postgresql/src/backend/commands/schemacmds.c
Tom Lane ab1f0c8225 Change representation of statement lists, and add statement location info.
This patch makes several changes that improve the consistency of
representation of lists of statements.  It's always been the case
that the output of parse analysis is a list of Query nodes, whatever
the types of the individual statements in the list.  This patch brings
similar consistency to the outputs of raw parsing and planning steps:

* The output of raw parsing is now always a list of RawStmt nodes;
the statement-type-dependent nodes are one level down from that.

* The output of pg_plan_queries() is now always a list of PlannedStmt
nodes, even for utility statements.  In the case of a utility statement,
"planning" just consists of wrapping a CMD_UTILITY PlannedStmt around
the utility node.  This list representation is now used in Portal and
CachedPlan plan lists, replacing the former convention of intermixing
PlannedStmts with bare utility-statement nodes.

Now, every list of statements has a consistent head-node type depending
on how far along it is in processing.  This allows changing many places
that formerly used generic "Node *" pointers to use a more specific
pointer type, thus reducing the number of IsA() tests and casts needed,
as well as improving code clarity.

Also, the post-parse-analysis representation of DECLARE CURSOR is changed
so that it looks more like EXPLAIN, PREPARE, etc.  That is, the contained
SELECT remains a child of the DeclareCursorStmt rather than getting flipped
around to be the other way.  It's now true for both Query and PlannedStmt
that utilityStmt is non-null if and only if commandType is CMD_UTILITY.
That allows simplifying a lot of places that were testing both fields.
(I think some of those were just defensive programming, but in many places,
it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.)

Because PlannedStmt carries a canSetTag field, we're also able to get rid
of some ad-hoc rules about how to reconstruct canSetTag for a bare utility
statement; specifically, the assumption that a utility is canSetTag if and
only if it's the only one in its list.  While I see no near-term need for
relaxing that restriction, it's nice to get rid of the ad-hocery.

The API of ProcessUtility() is changed so that what it's passed is the
wrapper PlannedStmt not just the bare utility statement.  This will affect
all users of ProcessUtility_hook, but the changes are pretty trivial; see
the affected contrib modules for examples of the minimum change needed.
(Most compilers should give pointer-type-mismatch warnings for uncorrected
code.)

There's also a change in the API of ExplainOneQuery_hook, to pass through
cursorOptions instead of expecting hook functions to know what to pick.
This is needed because of the DECLARE CURSOR changes, but really should
have been done in 9.6; it's unlikely that any extant hook functions
know about using CURSOR_OPT_PARALLEL_OK.

Finally, teach gram.y to save statement boundary locations in RawStmt
nodes, and pass those through to Query and PlannedStmt nodes.  This allows
more intelligent handling of cases where a source query string contains
multiple statements.  This patch doesn't actually do anything with the
information, but a follow-on patch will.  (Passing this information through
cleanly is the true motivation for these changes; while I think this is all
good cleanup, it's unlikely we'd have bothered without this end goal.)

catversion bump because addition of location fields to struct Query
affects stored rules.

This patch is by me, but it owes a good deal to Fabien Coelho who did
a lot of preliminary work on the problem, and also reviewed the patch.

Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
2017-01-14 16:02:35 -05:00

433 lines
12 KiB
C

/*-------------------------------------------------------------------------
*
* schemacmds.c
* schema creation/manipulation commands
*
* Portions Copyright (c) 1996-2017, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/commands/schemacmds.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/heapam.h"
#include "access/xact.h"
#include "catalog/catalog.h"
#include "catalog/dependency.h"
#include "catalog/indexing.h"
#include "catalog/namespace.h"
#include "catalog/pg_authid.h"
#include "catalog/objectaccess.h"
#include "catalog/pg_namespace.h"
#include "commands/dbcommands.h"
#include "commands/event_trigger.h"
#include "commands/schemacmds.h"
#include "miscadmin.h"
#include "parser/parse_utilcmd.h"
#include "tcop/utility.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/rel.h"
#include "utils/syscache.h"
static void AlterSchemaOwner_internal(HeapTuple tup, Relation rel, Oid newOwnerId);
/*
* CREATE SCHEMA
*
* Note: caller should pass in location information for the whole
* CREATE SCHEMA statement, which in turn we pass down as the location
* of the component commands. This comports with our general plan of
* reporting location/len for the whole command even when executing
* a subquery.
*/
Oid
CreateSchemaCommand(CreateSchemaStmt *stmt, const char *queryString,
int stmt_location, int stmt_len)
{
const char *schemaName = stmt->schemaname;
Oid namespaceId;
OverrideSearchPath *overridePath;
List *parsetree_list;
ListCell *parsetree_item;
Oid owner_uid;
Oid saved_uid;
int save_sec_context;
AclResult aclresult;
ObjectAddress address;
GetUserIdAndSecContext(&saved_uid, &save_sec_context);
/*
* Who is supposed to own the new schema?
*/
if (stmt->authrole)
owner_uid = get_rolespec_oid(stmt->authrole, false);
else
owner_uid = saved_uid;
/* fill schema name with the user name if not specified */
if (!schemaName)
{
HeapTuple tuple;
tuple = SearchSysCache1(AUTHOID, ObjectIdGetDatum(owner_uid));
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for role %u", owner_uid);
schemaName =
pstrdup(NameStr(((Form_pg_authid) GETSTRUCT(tuple))->rolname));
ReleaseSysCache(tuple);
}
/*
* To create a schema, must have schema-create privilege on the current
* database and must be able to become the target role (this does not
* imply that the target role itself must have create-schema privilege).
* The latter provision guards against "giveaway" attacks. Note that a
* superuser will always have both of these privileges a fortiori.
*/
aclresult = pg_database_aclcheck(MyDatabaseId, saved_uid, ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_DATABASE,
get_database_name(MyDatabaseId));
check_is_member_of_role(saved_uid, owner_uid);
/* Additional check to protect reserved schema names */
if (!allowSystemTableMods && IsReservedName(schemaName))
ereport(ERROR,
(errcode(ERRCODE_RESERVED_NAME),
errmsg("unacceptable schema name \"%s\"", schemaName),
errdetail("The prefix \"pg_\" is reserved for system schemas.")));
/*
* If if_not_exists was given and the schema already exists, bail out.
* (Note: we needn't check this when not if_not_exists, because
* NamespaceCreate will complain anyway.) We could do this before making
* the permissions checks, but since CREATE TABLE IF NOT EXISTS makes its
* creation-permission check first, we do likewise.
*/
if (stmt->if_not_exists &&
SearchSysCacheExists1(NAMESPACENAME, PointerGetDatum(schemaName)))
{
ereport(NOTICE,
(errcode(ERRCODE_DUPLICATE_SCHEMA),
errmsg("schema \"%s\" already exists, skipping",
schemaName)));
return InvalidOid;
}
/*
* If the requested authorization is different from the current user,
* temporarily set the current user so that the object(s) will be created
* with the correct ownership.
*
* (The setting will be restored at the end of this routine, or in case of
* error, transaction abort will clean things up.)
*/
if (saved_uid != owner_uid)
SetUserIdAndSecContext(owner_uid,
save_sec_context | SECURITY_LOCAL_USERID_CHANGE);
/* Create the schema's namespace */
namespaceId = NamespaceCreate(schemaName, owner_uid, false);
/* Advance cmd counter to make the namespace visible */
CommandCounterIncrement();
/*
* Temporarily make the new namespace be the front of the search path, as
* well as the default creation target namespace. This will be undone at
* the end of this routine, or upon error.
*/
overridePath = GetOverrideSearchPath(CurrentMemoryContext);
overridePath->schemas = lcons_oid(namespaceId, overridePath->schemas);
/* XXX should we clear overridePath->useTemp? */
PushOverrideSearchPath(overridePath);
/*
* Report the new schema to possibly interested event triggers. Note we
* must do this here and not in ProcessUtilitySlow because otherwise the
* objects created below are reported before the schema, which would be
* wrong.
*/
ObjectAddressSet(address, NamespaceRelationId, namespaceId);
EventTriggerCollectSimpleCommand(address, InvalidObjectAddress,
(Node *) stmt);
/*
* Examine the list of commands embedded in the CREATE SCHEMA command, and
* reorganize them into a sequentially executable order with no forward
* references. Note that the result is still a list of raw parsetrees ---
* we cannot, in general, run parse analysis on one statement until we
* have actually executed the prior ones.
*/
parsetree_list = transformCreateSchemaStmt(stmt);
/*
* Execute each command contained in the CREATE SCHEMA. Since the grammar
* allows only utility commands in CREATE SCHEMA, there is no need to pass
* them through parse_analyze() or the rewriter; we can just hand them
* straight to ProcessUtility.
*/
foreach(parsetree_item, parsetree_list)
{
Node *stmt = (Node *) lfirst(parsetree_item);
PlannedStmt *wrapper;
/* need to make a wrapper PlannedStmt */
wrapper = makeNode(PlannedStmt);
wrapper->commandType = CMD_UTILITY;
wrapper->canSetTag = false;
wrapper->utilityStmt = stmt;
wrapper->stmt_location = stmt_location;
wrapper->stmt_len = stmt_len;
/* do this step */
ProcessUtility(wrapper,
queryString,
PROCESS_UTILITY_SUBCOMMAND,
NULL,
None_Receiver,
NULL);
/* make sure later steps can see the object created here */
CommandCounterIncrement();
}
/* Reset search path to normal state */
PopOverrideSearchPath();
/* Reset current user and security context */
SetUserIdAndSecContext(saved_uid, save_sec_context);
return namespaceId;
}
/*
* Guts of schema deletion.
*/
void
RemoveSchemaById(Oid schemaOid)
{
Relation relation;
HeapTuple tup;
relation = heap_open(NamespaceRelationId, RowExclusiveLock);
tup = SearchSysCache1(NAMESPACEOID,
ObjectIdGetDatum(schemaOid));
if (!HeapTupleIsValid(tup)) /* should not happen */
elog(ERROR, "cache lookup failed for namespace %u", schemaOid);
simple_heap_delete(relation, &tup->t_self);
ReleaseSysCache(tup);
heap_close(relation, RowExclusiveLock);
}
/*
* Rename schema
*/
ObjectAddress
RenameSchema(const char *oldname, const char *newname)
{
Oid nspOid;
HeapTuple tup;
Relation rel;
AclResult aclresult;
ObjectAddress address;
rel = heap_open(NamespaceRelationId, RowExclusiveLock);
tup = SearchSysCacheCopy1(NAMESPACENAME, CStringGetDatum(oldname));
if (!HeapTupleIsValid(tup))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_SCHEMA),
errmsg("schema \"%s\" does not exist", oldname)));
nspOid = HeapTupleGetOid(tup);
/* make sure the new name doesn't exist */
if (OidIsValid(get_namespace_oid(newname, true)))
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_SCHEMA),
errmsg("schema \"%s\" already exists", newname)));
/* must be owner */
if (!pg_namespace_ownercheck(HeapTupleGetOid(tup), GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_NAMESPACE,
oldname);
/* must have CREATE privilege on database */
aclresult = pg_database_aclcheck(MyDatabaseId, GetUserId(), ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_DATABASE,
get_database_name(MyDatabaseId));
if (!allowSystemTableMods && IsReservedName(newname))
ereport(ERROR,
(errcode(ERRCODE_RESERVED_NAME),
errmsg("unacceptable schema name \"%s\"", newname),
errdetail("The prefix \"pg_\" is reserved for system schemas.")));
/* rename */
namestrcpy(&(((Form_pg_namespace) GETSTRUCT(tup))->nspname), newname);
simple_heap_update(rel, &tup->t_self, tup);
CatalogUpdateIndexes(rel, tup);
InvokeObjectPostAlterHook(NamespaceRelationId, HeapTupleGetOid(tup), 0);
ObjectAddressSet(address, NamespaceRelationId, nspOid);
heap_close(rel, NoLock);
heap_freetuple(tup);
return address;
}
void
AlterSchemaOwner_oid(Oid oid, Oid newOwnerId)
{
HeapTuple tup;
Relation rel;
rel = heap_open(NamespaceRelationId, RowExclusiveLock);
tup = SearchSysCache1(NAMESPACEOID, ObjectIdGetDatum(oid));
if (!HeapTupleIsValid(tup))
elog(ERROR, "cache lookup failed for schema %u", oid);
AlterSchemaOwner_internal(tup, rel, newOwnerId);
ReleaseSysCache(tup);
heap_close(rel, RowExclusiveLock);
}
/*
* Change schema owner
*/
ObjectAddress
AlterSchemaOwner(const char *name, Oid newOwnerId)
{
Oid nspOid;
HeapTuple tup;
Relation rel;
ObjectAddress address;
rel = heap_open(NamespaceRelationId, RowExclusiveLock);
tup = SearchSysCache1(NAMESPACENAME, CStringGetDatum(name));
if (!HeapTupleIsValid(tup))
ereport(ERROR,
(errcode(ERRCODE_UNDEFINED_SCHEMA),
errmsg("schema \"%s\" does not exist", name)));
nspOid = HeapTupleGetOid(tup);
AlterSchemaOwner_internal(tup, rel, newOwnerId);
ObjectAddressSet(address, NamespaceRelationId, nspOid);
ReleaseSysCache(tup);
heap_close(rel, RowExclusiveLock);
return address;
}
static void
AlterSchemaOwner_internal(HeapTuple tup, Relation rel, Oid newOwnerId)
{
Form_pg_namespace nspForm;
Assert(tup->t_tableOid == NamespaceRelationId);
Assert(RelationGetRelid(rel) == NamespaceRelationId);
nspForm = (Form_pg_namespace) GETSTRUCT(tup);
/*
* If the new owner is the same as the existing owner, consider the
* command to have succeeded. This is for dump restoration purposes.
*/
if (nspForm->nspowner != newOwnerId)
{
Datum repl_val[Natts_pg_namespace];
bool repl_null[Natts_pg_namespace];
bool repl_repl[Natts_pg_namespace];
Acl *newAcl;
Datum aclDatum;
bool isNull;
HeapTuple newtuple;
AclResult aclresult;
/* Otherwise, must be owner of the existing object */
if (!pg_namespace_ownercheck(HeapTupleGetOid(tup), GetUserId()))
aclcheck_error(ACLCHECK_NOT_OWNER, ACL_KIND_NAMESPACE,
NameStr(nspForm->nspname));
/* Must be able to become new owner */
check_is_member_of_role(GetUserId(), newOwnerId);
/*
* must have create-schema rights
*
* NOTE: This is different from other alter-owner checks in that the
* current user is checked for create privileges instead of the
* destination owner. This is consistent with the CREATE case for
* schemas. Because superusers will always have this right, we need
* no special case for them.
*/
aclresult = pg_database_aclcheck(MyDatabaseId, GetUserId(),
ACL_CREATE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_DATABASE,
get_database_name(MyDatabaseId));
memset(repl_null, false, sizeof(repl_null));
memset(repl_repl, false, sizeof(repl_repl));
repl_repl[Anum_pg_namespace_nspowner - 1] = true;
repl_val[Anum_pg_namespace_nspowner - 1] = ObjectIdGetDatum(newOwnerId);
/*
* Determine the modified ACL for the new owner. This is only
* necessary when the ACL is non-null.
*/
aclDatum = SysCacheGetAttr(NAMESPACENAME, tup,
Anum_pg_namespace_nspacl,
&isNull);
if (!isNull)
{
newAcl = aclnewowner(DatumGetAclP(aclDatum),
nspForm->nspowner, newOwnerId);
repl_repl[Anum_pg_namespace_nspacl - 1] = true;
repl_val[Anum_pg_namespace_nspacl - 1] = PointerGetDatum(newAcl);
}
newtuple = heap_modify_tuple(tup, RelationGetDescr(rel), repl_val, repl_null, repl_repl);
simple_heap_update(rel, &newtuple->t_self, newtuple);
CatalogUpdateIndexes(rel, newtuple);
heap_freetuple(newtuple);
/* Update owner dependency reference */
changeDependencyOnOwner(NamespaceRelationId, HeapTupleGetOid(tup),
newOwnerId);
}
InvokeObjectPostAlterHook(NamespaceRelationId,
HeapTupleGetOid(tup), 0);
}