block2, *vmbuffer2);
if (!need_to_pin_buffer1 && !need_to_pin_buffer2)
return;
/* We must unlock both buffers before doing any I/O. */
LockBuffer(buffer1, BUFFER_LOCK_UNLOCK);
if (buffer2 != InvalidBuffer && buffer2 != buffer1)
LockBuffer(buffer2, BUFFER_LOCK_UNLOCK);
/* Get pins. */
if (need_to_pin_buffer1)
visibilitymap_pin(relation, block1, vmbuffer1);
if (need_to_pin_buffer2)
visibilitymap_pin(relation, block2, vmbuffer2);
/* Relock buffers. */
LockBuffer(buffer1, BUFFER_LOCK_EXCLUSIVE);
if (buffer2 != InvalidBuffer && buffer2 != buffer1)
LockBuffer(buffer2, BUFFER_LOCK_EXCLUSIVE);
/*
* If there are two buffers involved and we pinned just one of them,
* it's possible that the second one became all-visible while we were
* busy pinning the first one. If it looks like that's a possible
* scenario, we'll need to make a second pass through this loop.
*/
if (buffer2 == InvalidBuffer || buffer1 == buffer2
|| (need_to_pin_buffer1 && need_to_pin_buffer2))
break;
}
}
/*
* Extend a relation by multiple blocks to avoid future contention on the
* relation extension lock. Our goal is to pre-extend the relation by an
* amount which ramps up as the degree of contention ramps up, but limiting
* the result to some sane overall value.
*/
static void
RelationAddExtraBlocks(Relation relation, BulkInsertState bistate)
{
BlockNumber blockNum,
firstBlock = InvalidBlockNumber;
int extraBlocks;
int lockWaiters;
/* Use the length of the lock wait queue to judge how much to extend. */
lockWaiters = RelationExtensionLockWaiterCount(relation);
if (lockWaiters <= 0)
return;
/*
* It might seem like multiplying the number of lock waiters by as much as
* 20 is too aggressive, but benchmarking revealed that smaller numbers
* were insufficient. 512 is just an arbitrary cap to prevent
* pathological results.
*/
extraBlocks = Min(512, lockWaiters * 20);
do
{
Buffer buffer;
Page page;
Size freespace;
/*
* Extend by one page. This should generally match the main-line
* extension code in RelationGetBufferForTuple, except that we hold
* the relation extension lock throughout, and we don't immediately
* initialize the page (see below).
*/
buffer = ReadBufferBI(relation, P_NEW, RBM_ZERO_AND_LOCK, bistate);
page = BufferGetPage(buffer);
if (!PageIsNew(page))
elog(ERROR, "page %u of relation \"%s\" should be empty but is not",
BufferGetBlockNumber(buffer),
RelationGetRelationName(relation));
/*
* Add the page to the FSM without initializing. If we were to
* initialize here, the page would potentially get flushed out to disk
* before we add any useful content. There's no guarantee that that'd
* happen before a potential crash, so we need to deal with
* uninitialized pages anyway, thus avoid the potential for
* unnecessary writes.
*/
/* we'll need this info below */
blockNum = BufferGetBlockNumber(buffer);
freespace = BufferGetPageSize(buffer) - SizeOfPageHeaderData;
UnlockReleaseBuffer(buffer);
/* Remember first block number thus added. */
if (firstBlock == InvalidBlockNumber)
firstBlock = blockNum;
/*
* Immediately update the bottom level of the FSM. This has a good
* chance of making this page visible to other concurrently inserting
* backends, and we want that to happen without delay.
*/
RecordPageWithFreeSpace(relation, blockNum, freespace);
}
while (--extraBlocks > 0);
/*
* Updating the upper levels of the free space map is too expensive to do
* for every block, but it's worth doing once at the end to make sure that
* subsequent insertion activity sees all of those nifty free pages we
* just inserted.
*/
FreeSpaceMapVacuumRange(relation, firstBlock, blockNum + 1);
}
/*
* RelationGetBufferForTuple
*
* Returns pinned and exclusive-locked buffer of a page in given relation
* with free space >= given len.
*
* If otherBuffer is not InvalidBuffer, then it references a previously
* pinned buffer of another page in the same relation; on return, this
* buffer will also be exclusive-locked. (This case is used by heap_update;
* the otherBuffer contains the tuple being updated.)
*
* The reason for passing otherBuffer is that if two backends are doing
* concurrent heap_update operations, a deadlock could occur if they try
* to lock the same two buffers in opposite orders. To ensure that this
* can't happen, we impose the rule that buffers of a relation must be
* locked in increasing page number order. This is most conveniently done
* by having RelationGetBufferForTuple lock them both, with suitable care
* for ordering.
*
* NOTE: it is unlikely, but not quite impossible, for otherBuffer to be the
* same buffer we select for insertion of the new tuple (this could only
* happen if space is freed in that page after heap_update finds there's not
* enough there). In that case, the page will be pinned and locked only once.
*
* For the vmbuffer and vmbuffer_other arguments, we avoid deadlock by
* locking them only after locking the corresponding heap page, and taking
* no further lwlocks while they are locked.
*
* We normally use FSM to help us find free space. However,
* if HEAP_INSERT_SKIP_FSM is specified, we just append a new empty page to
* the end of the relation if the tuple won't fit on the current target page.
* This can save some cycles when we know the relation is new and doesn't
* contain useful amounts of free space.
*
* HEAP_INSERT_SKIP_FSM is also useful for non-WAL-logged additions to a
* relation, if the caller holds exclusive lock and is careful to invalidate
* relation's smgr_targblock before the first insertion --- that ensures that
* all insertions will occur into newly added pages and not be intermixed
* with tuples from other transactions. That way, a crash can't risk losing
* any committed data of other transactions. (See heap_insert's comments
* for additional constraints needed for safe usage of this behavior.)
*
* The caller can also provide a BulkInsertState object to optimize many
* insertions into the same relation. This keeps a pin on the current
* insertion target page (to save pin/unpin cycles) and also passes a
* BULKWRITE buffer selection strategy object to the buffer manager.
* Passing NULL for bistate selects the default behavior.
*
* We always try to avoid filling existing pages further than the fillfactor.
* This is OK since this routine is not consulted when updating a tuple and
* keeping it on the same page, which is the scenario fillfactor is meant
* to reserve space for.
*
* ereport(ERROR) is allowed here, so this routine *must* be called
* before any (unlogged) changes are made in buffer pool.
*/
Buffer
RelationGetBufferForTuple(Relation relation, Size len,
Buffer otherBuffer, int options,
BulkInsertState bistate,
Buffer *vmbuffer, Buffer *vmbuffer_other)
{
bool use_fsm = !(options & HEAP_INSERT_SKIP_FSM);
Buffer buffer = InvalidBuffer;
Page page;
Size pageFreeSpace = 0,
saveFreeSpace = 0;
BlockNumber targetBlock,
otherBlock;
bool needLock;
len = MAXALIGN(len); /* be conservative */
/* Bulk insert is not supported for updates, only inserts. */
Assert(otherBuffer == InvalidBuffer || !bistate);
/*
* If we're gonna fail for oversize tuple, do it right away
*/
if (len > MaxHeapTupleSize)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("row is too big: size %zu, maximum size %zu",
len, MaxHeapTupleSize)));
/* Compute desired extra freespace due to fillfactor option */
saveFreeSpace = RelationGetTargetPageFreeSpace(relation,
HEAP_DEFAULT_FILLFACTOR);
if (otherBuffer != InvalidBuffer)
otherBlock = BufferGetBlockNumber(otherBuffer);
else
otherBlock = InvalidBlockNumber; /* just to keep compiler quiet */
/*
* We first try to put the tuple on the same page we last inserted a tuple
* on, as cached in the BulkInsertState or relcache entry. If that
* doesn't work, we ask the Free Space Map to locate a suitable page.
* Since the FSM's info might be out of date, we have to be prepared to
* loop around and retry multiple times. (To insure this isn't an infinite
* loop, we must update the FSM with the correct amount of free space on
* each page that proves not to be suitable.) If the FSM has no record of
* a page with enough free space, we give up and extend the relation.
*
* When use_fsm is false, we either put the tuple onto the existing target
* page or extend the relation.
*/
if (len + saveFreeSpace > MaxHeapTupleSize)
{
/* can't fit, don't bother asking FSM */
targetBlock = InvalidBlockNumber;
use_fsm = false;
}
else if (bistate && bistate->current_buf != InvalidBuffer)
targetBlock = BufferGetBlockNumber(bistate->current_buf);
else
targetBlock = RelationGetTargetBlock(relation);
if (targetBlock == InvalidBlockNumber && use_fsm)
{
/*
* We have no cached target page, so ask the FSM for an initial
* target.
*/
targetBlock = GetPageWithFreeSpace(relation, len + saveFreeSpace);
/*
* If the FSM knows nothing of the rel, try the last page before we
* give up and extend. This avoids one-tuple-per-page syndrome during
* bootstrapping or in a recently-started system.
*/
if (targetBlock == InvalidBlockNumber)
{
BlockNumber nblocks = RelationGetNumberOfBlocks(relation);
if (nblocks > 0)
targetBlock = nblocks - 1;
}
}
loop:
while (targetBlock != InvalidBlockNumber)
{
/*
* Read and exclusive-lock the target block, as well as the other
* block if one was given, taking suitable care with lock ordering and
* the possibility they are the same block.
*
* If the page-level all-visible flag is set, caller will need to
* clear both that and the corresponding visibility map bit. However,
* by the time we return, we'll have x-locked the buffer, and we don't
* want to do any I/O while in that state. So we check the bit here
* before taking the lock, and pin the page if it appears necessary.
* Checking without the lock creates a risk of getting the wrong
* answer, so we'll have to recheck after acquiring the lock.
*/
if (otherBuffer == InvalidBuffer)
{
/* easy case */
buffer = ReadBufferBI(relation, targetBlock, RBM_NORMAL, bistate);
if (PageIsAllVisible(BufferGetPage(buffer)))
visibilitymap_pin(relation, targetBlock, vmbuffer);
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
}
else if (otherBlock == targetBlock)
{
/* also easy case */
buffer = otherBuffer;
if (PageIsAllVisible(BufferGetPage(buffer)))
visibilitymap_pin(relation, targetBlock, vmbuffer);
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
}
else if (otherBlock < targetBlock)
{
/* lock other buffer first */
buffer = ReadBuffer(relation, targetBlock);
if (PageIsAllVisible(BufferGetPage(buffer)))
visibilitymap_pin(relation, targetBlock, vmbuffer);
LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
}
else
{
/* lock target buffer first */
buffer = ReadBuffer(relation, targetBlock);
if (PageIsAllVisible(BufferGetPage(buffer)))
visibilitymap_pin(relation, targetBlock, vmbuffer);
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
}
/*
* We now have the target page (and the other buffer, if any) pinned
* and locked. However, since our initial PageIsAllVisible checks
* were performed before acquiring the lock, the results might now be
* out of date, either for the selected victim buffer, or for the
* other buffer passed by the caller. In that case, we'll need to
* give up our locks, go get the pin(s) we failed to get earlier, and
* re-lock. That's pretty painful, but hopefully shouldn't happen
* often.
*
* Note that there's a small possibility that we didn't pin the page
* above but still have the correct page pinned anyway, either because
* we've already made a previous pass through this loop, or because
* caller passed us the right page anyway.
*
* Note also that it's possible that by the time we get the pin and
* retake the buffer locks, the visibility map bit will have been
* cleared by some other backend anyway. In that case, we'll have
* done a bit of extra work for no gain, but there's no real harm
* done.
*/
if (otherBuffer == InvalidBuffer || targetBlock <= otherBlock)
GetVisibilityMapPins(relation, buffer, otherBuffer,
targetBlock, otherBlock, vmbuffer,
vmbuffer_other);
else
GetVisibilityMapPins(relation, otherBuffer, buffer,
otherBlock, targetBlock, vmbuffer_other,
vmbuffer);
/*
* Now we can check to see if there's enough free space here. If so,
* we're done.
*/
page = BufferGetPage(buffer);
/*
* If necessary initialize page, it'll be used soon. We could avoid
* dirtying the buffer here, and rely on the caller to do so whenever
* it puts a tuple onto the page, but there seems not much benefit in
* doing so.
*/
if (PageIsNew(page))
{
PageInit(page, BufferGetPageSize(buffer), 0);
MarkBufferDirty(buffer);
}
pageFreeSpace = PageGetHeapFreeSpace(page);
if (len + saveFreeSpace <= pageFreeSpace)
{
/* use this page as future insert target, too */
RelationSetTargetBlock(relation, targetBlock);
return buffer;
}
/*
* Not enough space, so we must give up our page locks and pin (if
* any) and prepare to look elsewhere. We don't care which order we
* unlock the two buffers in, so this can be slightly simpler than the
* code above.
*/
LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
if (otherBuffer == InvalidBuffer)
ReleaseBuffer(buffer);
else if (otherBlock != targetBlock)
{
LockBuffer(otherBuffer, BUFFER_LOCK_UNLOCK);
ReleaseBuffer(buffer);
}
/* Without FSM, always fall out of the loop and extend */
if (!use_fsm)
break;
/*
* Update FSM as to condition of this page, and ask for another page
* to try.
*/
targetBlock = RecordAndGetPageWithFreeSpace(relation,
targetBlock,
pageFreeSpace,
len + saveFreeSpace);
}
/*
* Have to extend the relation.
*
* We have to use a lock to ensure no one else is extending the rel at the
* same time, else we will both try to initialize the same new page. We
* can skip locking for new or temp relations, however, since no one else
* could be accessing them.
*/
needLock = !RELATION_IS_LOCAL(relation);
/*
* If we need the lock but are not able to acquire it immediately, we'll
* consider extending the relation by multiple blocks at a time to manage
* contention on the relation extension lock. However, this only makes
* sense if we're using the FSM; otherwise, there's no point.
*/
if (needLock)
{
if (!use_fsm)
LockRelationForExtension(relation, ExclusiveLock);
else if (!ConditionalLockRelationForExtension(relation, ExclusiveLock))
{
/* Couldn't get the lock immediately; wait for it. */
LockRelationForExtension(relation, ExclusiveLock);
/*
* Check if some other backend has extended a block for us while
* we were waiting on the lock.
*/
targetBlock = GetPageWithFreeSpace(relation, len + saveFreeSpace);
/*
* If some other waiter has already extended the relation, we
* don't need to do so; just use the existing freespace.
*/
if (targetBlock != InvalidBlockNumber)
{
UnlockRelationForExtension(relation, ExclusiveLock);
goto loop;
}
/* Time to bulk-extend. */
RelationAddExtraBlocks(relation, bistate);
}
}
/*
* In addition to whatever extension we performed above, we always add at
* least one block to satisfy our own request.
*
* XXX This does an lseek - rather expensive - but at the moment it is the
* only way to accurately determine how many blocks are in a relation. Is
* it worth keeping an accurate file length in shared memory someplace,
* rather than relying on the kernel to do it for us?
*/
buffer = ReadBufferBI(relation, P_NEW, RBM_ZERO_AND_LOCK, bistate);
/*
* We need to initialize the empty new page. Double-check that it really
* is empty (this should never happen, but if it does we don't want to
* risk wiping out valid data).
*/
page = BufferGetPage(buffer);
if (!PageIsNew(page))
elog(ERROR, "page %u of relation \"%s\" should be empty but is not",
BufferGetBlockNumber(buffer),
RelationGetRelationName(relation));
PageInit(page, BufferGetPageSize(buffer), 0);
MarkBufferDirty(buffer);
/*
* Release the file-extension lock; it's now OK for someone else to extend
* the relation some more.
*/
if (needLock)
UnlockRelationForExtension(relation, ExclusiveLock);
/*
* Lock the other buffer. It's guaranteed to be of a lower page number
* than the new page. To conform with the deadlock prevent rules, we ought
* to lock otherBuffer first, but that would give other backends a chance
* to put tuples on our page. To reduce the likelihood of that, attempt to
* lock the other buffer conditionally, that's very likely to work.
* Otherwise we need to lock buffers in the correct order, and retry if
* the space has been used in the mean time.
*
* Alternatively, we could acquire the lock on otherBuffer before
* extending the relation, but that'd require holding the lock while
* performing IO, which seems worse than an unlikely retry.
*/
if (otherBuffer != InvalidBuffer)
{
Assert(otherBuffer != buffer);
if (unlikely(!ConditionalLockBuffer(otherBuffer)))
{
LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
LockBuffer(otherBuffer, BUFFER_LOCK_EXCLUSIVE);
LockBuffer(buffer, BUFFER_LOCK_EXCLUSIVE);
/*
* Because the buffer was unlocked for a while, it's possible,
* although unlikely, that the page was filled. If so, just retry
* from start.
*/
if (len > PageGetHeapFreeSpace(page))
{
LockBuffer(otherBuffer, BUFFER_LOCK_UNLOCK);
UnlockReleaseBuffer(buffer);
goto loop;
}
}
}
if (len > PageGetHeapFreeSpace(page))
{
/* We should not get here given the test at the top */
elog(PANIC, "tuple is too big: size %zu", len);
}
/*
* Remember the new page as our target for future insertions.
*
* XXX should we enter the new page into the free space map immediately,
* or just keep it for this backend's exclusive use in the short run
* (until VACUUM sees it)? Seems to depend on whether you expect the
* current backend to make more insertions or not, which is probably a
* good bet most of the time. So for now, don't add it to FSM yet.
*/
RelationSetTargetBlock(relation, BufferGetBlockNumber(buffer));
return buffer;
}