postgresql/src/include/nodes/execnodes.h
Tom Lane def5b065ff Initial pgindent and pgperltidy run for v14.
Also "make reformat-dat-files".

The only change worthy of note is that pgindent messed up the formatting
of launcher.c's struct LogicalRepWorkerId, which led me to notice that
that struct wasn't used at all anymore, so I just took it out.
2021-05-12 13:14:10 -04:00

2642 lines
96 KiB
C

/*-------------------------------------------------------------------------
*
* execnodes.h
* definitions for executor state nodes
*
*
* Portions Copyright (c) 1996-2021, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* src/include/nodes/execnodes.h
*
*-------------------------------------------------------------------------
*/
#ifndef EXECNODES_H
#define EXECNODES_H
#include "access/tupconvert.h"
#include "executor/instrument.h"
#include "fmgr.h"
#include "lib/ilist.h"
#include "lib/pairingheap.h"
#include "nodes/params.h"
#include "nodes/plannodes.h"
#include "nodes/tidbitmap.h"
#include "partitioning/partdefs.h"
#include "storage/condition_variable.h"
#include "utils/hsearch.h"
#include "utils/queryenvironment.h"
#include "utils/reltrigger.h"
#include "utils/sharedtuplestore.h"
#include "utils/snapshot.h"
#include "utils/sortsupport.h"
#include "utils/tuplesort.h"
#include "utils/tuplestore.h"
struct PlanState; /* forward references in this file */
struct ParallelHashJoinState;
struct ExecRowMark;
struct ExprState;
struct ExprContext;
struct RangeTblEntry; /* avoid including parsenodes.h here */
struct ExprEvalStep; /* avoid including execExpr.h everywhere */
struct CopyMultiInsertBuffer;
/* ----------------
* ExprState node
*
* ExprState is the top-level node for expression evaluation.
* It contains instructions (in ->steps) to evaluate the expression.
* ----------------
*/
typedef Datum (*ExprStateEvalFunc) (struct ExprState *expression,
struct ExprContext *econtext,
bool *isNull);
/* Bits in ExprState->flags (see also execExpr.h for private flag bits): */
/* expression is for use with ExecQual() */
#define EEO_FLAG_IS_QUAL (1 << 0)
typedef struct ExprState
{
NodeTag tag;
uint8 flags; /* bitmask of EEO_FLAG_* bits, see above */
/*
* Storage for result value of a scalar expression, or for individual
* column results within expressions built by ExecBuildProjectionInfo().
*/
#define FIELDNO_EXPRSTATE_RESNULL 2
bool resnull;
#define FIELDNO_EXPRSTATE_RESVALUE 3
Datum resvalue;
/*
* If projecting a tuple result, this slot holds the result; else NULL.
*/
#define FIELDNO_EXPRSTATE_RESULTSLOT 4
TupleTableSlot *resultslot;
/*
* Instructions to compute expression's return value.
*/
struct ExprEvalStep *steps;
/*
* Function that actually evaluates the expression. This can be set to
* different values depending on the complexity of the expression.
*/
ExprStateEvalFunc evalfunc;
/* original expression tree, for debugging only */
Expr *expr;
/* private state for an evalfunc */
void *evalfunc_private;
/*
* XXX: following fields only needed during "compilation" (ExecInitExpr);
* could be thrown away afterwards.
*/
int steps_len; /* number of steps currently */
int steps_alloc; /* allocated length of steps array */
#define FIELDNO_EXPRSTATE_PARENT 11
struct PlanState *parent; /* parent PlanState node, if any */
ParamListInfo ext_params; /* for compiling PARAM_EXTERN nodes */
Datum *innermost_caseval;
bool *innermost_casenull;
Datum *innermost_domainval;
bool *innermost_domainnull;
} ExprState;
/* ----------------
* IndexInfo information
*
* this struct holds the information needed to construct new index
* entries for a particular index. Used for both index_build and
* retail creation of index entries.
*
* NumIndexAttrs total number of columns in this index
* NumIndexKeyAttrs number of key columns in index
* IndexAttrNumbers underlying-rel attribute numbers used as keys
* (zeroes indicate expressions). It also contains
* info about included columns.
* Expressions expr trees for expression entries, or NIL if none
* ExpressionsState exec state for expressions, or NIL if none
* Predicate partial-index predicate, or NIL if none
* PredicateState exec state for predicate, or NIL if none
* ExclusionOps Per-column exclusion operators, or NULL if none
* ExclusionProcs Underlying function OIDs for ExclusionOps
* ExclusionStrats Opclass strategy numbers for ExclusionOps
* UniqueOps These are like Exclusion*, but for unique indexes
* UniqueProcs
* UniqueStrats
* Unique is it a unique index?
* OpclassOptions opclass-specific options, or NULL if none
* ReadyForInserts is it valid for inserts?
* Concurrent are we doing a concurrent index build?
* BrokenHotChain did we detect any broken HOT chains?
* ParallelWorkers # of workers requested (excludes leader)
* Am Oid of index AM
* AmCache private cache area for index AM
* Context memory context holding this IndexInfo
*
* ii_Concurrent, ii_BrokenHotChain, and ii_ParallelWorkers are used only
* during index build; they're conventionally zeroed otherwise.
* ----------------
*/
typedef struct IndexInfo
{
NodeTag type;
int ii_NumIndexAttrs; /* total number of columns in index */
int ii_NumIndexKeyAttrs; /* number of key columns in index */
AttrNumber ii_IndexAttrNumbers[INDEX_MAX_KEYS];
List *ii_Expressions; /* list of Expr */
List *ii_ExpressionsState; /* list of ExprState */
List *ii_Predicate; /* list of Expr */
ExprState *ii_PredicateState;
Oid *ii_ExclusionOps; /* array with one entry per column */
Oid *ii_ExclusionProcs; /* array with one entry per column */
uint16 *ii_ExclusionStrats; /* array with one entry per column */
Oid *ii_UniqueOps; /* array with one entry per column */
Oid *ii_UniqueProcs; /* array with one entry per column */
uint16 *ii_UniqueStrats; /* array with one entry per column */
Datum *ii_OpclassOptions; /* array with one entry per column */
bool ii_Unique;
bool ii_ReadyForInserts;
bool ii_Concurrent;
bool ii_BrokenHotChain;
int ii_ParallelWorkers;
Oid ii_Am;
void *ii_AmCache;
MemoryContext ii_Context;
} IndexInfo;
/* ----------------
* ExprContext_CB
*
* List of callbacks to be called at ExprContext shutdown.
* ----------------
*/
typedef void (*ExprContextCallbackFunction) (Datum arg);
typedef struct ExprContext_CB
{
struct ExprContext_CB *next;
ExprContextCallbackFunction function;
Datum arg;
} ExprContext_CB;
/* ----------------
* ExprContext
*
* This class holds the "current context" information
* needed to evaluate expressions for doing tuple qualifications
* and tuple projections. For example, if an expression refers
* to an attribute in the current inner tuple then we need to know
* what the current inner tuple is and so we look at the expression
* context.
*
* There are two memory contexts associated with an ExprContext:
* * ecxt_per_query_memory is a query-lifespan context, typically the same
* context the ExprContext node itself is allocated in. This context
* can be used for purposes such as storing function call cache info.
* * ecxt_per_tuple_memory is a short-term context for expression results.
* As the name suggests, it will typically be reset once per tuple,
* before we begin to evaluate expressions for that tuple. Each
* ExprContext normally has its very own per-tuple memory context.
*
* CurrentMemoryContext should be set to ecxt_per_tuple_memory before
* calling ExecEvalExpr() --- see ExecEvalExprSwitchContext().
* ----------------
*/
typedef struct ExprContext
{
NodeTag type;
/* Tuples that Var nodes in expression may refer to */
#define FIELDNO_EXPRCONTEXT_SCANTUPLE 1
TupleTableSlot *ecxt_scantuple;
#define FIELDNO_EXPRCONTEXT_INNERTUPLE 2
TupleTableSlot *ecxt_innertuple;
#define FIELDNO_EXPRCONTEXT_OUTERTUPLE 3
TupleTableSlot *ecxt_outertuple;
/* Memory contexts for expression evaluation --- see notes above */
MemoryContext ecxt_per_query_memory;
MemoryContext ecxt_per_tuple_memory;
/* Values to substitute for Param nodes in expression */
ParamExecData *ecxt_param_exec_vals; /* for PARAM_EXEC params */
ParamListInfo ecxt_param_list_info; /* for other param types */
/*
* Values to substitute for Aggref nodes in the expressions of an Agg
* node, or for WindowFunc nodes within a WindowAgg node.
*/
#define FIELDNO_EXPRCONTEXT_AGGVALUES 8
Datum *ecxt_aggvalues; /* precomputed values for aggs/windowfuncs */
#define FIELDNO_EXPRCONTEXT_AGGNULLS 9
bool *ecxt_aggnulls; /* null flags for aggs/windowfuncs */
/* Value to substitute for CaseTestExpr nodes in expression */
#define FIELDNO_EXPRCONTEXT_CASEDATUM 10
Datum caseValue_datum;
#define FIELDNO_EXPRCONTEXT_CASENULL 11
bool caseValue_isNull;
/* Value to substitute for CoerceToDomainValue nodes in expression */
#define FIELDNO_EXPRCONTEXT_DOMAINDATUM 12
Datum domainValue_datum;
#define FIELDNO_EXPRCONTEXT_DOMAINNULL 13
bool domainValue_isNull;
/* Link to containing EState (NULL if a standalone ExprContext) */
struct EState *ecxt_estate;
/* Functions to call back when ExprContext is shut down or rescanned */
ExprContext_CB *ecxt_callbacks;
} ExprContext;
/*
* Set-result status used when evaluating functions potentially returning a
* set.
*/
typedef enum
{
ExprSingleResult, /* expression does not return a set */
ExprMultipleResult, /* this result is an element of a set */
ExprEndResult /* there are no more elements in the set */
} ExprDoneCond;
/*
* Return modes for functions returning sets. Note values must be chosen
* as separate bits so that a bitmask can be formed to indicate supported
* modes. SFRM_Materialize_Random and SFRM_Materialize_Preferred are
* auxiliary flags about SFRM_Materialize mode, rather than separate modes.
*/
typedef enum
{
SFRM_ValuePerCall = 0x01, /* one value returned per call */
SFRM_Materialize = 0x02, /* result set instantiated in Tuplestore */
SFRM_Materialize_Random = 0x04, /* Tuplestore needs randomAccess */
SFRM_Materialize_Preferred = 0x08 /* caller prefers Tuplestore */
} SetFunctionReturnMode;
/*
* When calling a function that might return a set (multiple rows),
* a node of this type is passed as fcinfo->resultinfo to allow
* return status to be passed back. A function returning set should
* raise an error if no such resultinfo is provided.
*/
typedef struct ReturnSetInfo
{
NodeTag type;
/* values set by caller: */
ExprContext *econtext; /* context function is being called in */
TupleDesc expectedDesc; /* tuple descriptor expected by caller */
int allowedModes; /* bitmask: return modes caller can handle */
/* result status from function (but pre-initialized by caller): */
SetFunctionReturnMode returnMode; /* actual return mode */
ExprDoneCond isDone; /* status for ValuePerCall mode */
/* fields filled by function in Materialize return mode: */
Tuplestorestate *setResult; /* holds the complete returned tuple set */
TupleDesc setDesc; /* actual descriptor for returned tuples */
} ReturnSetInfo;
/* ----------------
* ProjectionInfo node information
*
* This is all the information needed to perform projections ---
* that is, form new tuples by evaluation of targetlist expressions.
* Nodes which need to do projections create one of these.
*
* The target tuple slot is kept in ProjectionInfo->pi_state.resultslot.
* ExecProject() evaluates the tlist, forms a tuple, and stores it
* in the given slot. Note that the result will be a "virtual" tuple
* unless ExecMaterializeSlot() is then called to force it to be
* converted to a physical tuple. The slot must have a tupledesc
* that matches the output of the tlist!
* ----------------
*/
typedef struct ProjectionInfo
{
NodeTag type;
/* instructions to evaluate projection */
ExprState pi_state;
/* expression context in which to evaluate expression */
ExprContext *pi_exprContext;
} ProjectionInfo;
/* ----------------
* JunkFilter
*
* This class is used to store information regarding junk attributes.
* A junk attribute is an attribute in a tuple that is needed only for
* storing intermediate information in the executor, and does not belong
* in emitted tuples. For example, when we do an UPDATE query,
* the planner adds a "junk" entry to the targetlist so that the tuples
* returned to ExecutePlan() contain an extra attribute: the ctid of
* the tuple to be updated. This is needed to do the update, but we
* don't want the ctid to be part of the stored new tuple! So, we
* apply a "junk filter" to remove the junk attributes and form the
* real output tuple. The junkfilter code also provides routines to
* extract the values of the junk attribute(s) from the input tuple.
*
* targetList: the original target list (including junk attributes).
* cleanTupType: the tuple descriptor for the "clean" tuple (with
* junk attributes removed).
* cleanMap: A map with the correspondence between the non-junk
* attribute numbers of the "original" tuple and the
* attribute numbers of the "clean" tuple.
* resultSlot: tuple slot used to hold cleaned tuple.
* ----------------
*/
typedef struct JunkFilter
{
NodeTag type;
List *jf_targetList;
TupleDesc jf_cleanTupType;
AttrNumber *jf_cleanMap;
TupleTableSlot *jf_resultSlot;
} JunkFilter;
/*
* OnConflictSetState
*
* Executor state of an ON CONFLICT DO UPDATE operation.
*/
typedef struct OnConflictSetState
{
NodeTag type;
TupleTableSlot *oc_Existing; /* slot to store existing target tuple in */
TupleTableSlot *oc_ProjSlot; /* CONFLICT ... SET ... projection target */
ProjectionInfo *oc_ProjInfo; /* for ON CONFLICT DO UPDATE SET */
ExprState *oc_WhereClause; /* state for the WHERE clause */
} OnConflictSetState;
/*
* ResultRelInfo
*
* Whenever we update an existing relation, we have to update indexes on the
* relation, and perhaps also fire triggers. ResultRelInfo holds all the
* information needed about a result relation, including indexes.
*
* Normally, a ResultRelInfo refers to a table that is in the query's range
* table; then ri_RangeTableIndex is the RT index and ri_RelationDesc is
* just a copy of the relevant es_relations[] entry. However, in some
* situations we create ResultRelInfos for relations that are not in the
* range table, namely for targets of tuple routing in a partitioned table,
* and when firing triggers in tables other than the target tables (See
* ExecGetTriggerResultRel). In these situations, ri_RangeTableIndex is 0
* and ri_RelationDesc is a separately-opened relcache pointer that needs to
* be separately closed.
*/
typedef struct ResultRelInfo
{
NodeTag type;
/* result relation's range table index, or 0 if not in range table */
Index ri_RangeTableIndex;
/* relation descriptor for result relation */
Relation ri_RelationDesc;
/* # of indices existing on result relation */
int ri_NumIndices;
/* array of relation descriptors for indices */
RelationPtr ri_IndexRelationDescs;
/* array of key/attr info for indices */
IndexInfo **ri_IndexRelationInfo;
/*
* For UPDATE/DELETE result relations, the attribute number of the row
* identity junk attribute in the source plan's output tuples
*/
AttrNumber ri_RowIdAttNo;
/* Projection to generate new tuple in an INSERT/UPDATE */
ProjectionInfo *ri_projectNew;
/* Slot to hold that tuple */
TupleTableSlot *ri_newTupleSlot;
/* Slot to hold the old tuple being updated */
TupleTableSlot *ri_oldTupleSlot;
/* Have the projection and the slots above been initialized? */
bool ri_projectNewInfoValid;
/* triggers to be fired, if any */
TriggerDesc *ri_TrigDesc;
/* cached lookup info for trigger functions */
FmgrInfo *ri_TrigFunctions;
/* array of trigger WHEN expr states */
ExprState **ri_TrigWhenExprs;
/* optional runtime measurements for triggers */
Instrumentation *ri_TrigInstrument;
/* On-demand created slots for triggers / returning processing */
TupleTableSlot *ri_ReturningSlot; /* for trigger output tuples */
TupleTableSlot *ri_TrigOldSlot; /* for a trigger's old tuple */
TupleTableSlot *ri_TrigNewSlot; /* for a trigger's new tuple */
/* FDW callback functions, if foreign table */
struct FdwRoutine *ri_FdwRoutine;
/* available to save private state of FDW */
void *ri_FdwState;
/* true when modifying foreign table directly */
bool ri_usesFdwDirectModify;
/* batch insert stuff */
int ri_NumSlots; /* number of slots in the array */
int ri_BatchSize; /* max slots inserted in a single batch */
TupleTableSlot **ri_Slots; /* input tuples for batch insert */
TupleTableSlot **ri_PlanSlots;
/* list of WithCheckOption's to be checked */
List *ri_WithCheckOptions;
/* list of WithCheckOption expr states */
List *ri_WithCheckOptionExprs;
/* array of constraint-checking expr states */
ExprState **ri_ConstraintExprs;
/* array of stored generated columns expr states */
ExprState **ri_GeneratedExprs;
/* number of stored generated columns we need to compute */
int ri_NumGeneratedNeeded;
/* list of RETURNING expressions */
List *ri_returningList;
/* for computing a RETURNING list */
ProjectionInfo *ri_projectReturning;
/* list of arbiter indexes to use to check conflicts */
List *ri_onConflictArbiterIndexes;
/* ON CONFLICT evaluation state */
OnConflictSetState *ri_onConflict;
/* partition check expression state (NULL if not set up yet) */
ExprState *ri_PartitionCheckExpr;
/*
* Information needed by tuple routing target relations
*
* RootResultRelInfo gives the target relation mentioned in the query, if
* it's a partitioned table. It is not set if the target relation
* mentioned in the query is an inherited table, nor when tuple routing is
* not needed.
*
* RootToPartitionMap and PartitionTupleSlot, initialized by
* ExecInitRoutingInfo, are non-NULL if partition has a different tuple
* format than the root table.
*/
struct ResultRelInfo *ri_RootResultRelInfo;
TupleConversionMap *ri_RootToPartitionMap;
TupleTableSlot *ri_PartitionTupleSlot;
/*
* Map to convert child result relation tuples to the format of the table
* actually mentioned in the query (called "root"). Computed only if
* needed. A NULL map value indicates that no conversion is needed, so we
* must have a separate flag to show if the map has been computed.
*/
TupleConversionMap *ri_ChildToRootMap;
bool ri_ChildToRootMapValid;
/* for use by copyfrom.c when performing multi-inserts */
struct CopyMultiInsertBuffer *ri_CopyMultiInsertBuffer;
} ResultRelInfo;
/* ----------------
* AsyncRequest
*
* State for an asynchronous tuple request.
* ----------------
*/
typedef struct AsyncRequest
{
struct PlanState *requestor; /* Node that wants a tuple */
struct PlanState *requestee; /* Node from which a tuple is wanted */
int request_index; /* Scratch space for requestor */
bool callback_pending; /* Callback is needed */
bool request_complete; /* Request complete, result valid */
TupleTableSlot *result; /* Result (NULL or an empty slot if no more
* tuples) */
} AsyncRequest;
/* ----------------
* EState information
*
* Working state for an Executor invocation
* ----------------
*/
typedef struct EState
{
NodeTag type;
/* Basic state for all query types: */
ScanDirection es_direction; /* current scan direction */
Snapshot es_snapshot; /* time qual to use */
Snapshot es_crosscheck_snapshot; /* crosscheck time qual for RI */
List *es_range_table; /* List of RangeTblEntry */
Index es_range_table_size; /* size of the range table arrays */
Relation *es_relations; /* Array of per-range-table-entry Relation
* pointers, or NULL if not yet opened */
struct ExecRowMark **es_rowmarks; /* Array of per-range-table-entry
* ExecRowMarks, or NULL if none */
PlannedStmt *es_plannedstmt; /* link to top of plan tree */
const char *es_sourceText; /* Source text from QueryDesc */
JunkFilter *es_junkFilter; /* top-level junk filter, if any */
/* If query can insert/delete tuples, the command ID to mark them with */
CommandId es_output_cid;
/* Info about target table(s) for insert/update/delete queries: */
ResultRelInfo **es_result_relations; /* Array of per-range-table-entry
* ResultRelInfo pointers, or NULL
* if not a target table */
List *es_opened_result_relations; /* List of non-NULL entries in
* es_result_relations in no
* specific order */
PartitionDirectory es_partition_directory; /* for PartitionDesc lookup */
/*
* The following list contains ResultRelInfos created by the tuple routing
* code for partitions that aren't found in the es_result_relations array.
*/
List *es_tuple_routing_result_relations;
/* Stuff used for firing triggers: */
List *es_trig_target_relations; /* trigger-only ResultRelInfos */
/* Parameter info: */
ParamListInfo es_param_list_info; /* values of external params */
ParamExecData *es_param_exec_vals; /* values of internal params */
QueryEnvironment *es_queryEnv; /* query environment */
/* Other working state: */
MemoryContext es_query_cxt; /* per-query context in which EState lives */
List *es_tupleTable; /* List of TupleTableSlots */
uint64 es_processed; /* # of tuples processed */
int es_top_eflags; /* eflags passed to ExecutorStart */
int es_instrument; /* OR of InstrumentOption flags */
bool es_finished; /* true when ExecutorFinish is done */
List *es_exprcontexts; /* List of ExprContexts within EState */
List *es_subplanstates; /* List of PlanState for SubPlans */
List *es_auxmodifytables; /* List of secondary ModifyTableStates */
/*
* this ExprContext is for per-output-tuple operations, such as constraint
* checks and index-value computations. It will be reset for each output
* tuple. Note that it will be created only if needed.
*/
ExprContext *es_per_tuple_exprcontext;
/*
* If not NULL, this is an EPQState's EState. This is a field in EState
* both to allow EvalPlanQual aware executor nodes to detect that they
* need to perform EPQ related work, and to provide necessary information
* to do so.
*/
struct EPQState *es_epq_active;
bool es_use_parallel_mode; /* can we use parallel workers? */
/* The per-query shared memory area to use for parallel execution. */
struct dsa_area *es_query_dsa;
/*
* JIT information. es_jit_flags indicates whether JIT should be performed
* and with which options. es_jit is created on-demand when JITing is
* performed.
*
* es_jit_worker_instr is the combined, on demand allocated,
* instrumentation from all workers. The leader's instrumentation is kept
* separate, and is combined on demand by ExplainPrintJITSummary().
*/
int es_jit_flags;
struct JitContext *es_jit;
struct JitInstrumentation *es_jit_worker_instr;
} EState;
/*
* ExecRowMark -
* runtime representation of FOR [KEY] UPDATE/SHARE clauses
*
* When doing UPDATE, DELETE, or SELECT FOR [KEY] UPDATE/SHARE, we will have an
* ExecRowMark for each non-target relation in the query (except inheritance
* parent RTEs, which can be ignored at runtime). Virtual relations such as
* subqueries-in-FROM will have an ExecRowMark with relation == NULL. See
* PlanRowMark for details about most of the fields. In addition to fields
* directly derived from PlanRowMark, we store an activity flag (to denote
* inactive children of inheritance trees), curCtid, which is used by the
* WHERE CURRENT OF code, and ermExtra, which is available for use by the plan
* node that sources the relation (e.g., for a foreign table the FDW can use
* ermExtra to hold information).
*
* EState->es_rowmarks is an array of these structs, indexed by RT index,
* with NULLs for irrelevant RT indexes. es_rowmarks itself is NULL if
* there are no rowmarks.
*/
typedef struct ExecRowMark
{
Relation relation; /* opened and suitably locked relation */
Oid relid; /* its OID (or InvalidOid, if subquery) */
Index rti; /* its range table index */
Index prti; /* parent range table index, if child */
Index rowmarkId; /* unique identifier for resjunk columns */
RowMarkType markType; /* see enum in nodes/plannodes.h */
LockClauseStrength strength; /* LockingClause's strength, or LCS_NONE */
LockWaitPolicy waitPolicy; /* NOWAIT and SKIP LOCKED */
bool ermActive; /* is this mark relevant for current tuple? */
ItemPointerData curCtid; /* ctid of currently locked tuple, if any */
void *ermExtra; /* available for use by relation source node */
} ExecRowMark;
/*
* ExecAuxRowMark -
* additional runtime representation of FOR [KEY] UPDATE/SHARE clauses
*
* Each LockRows and ModifyTable node keeps a list of the rowmarks it needs to
* deal with. In addition to a pointer to the related entry in es_rowmarks,
* this struct carries the column number(s) of the resjunk columns associated
* with the rowmark (see comments for PlanRowMark for more detail).
*/
typedef struct ExecAuxRowMark
{
ExecRowMark *rowmark; /* related entry in es_rowmarks */
AttrNumber ctidAttNo; /* resno of ctid junk attribute, if any */
AttrNumber toidAttNo; /* resno of tableoid junk attribute, if any */
AttrNumber wholeAttNo; /* resno of whole-row junk attribute, if any */
} ExecAuxRowMark;
/* ----------------------------------------------------------------
* Tuple Hash Tables
*
* All-in-memory tuple hash tables are used for a number of purposes.
*
* Note: tab_hash_funcs are for the key datatype(s) stored in the table,
* and tab_eq_funcs are non-cross-type equality operators for those types.
* Normally these are the only functions used, but FindTupleHashEntry()
* supports searching a hashtable using cross-data-type hashing. For that,
* the caller must supply hash functions for the LHS datatype as well as
* the cross-type equality operators to use. in_hash_funcs and cur_eq_func
* are set to point to the caller's function arrays while doing such a search.
* During LookupTupleHashEntry(), they point to tab_hash_funcs and
* tab_eq_func respectively.
* ----------------------------------------------------------------
*/
typedef struct TupleHashEntryData *TupleHashEntry;
typedef struct TupleHashTableData *TupleHashTable;
typedef struct TupleHashEntryData
{
MinimalTuple firstTuple; /* copy of first tuple in this group */
void *additional; /* user data */
uint32 status; /* hash status */
uint32 hash; /* hash value (cached) */
} TupleHashEntryData;
/* define parameters necessary to generate the tuple hash table interface */
#define SH_PREFIX tuplehash
#define SH_ELEMENT_TYPE TupleHashEntryData
#define SH_KEY_TYPE MinimalTuple
#define SH_SCOPE extern
#define SH_DECLARE
#include "lib/simplehash.h"
typedef struct TupleHashTableData
{
tuplehash_hash *hashtab; /* underlying hash table */
int numCols; /* number of columns in lookup key */
AttrNumber *keyColIdx; /* attr numbers of key columns */
FmgrInfo *tab_hash_funcs; /* hash functions for table datatype(s) */
ExprState *tab_eq_func; /* comparator for table datatype(s) */
Oid *tab_collations; /* collations for hash and comparison */
MemoryContext tablecxt; /* memory context containing table */
MemoryContext tempcxt; /* context for function evaluations */
Size entrysize; /* actual size to make each hash entry */
TupleTableSlot *tableslot; /* slot for referencing table entries */
/* The following fields are set transiently for each table search: */
TupleTableSlot *inputslot; /* current input tuple's slot */
FmgrInfo *in_hash_funcs; /* hash functions for input datatype(s) */
ExprState *cur_eq_func; /* comparator for input vs. table */
uint32 hash_iv; /* hash-function IV */
ExprContext *exprcontext; /* expression context */
} TupleHashTableData;
typedef tuplehash_iterator TupleHashIterator;
/*
* Use InitTupleHashIterator/TermTupleHashIterator for a read/write scan.
* Use ResetTupleHashIterator if the table can be frozen (in this case no
* explicit scan termination is needed).
*/
#define InitTupleHashIterator(htable, iter) \
tuplehash_start_iterate(htable->hashtab, iter)
#define TermTupleHashIterator(iter) \
((void) 0)
#define ResetTupleHashIterator(htable, iter) \
InitTupleHashIterator(htable, iter)
#define ScanTupleHashTable(htable, iter) \
tuplehash_iterate(htable->hashtab, iter)
/* ----------------------------------------------------------------
* Expression State Nodes
*
* Formerly, there was a separate executor expression state node corresponding
* to each node in a planned expression tree. That's no longer the case; for
* common expression node types, all the execution info is embedded into
* step(s) in a single ExprState node. But we still have a few executor state
* node types for selected expression node types, mostly those in which info
* has to be shared with other parts of the execution state tree.
* ----------------------------------------------------------------
*/
/* ----------------
* WindowFuncExprState node
* ----------------
*/
typedef struct WindowFuncExprState
{
NodeTag type;
WindowFunc *wfunc; /* expression plan node */
List *args; /* ExprStates for argument expressions */
ExprState *aggfilter; /* FILTER expression */
int wfuncno; /* ID number for wfunc within its plan node */
} WindowFuncExprState;
/* ----------------
* SetExprState node
*
* State for evaluating a potentially set-returning expression (like FuncExpr
* or OpExpr). In some cases, like some of the expressions in ROWS FROM(...)
* the expression might not be a SRF, but nonetheless it uses the same
* machinery as SRFs; it will be treated as a SRF returning a single row.
* ----------------
*/
typedef struct SetExprState
{
NodeTag type;
Expr *expr; /* expression plan node */
List *args; /* ExprStates for argument expressions */
/*
* In ROWS FROM, functions can be inlined, removing the FuncExpr normally
* inside. In such a case this is the compiled expression (which cannot
* return a set), which'll be evaluated using regular ExecEvalExpr().
*/
ExprState *elidedFuncState;
/*
* Function manager's lookup info for the target function. If func.fn_oid
* is InvalidOid, we haven't initialized it yet (nor any of the following
* fields, except funcReturnsSet).
*/
FmgrInfo func;
/*
* For a set-returning function (SRF) that returns a tuplestore, we keep
* the tuplestore here and dole out the result rows one at a time. The
* slot holds the row currently being returned.
*/
Tuplestorestate *funcResultStore;
TupleTableSlot *funcResultSlot;
/*
* In some cases we need to compute a tuple descriptor for the function's
* output. If so, it's stored here.
*/
TupleDesc funcResultDesc;
bool funcReturnsTuple; /* valid when funcResultDesc isn't NULL */
/*
* Remember whether the function is declared to return a set. This is set
* by ExecInitExpr, and is valid even before the FmgrInfo is set up.
*/
bool funcReturnsSet;
/*
* setArgsValid is true when we are evaluating a set-returning function
* that uses value-per-call mode and we are in the middle of a call
* series; we want to pass the same argument values to the function again
* (and again, until it returns ExprEndResult). This indicates that
* fcinfo_data already contains valid argument data.
*/
bool setArgsValid;
/*
* Flag to remember whether we have registered a shutdown callback for
* this SetExprState. We do so only if funcResultStore or setArgsValid
* has been set at least once (since all the callback is for is to release
* the tuplestore or clear setArgsValid).
*/
bool shutdown_reg; /* a shutdown callback is registered */
/*
* Call parameter structure for the function. This has been initialized
* (by InitFunctionCallInfoData) if func.fn_oid is valid. It also saves
* argument values between calls, when setArgsValid is true.
*/
FunctionCallInfo fcinfo;
} SetExprState;
/* ----------------
* SubPlanState node
* ----------------
*/
typedef struct SubPlanState
{
NodeTag type;
SubPlan *subplan; /* expression plan node */
struct PlanState *planstate; /* subselect plan's state tree */
struct PlanState *parent; /* parent plan node's state tree */
ExprState *testexpr; /* state of combining expression */
List *args; /* states of argument expression(s) */
HeapTuple curTuple; /* copy of most recent tuple from subplan */
Datum curArray; /* most recent array from ARRAY() subplan */
/* these are used when hashing the subselect's output: */
TupleDesc descRight; /* subselect desc after projection */
ProjectionInfo *projLeft; /* for projecting lefthand exprs */
ProjectionInfo *projRight; /* for projecting subselect output */
TupleHashTable hashtable; /* hash table for no-nulls subselect rows */
TupleHashTable hashnulls; /* hash table for rows with null(s) */
bool havehashrows; /* true if hashtable is not empty */
bool havenullrows; /* true if hashnulls is not empty */
MemoryContext hashtablecxt; /* memory context containing hash tables */
MemoryContext hashtempcxt; /* temp memory context for hash tables */
ExprContext *innerecontext; /* econtext for computing inner tuples */
int numCols; /* number of columns being hashed */
/* each of the remaining fields is an array of length numCols: */
AttrNumber *keyColIdx; /* control data for hash tables */
Oid *tab_eq_funcoids; /* equality func oids for table
* datatype(s) */
Oid *tab_collations; /* collations for hash and comparison */
FmgrInfo *tab_hash_funcs; /* hash functions for table datatype(s) */
FmgrInfo *tab_eq_funcs; /* equality functions for table datatype(s) */
FmgrInfo *lhs_hash_funcs; /* hash functions for lefthand datatype(s) */
FmgrInfo *cur_eq_funcs; /* equality functions for LHS vs. table */
ExprState *cur_eq_comp; /* equality comparator for LHS vs. table */
} SubPlanState;
/*
* DomainConstraintState - one item to check during CoerceToDomain
*
* Note: we consider this to be part of an ExprState tree, so we give it
* a name following the xxxState convention. But there's no directly
* associated plan-tree node.
*/
typedef enum DomainConstraintType
{
DOM_CONSTRAINT_NOTNULL,
DOM_CONSTRAINT_CHECK
} DomainConstraintType;
typedef struct DomainConstraintState
{
NodeTag type;
DomainConstraintType constrainttype; /* constraint type */
char *name; /* name of constraint (for error msgs) */
Expr *check_expr; /* for CHECK, a boolean expression */
ExprState *check_exprstate; /* check_expr's eval state, or NULL */
} DomainConstraintState;
/* ----------------------------------------------------------------
* Executor State Trees
*
* An executing query has a PlanState tree paralleling the Plan tree
* that describes the plan.
* ----------------------------------------------------------------
*/
/* ----------------
* ExecProcNodeMtd
*
* This is the method called by ExecProcNode to return the next tuple
* from an executor node. It returns NULL, or an empty TupleTableSlot,
* if no more tuples are available.
* ----------------
*/
typedef TupleTableSlot *(*ExecProcNodeMtd) (struct PlanState *pstate);
/* ----------------
* PlanState node
*
* We never actually instantiate any PlanState nodes; this is just the common
* abstract superclass for all PlanState-type nodes.
* ----------------
*/
typedef struct PlanState
{
NodeTag type;
Plan *plan; /* associated Plan node */
EState *state; /* at execution time, states of individual
* nodes point to one EState for the whole
* top-level plan */
ExecProcNodeMtd ExecProcNode; /* function to return next tuple */
ExecProcNodeMtd ExecProcNodeReal; /* actual function, if above is a
* wrapper */
Instrumentation *instrument; /* Optional runtime stats for this node */
WorkerInstrumentation *worker_instrument; /* per-worker instrumentation */
/* Per-worker JIT instrumentation */
struct SharedJitInstrumentation *worker_jit_instrument;
/*
* Common structural data for all Plan types. These links to subsidiary
* state trees parallel links in the associated plan tree (except for the
* subPlan list, which does not exist in the plan tree).
*/
ExprState *qual; /* boolean qual condition */
struct PlanState *lefttree; /* input plan tree(s) */
struct PlanState *righttree;
List *initPlan; /* Init SubPlanState nodes (un-correlated expr
* subselects) */
List *subPlan; /* SubPlanState nodes in my expressions */
/*
* State for management of parameter-change-driven rescanning
*/
Bitmapset *chgParam; /* set of IDs of changed Params */
/*
* Other run-time state needed by most if not all node types.
*/
TupleDesc ps_ResultTupleDesc; /* node's return type */
TupleTableSlot *ps_ResultTupleSlot; /* slot for my result tuples */
ExprContext *ps_ExprContext; /* node's expression-evaluation context */
ProjectionInfo *ps_ProjInfo; /* info for doing tuple projection */
bool async_capable; /* true if node is async-capable */
/*
* Scanslot's descriptor if known. This is a bit of a hack, but otherwise
* it's hard for expression compilation to optimize based on the
* descriptor, without encoding knowledge about all executor nodes.
*/
TupleDesc scandesc;
/*
* Define the slot types for inner, outer and scanslots for expression
* contexts with this state as a parent. If *opsset is set, then
* *opsfixed indicates whether *ops is guaranteed to be the type of slot
* used. That means that every slot in the corresponding
* ExprContext.ecxt_*tuple will point to a slot of that type, while
* evaluating the expression. If *opsfixed is false, but *ops is set,
* that indicates the most likely type of slot.
*
* The scan* fields are set by ExecInitScanTupleSlot(). If that's not
* called, nodes can initialize the fields themselves.
*
* If outer/inneropsset is false, the information is inferred on-demand
* using ExecGetResultSlotOps() on ->righttree/lefttree, using the
* corresponding node's resultops* fields.
*
* The result* fields are automatically set when ExecInitResultSlot is
* used (be it directly or when the slot is created by
* ExecAssignScanProjectionInfo() /
* ExecConditionalAssignProjectionInfo()). If no projection is necessary
* ExecConditionalAssignProjectionInfo() defaults those fields to the scan
* operations.
*/
const TupleTableSlotOps *scanops;
const TupleTableSlotOps *outerops;
const TupleTableSlotOps *innerops;
const TupleTableSlotOps *resultops;
bool scanopsfixed;
bool outeropsfixed;
bool inneropsfixed;
bool resultopsfixed;
bool scanopsset;
bool outeropsset;
bool inneropsset;
bool resultopsset;
} PlanState;
/* ----------------
* these are defined to avoid confusion problems with "left"
* and "right" and "inner" and "outer". The convention is that
* the "left" plan is the "outer" plan and the "right" plan is
* the inner plan, but these make the code more readable.
* ----------------
*/
#define innerPlanState(node) (((PlanState *)(node))->righttree)
#define outerPlanState(node) (((PlanState *)(node))->lefttree)
/* Macros for inline access to certain instrumentation counters */
#define InstrCountTuples2(node, delta) \
do { \
if (((PlanState *)(node))->instrument) \
((PlanState *)(node))->instrument->ntuples2 += (delta); \
} while (0)
#define InstrCountFiltered1(node, delta) \
do { \
if (((PlanState *)(node))->instrument) \
((PlanState *)(node))->instrument->nfiltered1 += (delta); \
} while(0)
#define InstrCountFiltered2(node, delta) \
do { \
if (((PlanState *)(node))->instrument) \
((PlanState *)(node))->instrument->nfiltered2 += (delta); \
} while(0)
/*
* EPQState is state for executing an EvalPlanQual recheck on a candidate
* tuples e.g. in ModifyTable or LockRows.
*
* To execute EPQ a separate EState is created (stored in ->recheckestate),
* which shares some resources, like the rangetable, with the main query's
* EState (stored in ->parentestate). The (sub-)tree of the plan that needs to
* be rechecked (in ->plan), is separately initialized (into
* ->recheckplanstate), but shares plan nodes with the corresponding nodes in
* the main query. The scan nodes in that separate executor tree are changed
* to return only the current tuple of interest for the respective
* table. Those tuples are either provided by the caller (using
* EvalPlanQualSlot), and/or found using the rowmark mechanism (non-locking
* rowmarks by the EPQ machinery itself, locking ones by the caller).
*
* While the plan to be checked may be changed using EvalPlanQualSetPlan(),
* all such plans need to share the same EState.
*/
typedef struct EPQState
{
/* Initialized at EvalPlanQualInit() time: */
EState *parentestate; /* main query's EState */
int epqParam; /* ID of Param to force scan node re-eval */
/*
* Tuples to be substituted by scan nodes. They need to set up, before
* calling EvalPlanQual()/EvalPlanQualNext(), into the slot returned by
* EvalPlanQualSlot(scanrelid). The array is indexed by scanrelid - 1.
*/
List *tuple_table; /* tuple table for relsubs_slot */
TupleTableSlot **relsubs_slot;
/*
* Initialized by EvalPlanQualInit(), may be changed later with
* EvalPlanQualSetPlan():
*/
Plan *plan; /* plan tree to be executed */
List *arowMarks; /* ExecAuxRowMarks (non-locking only) */
/*
* The original output tuple to be rechecked. Set by
* EvalPlanQualSetSlot(), before EvalPlanQualNext() or EvalPlanQual() may
* be called.
*/
TupleTableSlot *origslot;
/* Initialized or reset by EvalPlanQualBegin(): */
EState *recheckestate; /* EState for EPQ execution, see above */
/*
* Rowmarks that can be fetched on-demand using
* EvalPlanQualFetchRowMark(), indexed by scanrelid - 1. Only non-locking
* rowmarks.
*/
ExecAuxRowMark **relsubs_rowmark;
/*
* True if a relation's EPQ tuple has been fetched for relation, indexed
* by scanrelid - 1.
*/
bool *relsubs_done;
PlanState *recheckplanstate; /* EPQ specific exec nodes, for ->plan */
} EPQState;
/* ----------------
* ResultState information
* ----------------
*/
typedef struct ResultState
{
PlanState ps; /* its first field is NodeTag */
ExprState *resconstantqual;
bool rs_done; /* are we done? */
bool rs_checkqual; /* do we need to check the qual? */
} ResultState;
/* ----------------
* ProjectSetState information
*
* Note: at least one of the "elems" will be a SetExprState; the rest are
* regular ExprStates.
* ----------------
*/
typedef struct ProjectSetState
{
PlanState ps; /* its first field is NodeTag */
Node **elems; /* array of expression states */
ExprDoneCond *elemdone; /* array of per-SRF is-done states */
int nelems; /* length of elemdone[] array */
bool pending_srf_tuples; /* still evaluating srfs in tlist? */
MemoryContext argcontext; /* context for SRF arguments */
} ProjectSetState;
/* ----------------
* ModifyTableState information
* ----------------
*/
typedef struct ModifyTableState
{
PlanState ps; /* its first field is NodeTag */
CmdType operation; /* INSERT, UPDATE, or DELETE */
bool canSetTag; /* do we set the command tag/es_processed? */
bool mt_done; /* are we done? */
int mt_nrels; /* number of entries in resultRelInfo[] */
ResultRelInfo *resultRelInfo; /* info about target relation(s) */
/*
* Target relation mentioned in the original statement, used to fire
* statement-level triggers and as the root for tuple routing. (This
* might point to one of the resultRelInfo[] entries, but it can also be a
* distinct struct.)
*/
ResultRelInfo *rootResultRelInfo;
EPQState mt_epqstate; /* for evaluating EvalPlanQual rechecks */
bool fireBSTriggers; /* do we need to fire stmt triggers? */
/*
* These fields are used for inherited UPDATE and DELETE, to track which
* target relation a given tuple is from. If there are a lot of target
* relations, we use a hash table to translate table OIDs to
* resultRelInfo[] indexes; otherwise mt_resultOidHash is NULL.
*/
int mt_resultOidAttno; /* resno of "tableoid" junk attr */
Oid mt_lastResultOid; /* last-seen value of tableoid */
int mt_lastResultIndex; /* corresponding index in resultRelInfo[] */
HTAB *mt_resultOidHash; /* optional hash table to speed lookups */
/*
* Slot for storing tuples in the root partitioned table's rowtype during
* an UPDATE of a partitioned table.
*/
TupleTableSlot *mt_root_tuple_slot;
/* Tuple-routing support info */
struct PartitionTupleRouting *mt_partition_tuple_routing;
/* controls transition table population for specified operation */
struct TransitionCaptureState *mt_transition_capture;
/* controls transition table population for INSERT...ON CONFLICT UPDATE */
struct TransitionCaptureState *mt_oc_transition_capture;
} ModifyTableState;
/* ----------------
* AppendState information
*
* nplans how many plans are in the array
* whichplan which synchronous plan is being executed (0 .. n-1)
* or a special negative value. See nodeAppend.c.
* prune_state details required to allow partitions to be
* eliminated from the scan, or NULL if not possible.
* valid_subplans for runtime pruning, valid synchronous appendplans
* indexes to scan.
* ----------------
*/
struct AppendState;
typedef struct AppendState AppendState;
struct ParallelAppendState;
typedef struct ParallelAppendState ParallelAppendState;
struct PartitionPruneState;
struct AppendState
{
PlanState ps; /* its first field is NodeTag */
PlanState **appendplans; /* array of PlanStates for my inputs */
int as_nplans;
int as_whichplan;
bool as_begun; /* false means need to initialize */
Bitmapset *as_asyncplans; /* asynchronous plans indexes */
int as_nasyncplans; /* # of asynchronous plans */
AsyncRequest **as_asyncrequests; /* array of AsyncRequests */
TupleTableSlot **as_asyncresults; /* unreturned results of async plans */
int as_nasyncresults; /* # of valid entries in as_asyncresults */
bool as_syncdone; /* true if all synchronous plans done in
* asynchronous mode, else false */
int as_nasyncremain; /* # of remaining asynchronous plans */
Bitmapset *as_needrequest; /* asynchronous plans needing a new request */
struct WaitEventSet *as_eventset; /* WaitEventSet used to configure file
* descriptor wait events */
int as_first_partial_plan; /* Index of 'appendplans' containing
* the first partial plan */
ParallelAppendState *as_pstate; /* parallel coordination info */
Size pstate_len; /* size of parallel coordination info */
struct PartitionPruneState *as_prune_state;
Bitmapset *as_valid_subplans;
Bitmapset *as_valid_asyncplans; /* valid asynchronous plans indexes */
bool (*choose_next_subplan) (AppendState *);
};
/* ----------------
* MergeAppendState information
*
* nplans how many plans are in the array
* nkeys number of sort key columns
* sortkeys sort keys in SortSupport representation
* slots current output tuple of each subplan
* heap heap of active tuples
* initialized true if we have fetched first tuple from each subplan
* prune_state details required to allow partitions to be
* eliminated from the scan, or NULL if not possible.
* valid_subplans for runtime pruning, valid mergeplans indexes to
* scan.
* ----------------
*/
typedef struct MergeAppendState
{
PlanState ps; /* its first field is NodeTag */
PlanState **mergeplans; /* array of PlanStates for my inputs */
int ms_nplans;
int ms_nkeys;
SortSupport ms_sortkeys; /* array of length ms_nkeys */
TupleTableSlot **ms_slots; /* array of length ms_nplans */
struct binaryheap *ms_heap; /* binary heap of slot indices */
bool ms_initialized; /* are subplans started? */
struct PartitionPruneState *ms_prune_state;
Bitmapset *ms_valid_subplans;
} MergeAppendState;
/* ----------------
* RecursiveUnionState information
*
* RecursiveUnionState is used for performing a recursive union.
*
* recursing T when we're done scanning the non-recursive term
* intermediate_empty T if intermediate_table is currently empty
* working_table working table (to be scanned by recursive term)
* intermediate_table current recursive output (next generation of WT)
* ----------------
*/
typedef struct RecursiveUnionState
{
PlanState ps; /* its first field is NodeTag */
bool recursing;
bool intermediate_empty;
Tuplestorestate *working_table;
Tuplestorestate *intermediate_table;
/* Remaining fields are unused in UNION ALL case */
Oid *eqfuncoids; /* per-grouping-field equality fns */
FmgrInfo *hashfunctions; /* per-grouping-field hash fns */
MemoryContext tempContext; /* short-term context for comparisons */
TupleHashTable hashtable; /* hash table for tuples already seen */
MemoryContext tableContext; /* memory context containing hash table */
} RecursiveUnionState;
/* ----------------
* BitmapAndState information
* ----------------
*/
typedef struct BitmapAndState
{
PlanState ps; /* its first field is NodeTag */
PlanState **bitmapplans; /* array of PlanStates for my inputs */
int nplans; /* number of input plans */
} BitmapAndState;
/* ----------------
* BitmapOrState information
* ----------------
*/
typedef struct BitmapOrState
{
PlanState ps; /* its first field is NodeTag */
PlanState **bitmapplans; /* array of PlanStates for my inputs */
int nplans; /* number of input plans */
} BitmapOrState;
/* ----------------------------------------------------------------
* Scan State Information
* ----------------------------------------------------------------
*/
/* ----------------
* ScanState information
*
* ScanState extends PlanState for node types that represent
* scans of an underlying relation. It can also be used for nodes
* that scan the output of an underlying plan node --- in that case,
* only ScanTupleSlot is actually useful, and it refers to the tuple
* retrieved from the subplan.
*
* currentRelation relation being scanned (NULL if none)
* currentScanDesc current scan descriptor for scan (NULL if none)
* ScanTupleSlot pointer to slot in tuple table holding scan tuple
* ----------------
*/
typedef struct ScanState
{
PlanState ps; /* its first field is NodeTag */
Relation ss_currentRelation;
struct TableScanDescData *ss_currentScanDesc;
TupleTableSlot *ss_ScanTupleSlot;
} ScanState;
/* ----------------
* SeqScanState information
* ----------------
*/
typedef struct SeqScanState
{
ScanState ss; /* its first field is NodeTag */
Size pscan_len; /* size of parallel heap scan descriptor */
} SeqScanState;
/* ----------------
* SampleScanState information
* ----------------
*/
typedef struct SampleScanState
{
ScanState ss;
List *args; /* expr states for TABLESAMPLE params */
ExprState *repeatable; /* expr state for REPEATABLE expr */
/* use struct pointer to avoid including tsmapi.h here */
struct TsmRoutine *tsmroutine; /* descriptor for tablesample method */
void *tsm_state; /* tablesample method can keep state here */
bool use_bulkread; /* use bulkread buffer access strategy? */
bool use_pagemode; /* use page-at-a-time visibility checking? */
bool begun; /* false means need to call BeginSampleScan */
uint32 seed; /* random seed */
int64 donetuples; /* number of tuples already returned */
bool haveblock; /* has a block for sampling been determined */
bool done; /* exhausted all tuples? */
} SampleScanState;
/*
* These structs store information about index quals that don't have simple
* constant right-hand sides. See comments for ExecIndexBuildScanKeys()
* for discussion.
*/
typedef struct
{
struct ScanKeyData *scan_key; /* scankey to put value into */
ExprState *key_expr; /* expr to evaluate to get value */
bool key_toastable; /* is expr's result a toastable datatype? */
} IndexRuntimeKeyInfo;
typedef struct
{
struct ScanKeyData *scan_key; /* scankey to put value into */
ExprState *array_expr; /* expr to evaluate to get array value */
int next_elem; /* next array element to use */
int num_elems; /* number of elems in current array value */
Datum *elem_values; /* array of num_elems Datums */
bool *elem_nulls; /* array of num_elems is-null flags */
} IndexArrayKeyInfo;
/* ----------------
* IndexScanState information
*
* indexqualorig execution state for indexqualorig expressions
* indexorderbyorig execution state for indexorderbyorig expressions
* ScanKeys Skey structures for index quals
* NumScanKeys number of ScanKeys
* OrderByKeys Skey structures for index ordering operators
* NumOrderByKeys number of OrderByKeys
* RuntimeKeys info about Skeys that must be evaluated at runtime
* NumRuntimeKeys number of RuntimeKeys
* RuntimeKeysReady true if runtime Skeys have been computed
* RuntimeContext expr context for evaling runtime Skeys
* RelationDesc index relation descriptor
* ScanDesc index scan descriptor
*
* ReorderQueue tuples that need reordering due to re-check
* ReachedEnd have we fetched all tuples from index already?
* OrderByValues values of ORDER BY exprs of last fetched tuple
* OrderByNulls null flags for OrderByValues
* SortSupport for reordering ORDER BY exprs
* OrderByTypByVals is the datatype of order by expression pass-by-value?
* OrderByTypLens typlens of the datatypes of order by expressions
* PscanLen size of parallel index scan descriptor
* ----------------
*/
typedef struct IndexScanState
{
ScanState ss; /* its first field is NodeTag */
ExprState *indexqualorig;
List *indexorderbyorig;
struct ScanKeyData *iss_ScanKeys;
int iss_NumScanKeys;
struct ScanKeyData *iss_OrderByKeys;
int iss_NumOrderByKeys;
IndexRuntimeKeyInfo *iss_RuntimeKeys;
int iss_NumRuntimeKeys;
bool iss_RuntimeKeysReady;
ExprContext *iss_RuntimeContext;
Relation iss_RelationDesc;
struct IndexScanDescData *iss_ScanDesc;
/* These are needed for re-checking ORDER BY expr ordering */
pairingheap *iss_ReorderQueue;
bool iss_ReachedEnd;
Datum *iss_OrderByValues;
bool *iss_OrderByNulls;
SortSupport iss_SortSupport;
bool *iss_OrderByTypByVals;
int16 *iss_OrderByTypLens;
Size iss_PscanLen;
} IndexScanState;
/* ----------------
* IndexOnlyScanState information
*
* indexqual execution state for indexqual expressions
* ScanKeys Skey structures for index quals
* NumScanKeys number of ScanKeys
* OrderByKeys Skey structures for index ordering operators
* NumOrderByKeys number of OrderByKeys
* RuntimeKeys info about Skeys that must be evaluated at runtime
* NumRuntimeKeys number of RuntimeKeys
* RuntimeKeysReady true if runtime Skeys have been computed
* RuntimeContext expr context for evaling runtime Skeys
* RelationDesc index relation descriptor
* ScanDesc index scan descriptor
* TableSlot slot for holding tuples fetched from the table
* VMBuffer buffer in use for visibility map testing, if any
* PscanLen size of parallel index-only scan descriptor
* ----------------
*/
typedef struct IndexOnlyScanState
{
ScanState ss; /* its first field is NodeTag */
ExprState *indexqual;
struct ScanKeyData *ioss_ScanKeys;
int ioss_NumScanKeys;
struct ScanKeyData *ioss_OrderByKeys;
int ioss_NumOrderByKeys;
IndexRuntimeKeyInfo *ioss_RuntimeKeys;
int ioss_NumRuntimeKeys;
bool ioss_RuntimeKeysReady;
ExprContext *ioss_RuntimeContext;
Relation ioss_RelationDesc;
struct IndexScanDescData *ioss_ScanDesc;
TupleTableSlot *ioss_TableSlot;
Buffer ioss_VMBuffer;
Size ioss_PscanLen;
} IndexOnlyScanState;
/* ----------------
* BitmapIndexScanState information
*
* result bitmap to return output into, or NULL
* ScanKeys Skey structures for index quals
* NumScanKeys number of ScanKeys
* RuntimeKeys info about Skeys that must be evaluated at runtime
* NumRuntimeKeys number of RuntimeKeys
* ArrayKeys info about Skeys that come from ScalarArrayOpExprs
* NumArrayKeys number of ArrayKeys
* RuntimeKeysReady true if runtime Skeys have been computed
* RuntimeContext expr context for evaling runtime Skeys
* RelationDesc index relation descriptor
* ScanDesc index scan descriptor
* ----------------
*/
typedef struct BitmapIndexScanState
{
ScanState ss; /* its first field is NodeTag */
TIDBitmap *biss_result;
struct ScanKeyData *biss_ScanKeys;
int biss_NumScanKeys;
IndexRuntimeKeyInfo *biss_RuntimeKeys;
int biss_NumRuntimeKeys;
IndexArrayKeyInfo *biss_ArrayKeys;
int biss_NumArrayKeys;
bool biss_RuntimeKeysReady;
ExprContext *biss_RuntimeContext;
Relation biss_RelationDesc;
struct IndexScanDescData *biss_ScanDesc;
} BitmapIndexScanState;
/* ----------------
* SharedBitmapState information
*
* BM_INITIAL TIDBitmap creation is not yet started, so first worker
* to see this state will set the state to BM_INPROGRESS
* and that process will be responsible for creating
* TIDBitmap.
* BM_INPROGRESS TIDBitmap creation is in progress; workers need to
* sleep until it's finished.
* BM_FINISHED TIDBitmap creation is done, so now all workers can
* proceed to iterate over TIDBitmap.
* ----------------
*/
typedef enum
{
BM_INITIAL,
BM_INPROGRESS,
BM_FINISHED
} SharedBitmapState;
/* ----------------
* ParallelBitmapHeapState information
* tbmiterator iterator for scanning current pages
* prefetch_iterator iterator for prefetching ahead of current page
* mutex mutual exclusion for the prefetching variable
* and state
* prefetch_pages # pages prefetch iterator is ahead of current
* prefetch_target current target prefetch distance
* state current state of the TIDBitmap
* cv conditional wait variable
* phs_snapshot_data snapshot data shared to workers
* ----------------
*/
typedef struct ParallelBitmapHeapState
{
dsa_pointer tbmiterator;
dsa_pointer prefetch_iterator;
slock_t mutex;
int prefetch_pages;
int prefetch_target;
SharedBitmapState state;
ConditionVariable cv;
char phs_snapshot_data[FLEXIBLE_ARRAY_MEMBER];
} ParallelBitmapHeapState;
/* ----------------
* BitmapHeapScanState information
*
* bitmapqualorig execution state for bitmapqualorig expressions
* tbm bitmap obtained from child index scan(s)
* tbmiterator iterator for scanning current pages
* tbmres current-page data
* can_skip_fetch can we potentially skip tuple fetches in this scan?
* return_empty_tuples number of empty tuples to return
* vmbuffer buffer for visibility-map lookups
* pvmbuffer ditto, for prefetched pages
* exact_pages total number of exact pages retrieved
* lossy_pages total number of lossy pages retrieved
* prefetch_iterator iterator for prefetching ahead of current page
* prefetch_pages # pages prefetch iterator is ahead of current
* prefetch_target current target prefetch distance
* prefetch_maximum maximum value for prefetch_target
* pscan_len size of the shared memory for parallel bitmap
* initialized is node is ready to iterate
* shared_tbmiterator shared iterator
* shared_prefetch_iterator shared iterator for prefetching
* pstate shared state for parallel bitmap scan
* ----------------
*/
typedef struct BitmapHeapScanState
{
ScanState ss; /* its first field is NodeTag */
ExprState *bitmapqualorig;
TIDBitmap *tbm;
TBMIterator *tbmiterator;
TBMIterateResult *tbmres;
bool can_skip_fetch;
int return_empty_tuples;
Buffer vmbuffer;
Buffer pvmbuffer;
long exact_pages;
long lossy_pages;
TBMIterator *prefetch_iterator;
int prefetch_pages;
int prefetch_target;
int prefetch_maximum;
Size pscan_len;
bool initialized;
TBMSharedIterator *shared_tbmiterator;
TBMSharedIterator *shared_prefetch_iterator;
ParallelBitmapHeapState *pstate;
} BitmapHeapScanState;
/* ----------------
* TidScanState information
*
* tidexprs list of TidExpr structs (see nodeTidscan.c)
* isCurrentOf scan has a CurrentOfExpr qual
* NumTids number of tids in this scan
* TidPtr index of currently fetched tid
* TidList evaluated item pointers (array of size NumTids)
* htup currently-fetched tuple, if any
* ----------------
*/
typedef struct TidScanState
{
ScanState ss; /* its first field is NodeTag */
List *tss_tidexprs;
bool tss_isCurrentOf;
int tss_NumTids;
int tss_TidPtr;
ItemPointerData *tss_TidList;
HeapTupleData tss_htup;
} TidScanState;
/* ----------------
* TidRangeScanState information
*
* trss_tidexprs list of TidOpExpr structs (see nodeTidrangescan.c)
* trss_mintid the lowest TID in the scan range
* trss_maxtid the highest TID in the scan range
* trss_inScan is a scan currently in progress?
* ----------------
*/
typedef struct TidRangeScanState
{
ScanState ss; /* its first field is NodeTag */
List *trss_tidexprs;
ItemPointerData trss_mintid;
ItemPointerData trss_maxtid;
bool trss_inScan;
} TidRangeScanState;
/* ----------------
* SubqueryScanState information
*
* SubqueryScanState is used for scanning a sub-query in the range table.
* ScanTupleSlot references the current output tuple of the sub-query.
* ----------------
*/
typedef struct SubqueryScanState
{
ScanState ss; /* its first field is NodeTag */
PlanState *subplan;
} SubqueryScanState;
/* ----------------
* FunctionScanState information
*
* Function nodes are used to scan the results of a
* function appearing in FROM (typically a function returning set).
*
* eflags node's capability flags
* ordinality is this scan WITH ORDINALITY?
* simple true if we have 1 function and no ordinality
* ordinal current ordinal column value
* nfuncs number of functions being executed
* funcstates per-function execution states (private in
* nodeFunctionscan.c)
* argcontext memory context to evaluate function arguments in
* ----------------
*/
struct FunctionScanPerFuncState;
typedef struct FunctionScanState
{
ScanState ss; /* its first field is NodeTag */
int eflags;
bool ordinality;
bool simple;
int64 ordinal;
int nfuncs;
struct FunctionScanPerFuncState *funcstates; /* array of length nfuncs */
MemoryContext argcontext;
} FunctionScanState;
/* ----------------
* ValuesScanState information
*
* ValuesScan nodes are used to scan the results of a VALUES list
*
* rowcontext per-expression-list context
* exprlists array of expression lists being evaluated
* exprstatelists array of expression state lists, for SubPlans only
* array_len size of above arrays
* curr_idx current array index (0-based)
*
* Note: ss.ps.ps_ExprContext is used to evaluate any qual or projection
* expressions attached to the node. We create a second ExprContext,
* rowcontext, in which to build the executor expression state for each
* Values sublist. Resetting this context lets us get rid of expression
* state for each row, avoiding major memory leakage over a long values list.
* However, that doesn't work for sublists containing SubPlans, because a
* SubPlan has to be connected up to the outer plan tree to work properly.
* Therefore, for only those sublists containing SubPlans, we do expression
* state construction at executor start, and store those pointers in
* exprstatelists[]. NULL entries in that array correspond to simple
* subexpressions that are handled as described above.
* ----------------
*/
typedef struct ValuesScanState
{
ScanState ss; /* its first field is NodeTag */
ExprContext *rowcontext;
List **exprlists;
List **exprstatelists;
int array_len;
int curr_idx;
} ValuesScanState;
/* ----------------
* TableFuncScanState node
*
* Used in table-expression functions like XMLTABLE.
* ----------------
*/
typedef struct TableFuncScanState
{
ScanState ss; /* its first field is NodeTag */
ExprState *docexpr; /* state for document expression */
ExprState *rowexpr; /* state for row-generating expression */
List *colexprs; /* state for column-generating expression */
List *coldefexprs; /* state for column default expressions */
List *ns_names; /* same as TableFunc.ns_names */
List *ns_uris; /* list of states of namespace URI exprs */
Bitmapset *notnulls; /* nullability flag for each output column */
void *opaque; /* table builder private space */
const struct TableFuncRoutine *routine; /* table builder methods */
FmgrInfo *in_functions; /* input function for each column */
Oid *typioparams; /* typioparam for each column */
int64 ordinal; /* row number to be output next */
MemoryContext perTableCxt; /* per-table context */
Tuplestorestate *tupstore; /* output tuple store */
} TableFuncScanState;
/* ----------------
* CteScanState information
*
* CteScan nodes are used to scan a CommonTableExpr query.
*
* Multiple CteScan nodes can read out from the same CTE query. We use
* a tuplestore to hold rows that have been read from the CTE query but
* not yet consumed by all readers.
* ----------------
*/
typedef struct CteScanState
{
ScanState ss; /* its first field is NodeTag */
int eflags; /* capability flags to pass to tuplestore */
int readptr; /* index of my tuplestore read pointer */
PlanState *cteplanstate; /* PlanState for the CTE query itself */
/* Link to the "leader" CteScanState (possibly this same node) */
struct CteScanState *leader;
/* The remaining fields are only valid in the "leader" CteScanState */
Tuplestorestate *cte_table; /* rows already read from the CTE query */
bool eof_cte; /* reached end of CTE query? */
} CteScanState;
/* ----------------
* NamedTuplestoreScanState information
*
* NamedTuplestoreScan nodes are used to scan a Tuplestore created and
* named prior to execution of the query. An example is a transition
* table for an AFTER trigger.
*
* Multiple NamedTuplestoreScan nodes can read out from the same Tuplestore.
* ----------------
*/
typedef struct NamedTuplestoreScanState
{
ScanState ss; /* its first field is NodeTag */
int readptr; /* index of my tuplestore read pointer */
TupleDesc tupdesc; /* format of the tuples in the tuplestore */
Tuplestorestate *relation; /* the rows */
} NamedTuplestoreScanState;
/* ----------------
* WorkTableScanState information
*
* WorkTableScan nodes are used to scan the work table created by
* a RecursiveUnion node. We locate the RecursiveUnion node
* during executor startup.
* ----------------
*/
typedef struct WorkTableScanState
{
ScanState ss; /* its first field is NodeTag */
RecursiveUnionState *rustate;
} WorkTableScanState;
/* ----------------
* ForeignScanState information
*
* ForeignScan nodes are used to scan foreign-data tables.
* ----------------
*/
typedef struct ForeignScanState
{
ScanState ss; /* its first field is NodeTag */
ExprState *fdw_recheck_quals; /* original quals not in ss.ps.qual */
Size pscan_len; /* size of parallel coordination information */
ResultRelInfo *resultRelInfo; /* result rel info, if UPDATE or DELETE */
/* use struct pointer to avoid including fdwapi.h here */
struct FdwRoutine *fdwroutine;
void *fdw_state; /* foreign-data wrapper can keep state here */
} ForeignScanState;
/* ----------------
* CustomScanState information
*
* CustomScan nodes are used to execute custom code within executor.
*
* Core code must avoid assuming that the CustomScanState is only as large as
* the structure declared here; providers are allowed to make it the first
* element in a larger structure, and typically would need to do so. The
* struct is actually allocated by the CreateCustomScanState method associated
* with the plan node. Any additional fields can be initialized there, or in
* the BeginCustomScan method.
* ----------------
*/
struct CustomExecMethods;
typedef struct CustomScanState
{
ScanState ss;
uint32 flags; /* mask of CUSTOMPATH_* flags, see
* nodes/extensible.h */
List *custom_ps; /* list of child PlanState nodes, if any */
Size pscan_len; /* size of parallel coordination information */
const struct CustomExecMethods *methods;
} CustomScanState;
/* ----------------------------------------------------------------
* Join State Information
* ----------------------------------------------------------------
*/
/* ----------------
* JoinState information
*
* Superclass for state nodes of join plans.
* ----------------
*/
typedef struct JoinState
{
PlanState ps;
JoinType jointype;
bool single_match; /* True if we should skip to next outer tuple
* after finding one inner match */
ExprState *joinqual; /* JOIN quals (in addition to ps.qual) */
} JoinState;
/* ----------------
* NestLoopState information
*
* NeedNewOuter true if need new outer tuple on next call
* MatchedOuter true if found a join match for current outer tuple
* NullInnerTupleSlot prepared null tuple for left outer joins
* ----------------
*/
typedef struct NestLoopState
{
JoinState js; /* its first field is NodeTag */
bool nl_NeedNewOuter;
bool nl_MatchedOuter;
TupleTableSlot *nl_NullInnerTupleSlot;
} NestLoopState;
/* ----------------
* MergeJoinState information
*
* NumClauses number of mergejoinable join clauses
* Clauses info for each mergejoinable clause
* JoinState current state of ExecMergeJoin state machine
* SkipMarkRestore true if we may skip Mark and Restore operations
* ExtraMarks true to issue extra Mark operations on inner scan
* ConstFalseJoin true if we have a constant-false joinqual
* FillOuter true if should emit unjoined outer tuples anyway
* FillInner true if should emit unjoined inner tuples anyway
* MatchedOuter true if found a join match for current outer tuple
* MatchedInner true if found a join match for current inner tuple
* OuterTupleSlot slot in tuple table for cur outer tuple
* InnerTupleSlot slot in tuple table for cur inner tuple
* MarkedTupleSlot slot in tuple table for marked tuple
* NullOuterTupleSlot prepared null tuple for right outer joins
* NullInnerTupleSlot prepared null tuple for left outer joins
* OuterEContext workspace for computing outer tuple's join values
* InnerEContext workspace for computing inner tuple's join values
* ----------------
*/
/* private in nodeMergejoin.c: */
typedef struct MergeJoinClauseData *MergeJoinClause;
typedef struct MergeJoinState
{
JoinState js; /* its first field is NodeTag */
int mj_NumClauses;
MergeJoinClause mj_Clauses; /* array of length mj_NumClauses */
int mj_JoinState;
bool mj_SkipMarkRestore;
bool mj_ExtraMarks;
bool mj_ConstFalseJoin;
bool mj_FillOuter;
bool mj_FillInner;
bool mj_MatchedOuter;
bool mj_MatchedInner;
TupleTableSlot *mj_OuterTupleSlot;
TupleTableSlot *mj_InnerTupleSlot;
TupleTableSlot *mj_MarkedTupleSlot;
TupleTableSlot *mj_NullOuterTupleSlot;
TupleTableSlot *mj_NullInnerTupleSlot;
ExprContext *mj_OuterEContext;
ExprContext *mj_InnerEContext;
} MergeJoinState;
/* ----------------
* HashJoinState information
*
* hashclauses original form of the hashjoin condition
* hj_OuterHashKeys the outer hash keys in the hashjoin condition
* hj_HashOperators the join operators in the hashjoin condition
* hj_HashTable hash table for the hashjoin
* (NULL if table not built yet)
* hj_CurHashValue hash value for current outer tuple
* hj_CurBucketNo regular bucket# for current outer tuple
* hj_CurSkewBucketNo skew bucket# for current outer tuple
* hj_CurTuple last inner tuple matched to current outer
* tuple, or NULL if starting search
* (hj_CurXXX variables are undefined if
* OuterTupleSlot is empty!)
* hj_OuterTupleSlot tuple slot for outer tuples
* hj_HashTupleSlot tuple slot for inner (hashed) tuples
* hj_NullOuterTupleSlot prepared null tuple for right/full outer joins
* hj_NullInnerTupleSlot prepared null tuple for left/full outer joins
* hj_FirstOuterTupleSlot first tuple retrieved from outer plan
* hj_JoinState current state of ExecHashJoin state machine
* hj_MatchedOuter true if found a join match for current outer
* hj_OuterNotEmpty true if outer relation known not empty
* ----------------
*/
/* these structs are defined in executor/hashjoin.h: */
typedef struct HashJoinTupleData *HashJoinTuple;
typedef struct HashJoinTableData *HashJoinTable;
typedef struct HashJoinState
{
JoinState js; /* its first field is NodeTag */
ExprState *hashclauses;
List *hj_OuterHashKeys; /* list of ExprState nodes */
List *hj_HashOperators; /* list of operator OIDs */
List *hj_Collations;
HashJoinTable hj_HashTable;
uint32 hj_CurHashValue;
int hj_CurBucketNo;
int hj_CurSkewBucketNo;
HashJoinTuple hj_CurTuple;
TupleTableSlot *hj_OuterTupleSlot;
TupleTableSlot *hj_HashTupleSlot;
TupleTableSlot *hj_NullOuterTupleSlot;
TupleTableSlot *hj_NullInnerTupleSlot;
TupleTableSlot *hj_FirstOuterTupleSlot;
int hj_JoinState;
bool hj_MatchedOuter;
bool hj_OuterNotEmpty;
} HashJoinState;
/* ----------------------------------------------------------------
* Materialization State Information
* ----------------------------------------------------------------
*/
/* ----------------
* MaterialState information
*
* materialize nodes are used to materialize the results
* of a subplan into a temporary file.
*
* ss.ss_ScanTupleSlot refers to output of underlying plan.
* ----------------
*/
typedef struct MaterialState
{
ScanState ss; /* its first field is NodeTag */
int eflags; /* capability flags to pass to tuplestore */
bool eof_underlying; /* reached end of underlying plan? */
Tuplestorestate *tuplestorestate;
} MaterialState;
struct ResultCacheEntry;
struct ResultCacheTuple;
struct ResultCacheKey;
typedef struct ResultCacheInstrumentation
{
uint64 cache_hits; /* number of rescans where we've found the
* scan parameter values to be cached */
uint64 cache_misses; /* number of rescans where we've not found the
* scan parameter values to be cached. */
uint64 cache_evictions; /* number of cache entries removed due to
* the need to free memory */
uint64 cache_overflows; /* number of times we've had to bypass the
* cache when filling it due to not being
* able to free enough space to store the
* current scan's tuples. */
uint64 mem_peak; /* peak memory usage in bytes */
} ResultCacheInstrumentation;
/* ----------------
* Shared memory container for per-worker resultcache information
* ----------------
*/
typedef struct SharedResultCacheInfo
{
int num_workers;
ResultCacheInstrumentation sinstrument[FLEXIBLE_ARRAY_MEMBER];
} SharedResultCacheInfo;
/* ----------------
* ResultCacheState information
*
* resultcache nodes are used to cache recent and commonly seen results
* from a parameterized scan.
* ----------------
*/
typedef struct ResultCacheState
{
ScanState ss; /* its first field is NodeTag */
int rc_status; /* value of ExecResultCache state machine */
int nkeys; /* number of cache keys */
struct resultcache_hash *hashtable; /* hash table for cache entries */
TupleDesc hashkeydesc; /* tuple descriptor for cache keys */
TupleTableSlot *tableslot; /* min tuple slot for existing cache entries */
TupleTableSlot *probeslot; /* virtual slot used for hash lookups */
ExprState *cache_eq_expr; /* Compare exec params to hash key */
ExprState **param_exprs; /* exprs containing the parameters to this
* node */
FmgrInfo *hashfunctions; /* lookup data for hash funcs nkeys in size */
Oid *collations; /* collation for comparisons nkeys in size */
uint64 mem_used; /* bytes of memory used by cache */
uint64 mem_limit; /* memory limit in bytes for the cache */
MemoryContext tableContext; /* memory context to store cache data */
dlist_head lru_list; /* least recently used entry list */
struct ResultCacheTuple *last_tuple; /* Used to point to the last tuple
* returned during a cache hit and
* the tuple we last stored when
* populating the cache. */
struct ResultCacheEntry *entry; /* the entry that 'last_tuple' belongs to
* or NULL if 'last_tuple' is NULL. */
bool singlerow; /* true if the cache entry is to be marked as
* complete after caching the first tuple. */
ResultCacheInstrumentation stats; /* execution statistics */
SharedResultCacheInfo *shared_info; /* statistics for parallel workers */
} ResultCacheState;
/* ----------------
* When performing sorting by multiple keys, it's possible that the input
* dataset is already sorted on a prefix of those keys. We call these
* "presorted keys".
* PresortedKeyData represents information about one such key.
* ----------------
*/
typedef struct PresortedKeyData
{
FmgrInfo flinfo; /* comparison function info */
FunctionCallInfo fcinfo; /* comparison function call info */
OffsetNumber attno; /* attribute number in tuple */
} PresortedKeyData;
/* ----------------
* Shared memory container for per-worker sort information
* ----------------
*/
typedef struct SharedSortInfo
{
int num_workers;
TuplesortInstrumentation sinstrument[FLEXIBLE_ARRAY_MEMBER];
} SharedSortInfo;
/* ----------------
* SortState information
* ----------------
*/
typedef struct SortState
{
ScanState ss; /* its first field is NodeTag */
bool randomAccess; /* need random access to sort output? */
bool bounded; /* is the result set bounded? */
int64 bound; /* if bounded, how many tuples are needed */
bool sort_Done; /* sort completed yet? */
bool bounded_Done; /* value of bounded we did the sort with */
int64 bound_Done; /* value of bound we did the sort with */
void *tuplesortstate; /* private state of tuplesort.c */
bool am_worker; /* are we a worker? */
SharedSortInfo *shared_info; /* one entry per worker */
} SortState;
/* ----------------
* Instrumentation information for IncrementalSort
* ----------------
*/
typedef struct IncrementalSortGroupInfo
{
int64 groupCount;
int64 maxDiskSpaceUsed;
int64 totalDiskSpaceUsed;
int64 maxMemorySpaceUsed;
int64 totalMemorySpaceUsed;
bits32 sortMethods; /* bitmask of TuplesortMethod */
} IncrementalSortGroupInfo;
typedef struct IncrementalSortInfo
{
IncrementalSortGroupInfo fullsortGroupInfo;
IncrementalSortGroupInfo prefixsortGroupInfo;
} IncrementalSortInfo;
/* ----------------
* Shared memory container for per-worker incremental sort information
* ----------------
*/
typedef struct SharedIncrementalSortInfo
{
int num_workers;
IncrementalSortInfo sinfo[FLEXIBLE_ARRAY_MEMBER];
} SharedIncrementalSortInfo;
/* ----------------
* IncrementalSortState information
* ----------------
*/
typedef enum
{
INCSORT_LOADFULLSORT,
INCSORT_LOADPREFIXSORT,
INCSORT_READFULLSORT,
INCSORT_READPREFIXSORT,
} IncrementalSortExecutionStatus;
typedef struct IncrementalSortState
{
ScanState ss; /* its first field is NodeTag */
bool bounded; /* is the result set bounded? */
int64 bound; /* if bounded, how many tuples are needed */
bool outerNodeDone; /* finished fetching tuples from outer node */
int64 bound_Done; /* value of bound we did the sort with */
IncrementalSortExecutionStatus execution_status;
int64 n_fullsort_remaining;
Tuplesortstate *fullsort_state; /* private state of tuplesort.c */
Tuplesortstate *prefixsort_state; /* private state of tuplesort.c */
/* the keys by which the input path is already sorted */
PresortedKeyData *presorted_keys;
IncrementalSortInfo incsort_info;
/* slot for pivot tuple defining values of presorted keys within group */
TupleTableSlot *group_pivot;
TupleTableSlot *transfer_tuple;
bool am_worker; /* are we a worker? */
SharedIncrementalSortInfo *shared_info; /* one entry per worker */
} IncrementalSortState;
/* ---------------------
* GroupState information
* ---------------------
*/
typedef struct GroupState
{
ScanState ss; /* its first field is NodeTag */
ExprState *eqfunction; /* equality function */
bool grp_done; /* indicates completion of Group scan */
} GroupState;
/* ---------------------
* per-worker aggregate information
* ---------------------
*/
typedef struct AggregateInstrumentation
{
Size hash_mem_peak; /* peak hash table memory usage */
uint64 hash_disk_used; /* kB of disk space used */
int hash_batches_used; /* batches used during entire execution */
} AggregateInstrumentation;
/* ----------------
* Shared memory container for per-worker aggregate information
* ----------------
*/
typedef struct SharedAggInfo
{
int num_workers;
AggregateInstrumentation sinstrument[FLEXIBLE_ARRAY_MEMBER];
} SharedAggInfo;
/* ---------------------
* AggState information
*
* ss.ss_ScanTupleSlot refers to output of underlying plan.
*
* Note: ss.ps.ps_ExprContext contains ecxt_aggvalues and
* ecxt_aggnulls arrays, which hold the computed agg values for the current
* input group during evaluation of an Agg node's output tuple(s). We
* create a second ExprContext, tmpcontext, in which to evaluate input
* expressions and run the aggregate transition functions.
* ---------------------
*/
/* these structs are private in nodeAgg.c: */
typedef struct AggStatePerAggData *AggStatePerAgg;
typedef struct AggStatePerTransData *AggStatePerTrans;
typedef struct AggStatePerGroupData *AggStatePerGroup;
typedef struct AggStatePerPhaseData *AggStatePerPhase;
typedef struct AggStatePerHashData *AggStatePerHash;
typedef struct AggState
{
ScanState ss; /* its first field is NodeTag */
List *aggs; /* all Aggref nodes in targetlist & quals */
int numaggs; /* length of list (could be zero!) */
int numtrans; /* number of pertrans items */
AggStrategy aggstrategy; /* strategy mode */
AggSplit aggsplit; /* agg-splitting mode, see nodes.h */
AggStatePerPhase phase; /* pointer to current phase data */
int numphases; /* number of phases (including phase 0) */
int current_phase; /* current phase number */
AggStatePerAgg peragg; /* per-Aggref information */
AggStatePerTrans pertrans; /* per-Trans state information */
ExprContext *hashcontext; /* econtexts for long-lived data (hashtable) */
ExprContext **aggcontexts; /* econtexts for long-lived data (per GS) */
ExprContext *tmpcontext; /* econtext for input expressions */
#define FIELDNO_AGGSTATE_CURAGGCONTEXT 14
ExprContext *curaggcontext; /* currently active aggcontext */
AggStatePerAgg curperagg; /* currently active aggregate, if any */
#define FIELDNO_AGGSTATE_CURPERTRANS 16
AggStatePerTrans curpertrans; /* currently active trans state, if any */
bool input_done; /* indicates end of input */
bool agg_done; /* indicates completion of Agg scan */
int projected_set; /* The last projected grouping set */
#define FIELDNO_AGGSTATE_CURRENT_SET 20
int current_set; /* The current grouping set being evaluated */
Bitmapset *grouped_cols; /* grouped cols in current projection */
List *all_grouped_cols; /* list of all grouped cols in DESC order */
Bitmapset *colnos_needed; /* all columns needed from the outer plan */
int max_colno_needed; /* highest colno needed from outer plan */
bool all_cols_needed; /* are all cols from outer plan needed? */
/* These fields are for grouping set phase data */
int maxsets; /* The max number of sets in any phase */
AggStatePerPhase phases; /* array of all phases */
Tuplesortstate *sort_in; /* sorted input to phases > 1 */
Tuplesortstate *sort_out; /* input is copied here for next phase */
TupleTableSlot *sort_slot; /* slot for sort results */
/* these fields are used in AGG_PLAIN and AGG_SORTED modes: */
AggStatePerGroup *pergroups; /* grouping set indexed array of per-group
* pointers */
HeapTuple grp_firstTuple; /* copy of first tuple of current group */
/* these fields are used in AGG_HASHED and AGG_MIXED modes: */
bool table_filled; /* hash table filled yet? */
int num_hashes;
MemoryContext hash_metacxt; /* memory for hash table itself */
struct HashTapeInfo *hash_tapeinfo; /* metadata for spill tapes */
struct HashAggSpill *hash_spills; /* HashAggSpill for each grouping set,
* exists only during first pass */
TupleTableSlot *hash_spill_rslot; /* for reading spill files */
TupleTableSlot *hash_spill_wslot; /* for writing spill files */
List *hash_batches; /* hash batches remaining to be processed */
bool hash_ever_spilled; /* ever spilled during this execution? */
bool hash_spill_mode; /* we hit a limit during the current batch
* and we must not create new groups */
Size hash_mem_limit; /* limit before spilling hash table */
uint64 hash_ngroups_limit; /* limit before spilling hash table */
int hash_planned_partitions; /* number of partitions planned
* for first pass */
double hashentrysize; /* estimate revised during execution */
Size hash_mem_peak; /* peak hash table memory usage */
uint64 hash_ngroups_current; /* number of groups currently in
* memory in all hash tables */
uint64 hash_disk_used; /* kB of disk space used */
int hash_batches_used; /* batches used during entire execution */
AggStatePerHash perhash; /* array of per-hashtable data */
AggStatePerGroup *hash_pergroup; /* grouping set indexed array of
* per-group pointers */
/* support for evaluation of agg input expressions: */
#define FIELDNO_AGGSTATE_ALL_PERGROUPS 53
AggStatePerGroup *all_pergroups; /* array of first ->pergroups, than
* ->hash_pergroup */
ProjectionInfo *combinedproj; /* projection machinery */
SharedAggInfo *shared_info; /* one entry per worker */
} AggState;
/* ----------------
* WindowAggState information
* ----------------
*/
/* these structs are private in nodeWindowAgg.c: */
typedef struct WindowStatePerFuncData *WindowStatePerFunc;
typedef struct WindowStatePerAggData *WindowStatePerAgg;
typedef struct WindowAggState
{
ScanState ss; /* its first field is NodeTag */
/* these fields are filled in by ExecInitExpr: */
List *funcs; /* all WindowFunc nodes in targetlist */
int numfuncs; /* total number of window functions */
int numaggs; /* number that are plain aggregates */
WindowStatePerFunc perfunc; /* per-window-function information */
WindowStatePerAgg peragg; /* per-plain-aggregate information */
ExprState *partEqfunction; /* equality funcs for partition columns */
ExprState *ordEqfunction; /* equality funcs for ordering columns */
Tuplestorestate *buffer; /* stores rows of current partition */
int current_ptr; /* read pointer # for current row */
int framehead_ptr; /* read pointer # for frame head, if used */
int frametail_ptr; /* read pointer # for frame tail, if used */
int grouptail_ptr; /* read pointer # for group tail, if used */
int64 spooled_rows; /* total # of rows in buffer */
int64 currentpos; /* position of current row in partition */
int64 frameheadpos; /* current frame head position */
int64 frametailpos; /* current frame tail position (frame end+1) */
/* use struct pointer to avoid including windowapi.h here */
struct WindowObjectData *agg_winobj; /* winobj for aggregate fetches */
int64 aggregatedbase; /* start row for current aggregates */
int64 aggregatedupto; /* rows before this one are aggregated */
int frameOptions; /* frame_clause options, see WindowDef */
ExprState *startOffset; /* expression for starting bound offset */
ExprState *endOffset; /* expression for ending bound offset */
Datum startOffsetValue; /* result of startOffset evaluation */
Datum endOffsetValue; /* result of endOffset evaluation */
/* these fields are used with RANGE offset PRECEDING/FOLLOWING: */
FmgrInfo startInRangeFunc; /* in_range function for startOffset */
FmgrInfo endInRangeFunc; /* in_range function for endOffset */
Oid inRangeColl; /* collation for in_range tests */
bool inRangeAsc; /* use ASC sort order for in_range tests? */
bool inRangeNullsFirst; /* nulls sort first for in_range tests? */
/* these fields are used in GROUPS mode: */
int64 currentgroup; /* peer group # of current row in partition */
int64 frameheadgroup; /* peer group # of frame head row */
int64 frametailgroup; /* peer group # of frame tail row */
int64 groupheadpos; /* current row's peer group head position */
int64 grouptailpos; /* " " " " tail position (group end+1) */
MemoryContext partcontext; /* context for partition-lifespan data */
MemoryContext aggcontext; /* shared context for aggregate working data */
MemoryContext curaggcontext; /* current aggregate's working data */
ExprContext *tmpcontext; /* short-term evaluation context */
bool all_first; /* true if the scan is starting */
bool all_done; /* true if the scan is finished */
bool partition_spooled; /* true if all tuples in current partition
* have been spooled into tuplestore */
bool more_partitions; /* true if there's more partitions after
* this one */
bool framehead_valid; /* true if frameheadpos is known up to
* date for current row */
bool frametail_valid; /* true if frametailpos is known up to
* date for current row */
bool grouptail_valid; /* true if grouptailpos is known up to
* date for current row */
TupleTableSlot *first_part_slot; /* first tuple of current or next
* partition */
TupleTableSlot *framehead_slot; /* first tuple of current frame */
TupleTableSlot *frametail_slot; /* first tuple after current frame */
/* temporary slots for tuples fetched back from tuplestore */
TupleTableSlot *agg_row_slot;
TupleTableSlot *temp_slot_1;
TupleTableSlot *temp_slot_2;
} WindowAggState;
/* ----------------
* UniqueState information
*
* Unique nodes are used "on top of" sort nodes to discard
* duplicate tuples returned from the sort phase. Basically
* all it does is compare the current tuple from the subplan
* with the previously fetched tuple (stored in its result slot).
* If the two are identical in all interesting fields, then
* we just fetch another tuple from the sort and try again.
* ----------------
*/
typedef struct UniqueState
{
PlanState ps; /* its first field is NodeTag */
ExprState *eqfunction; /* tuple equality qual */
} UniqueState;
/* ----------------
* GatherState information
*
* Gather nodes launch 1 or more parallel workers, run a subplan
* in those workers, and collect the results.
* ----------------
*/
typedef struct GatherState
{
PlanState ps; /* its first field is NodeTag */
bool initialized; /* workers launched? */
bool need_to_scan_locally; /* need to read from local plan? */
int64 tuples_needed; /* tuple bound, see ExecSetTupleBound */
/* these fields are set up once: */
TupleTableSlot *funnel_slot;
struct ParallelExecutorInfo *pei;
/* all remaining fields are reinitialized during a rescan: */
int nworkers_launched; /* original number of workers */
int nreaders; /* number of still-active workers */
int nextreader; /* next one to try to read from */
struct TupleQueueReader **reader; /* array with nreaders active entries */
} GatherState;
/* ----------------
* GatherMergeState information
*
* Gather merge nodes launch 1 or more parallel workers, run a
* subplan which produces sorted output in each worker, and then
* merge the results into a single sorted stream.
* ----------------
*/
struct GMReaderTupleBuffer; /* private in nodeGatherMerge.c */
typedef struct GatherMergeState
{
PlanState ps; /* its first field is NodeTag */
bool initialized; /* workers launched? */
bool gm_initialized; /* gather_merge_init() done? */
bool need_to_scan_locally; /* need to read from local plan? */
int64 tuples_needed; /* tuple bound, see ExecSetTupleBound */
/* these fields are set up once: */
TupleDesc tupDesc; /* descriptor for subplan result tuples */
int gm_nkeys; /* number of sort columns */
SortSupport gm_sortkeys; /* array of length gm_nkeys */
struct ParallelExecutorInfo *pei;
/* all remaining fields are reinitialized during a rescan */
/* (but the arrays are not reallocated, just cleared) */
int nworkers_launched; /* original number of workers */
int nreaders; /* number of active workers */
TupleTableSlot **gm_slots; /* array with nreaders+1 entries */
struct TupleQueueReader **reader; /* array with nreaders active entries */
struct GMReaderTupleBuffer *gm_tuple_buffers; /* nreaders tuple buffers */
struct binaryheap *gm_heap; /* binary heap of slot indices */
} GatherMergeState;
/* ----------------
* Values displayed by EXPLAIN ANALYZE
* ----------------
*/
typedef struct HashInstrumentation
{
int nbuckets; /* number of buckets at end of execution */
int nbuckets_original; /* planned number of buckets */
int nbatch; /* number of batches at end of execution */
int nbatch_original; /* planned number of batches */
Size space_peak; /* peak memory usage in bytes */
} HashInstrumentation;
/* ----------------
* Shared memory container for per-worker hash information
* ----------------
*/
typedef struct SharedHashInfo
{
int num_workers;
HashInstrumentation hinstrument[FLEXIBLE_ARRAY_MEMBER];
} SharedHashInfo;
/* ----------------
* HashState information
* ----------------
*/
typedef struct HashState
{
PlanState ps; /* its first field is NodeTag */
HashJoinTable hashtable; /* hash table for the hashjoin */
List *hashkeys; /* list of ExprState nodes */
/*
* In a parallelized hash join, the leader retains a pointer to the
* shared-memory stats area in its shared_info field, and then copies the
* shared-memory info back to local storage before DSM shutdown. The
* shared_info field remains NULL in workers, or in non-parallel joins.
*/
SharedHashInfo *shared_info;
/*
* If we are collecting hash stats, this points to an initially-zeroed
* collection area, which could be either local storage or in shared
* memory; either way it's for just one process.
*/
HashInstrumentation *hinstrument;
/* Parallel hash state. */
struct ParallelHashJoinState *parallel_state;
} HashState;
/* ----------------
* SetOpState information
*
* Even in "sorted" mode, SetOp nodes are more complex than a simple
* Unique, since we have to count how many duplicates to return. But
* we also support hashing, so this is really more like a cut-down
* form of Agg.
* ----------------
*/
/* this struct is private in nodeSetOp.c: */
typedef struct SetOpStatePerGroupData *SetOpStatePerGroup;
typedef struct SetOpState
{
PlanState ps; /* its first field is NodeTag */
ExprState *eqfunction; /* equality comparator */
Oid *eqfuncoids; /* per-grouping-field equality fns */
FmgrInfo *hashfunctions; /* per-grouping-field hash fns */
bool setop_done; /* indicates completion of output scan */
long numOutput; /* number of dups left to output */
/* these fields are used in SETOP_SORTED mode: */
SetOpStatePerGroup pergroup; /* per-group working state */
HeapTuple grp_firstTuple; /* copy of first tuple of current group */
/* these fields are used in SETOP_HASHED mode: */
TupleHashTable hashtable; /* hash table with one entry per group */
MemoryContext tableContext; /* memory context containing hash table */
bool table_filled; /* hash table filled yet? */
TupleHashIterator hashiter; /* for iterating through hash table */
} SetOpState;
/* ----------------
* LockRowsState information
*
* LockRows nodes are used to enforce FOR [KEY] UPDATE/SHARE locking.
* ----------------
*/
typedef struct LockRowsState
{
PlanState ps; /* its first field is NodeTag */
List *lr_arowMarks; /* List of ExecAuxRowMarks */
EPQState lr_epqstate; /* for evaluating EvalPlanQual rechecks */
} LockRowsState;
/* ----------------
* LimitState information
*
* Limit nodes are used to enforce LIMIT/OFFSET clauses.
* They just select the desired subrange of their subplan's output.
*
* offset is the number of initial tuples to skip (0 does nothing).
* count is the number of tuples to return after skipping the offset tuples.
* If no limit count was specified, count is undefined and noCount is true.
* When lstate == LIMIT_INITIAL, offset/count/noCount haven't been set yet.
* ----------------
*/
typedef enum
{
LIMIT_INITIAL, /* initial state for LIMIT node */
LIMIT_RESCAN, /* rescan after recomputing parameters */
LIMIT_EMPTY, /* there are no returnable rows */
LIMIT_INWINDOW, /* have returned a row in the window */
LIMIT_WINDOWEND_TIES, /* have returned a tied row */
LIMIT_SUBPLANEOF, /* at EOF of subplan (within window) */
LIMIT_WINDOWEND, /* stepped off end of window */
LIMIT_WINDOWSTART /* stepped off beginning of window */
} LimitStateCond;
typedef struct LimitState
{
PlanState ps; /* its first field is NodeTag */
ExprState *limitOffset; /* OFFSET parameter, or NULL if none */
ExprState *limitCount; /* COUNT parameter, or NULL if none */
LimitOption limitOption; /* limit specification type */
int64 offset; /* current OFFSET value */
int64 count; /* current COUNT, if any */
bool noCount; /* if true, ignore count */
LimitStateCond lstate; /* state machine status, as above */
int64 position; /* 1-based index of last tuple returned */
TupleTableSlot *subSlot; /* tuple last obtained from subplan */
ExprState *eqfunction; /* tuple equality qual in case of WITH TIES
* option */
TupleTableSlot *last_slot; /* slot for evaluation of ties */
} LimitState;
#endif /* EXECNODES_H */