postgresql/src/backend/catalog/index.c

2713 lines
82 KiB
C

/*-------------------------------------------------------------------------
*
* index.c
* code to create and destroy POSTGRES index relations
*
* Portions Copyright (c) 1996-2010, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/catalog/index.c,v 1.331 2010/01/22 16:40:18 rhaas Exp $
*
*
* INTERFACE ROUTINES
* index_create() - Create a cataloged index relation
* index_drop() - Removes index relation from catalogs
* BuildIndexInfo() - Prepare to insert index tuples
* FormIndexDatum() - Construct datum vector for one index tuple
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <unistd.h>
#include "access/genam.h"
#include "access/heapam.h"
#include "access/relscan.h"
#include "access/sysattr.h"
#include "access/transam.h"
#include "access/xact.h"
#include "bootstrap/bootstrap.h"
#include "catalog/catalog.h"
#include "catalog/dependency.h"
#include "catalog/heap.h"
#include "catalog/index.h"
#include "catalog/indexing.h"
#include "catalog/namespace.h"
#include "catalog/pg_constraint.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_opclass.h"
#include "catalog/pg_tablespace.h"
#include "catalog/pg_trigger.h"
#include "catalog/pg_type.h"
#include "catalog/storage.h"
#include "commands/tablecmds.h"
#include "commands/trigger.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/var.h"
#include "parser/parser.h"
#include "storage/bufmgr.h"
#include "storage/lmgr.h"
#include "storage/procarray.h"
#include "storage/smgr.h"
#include "utils/builtins.h"
#include "utils/fmgroids.h"
#include "utils/guc.h"
#include "utils/inval.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/relcache.h"
#include "utils/syscache.h"
#include "utils/tuplesort.h"
#include "utils/snapmgr.h"
#include "utils/tqual.h"
/* state info for validate_index bulkdelete callback */
typedef struct
{
Tuplesortstate *tuplesort; /* for sorting the index TIDs */
/* statistics (for debug purposes only): */
double htups,
itups,
tups_inserted;
} v_i_state;
/* For simple relation creation, this is the toast index relfilenode */
Oid binary_upgrade_next_index_relfilenode = InvalidOid;
/* non-export function prototypes */
static TupleDesc ConstructTupleDescriptor(Relation heapRelation,
IndexInfo *indexInfo,
List *indexColNames,
Oid accessMethodObjectId,
Oid *classObjectId);
static void InitializeAttributeOids(Relation indexRelation,
int numatts, Oid indexoid);
static void AppendAttributeTuples(Relation indexRelation, int numatts);
static void UpdateIndexRelation(Oid indexoid, Oid heapoid,
IndexInfo *indexInfo,
Oid *classOids,
int16 *coloptions,
bool primary,
bool immediate,
bool isvalid);
static void index_update_stats(Relation rel,
bool hasindex, bool isprimary, bool hasexclusion,
Oid reltoastidxid, double reltuples);
static void IndexCheckExclusion(Relation heapRelation,
Relation indexRelation,
IndexInfo *indexInfo);
static bool validate_index_callback(ItemPointer itemptr, void *opaque);
static void validate_index_heapscan(Relation heapRelation,
Relation indexRelation,
IndexInfo *indexInfo,
Snapshot snapshot,
v_i_state *state);
static Oid IndexGetRelation(Oid indexId);
/*
* ConstructTupleDescriptor
*
* Build an index tuple descriptor for a new index
*/
static TupleDesc
ConstructTupleDescriptor(Relation heapRelation,
IndexInfo *indexInfo,
List *indexColNames,
Oid accessMethodObjectId,
Oid *classObjectId)
{
int numatts = indexInfo->ii_NumIndexAttrs;
ListCell *colnames_item = list_head(indexColNames);
ListCell *indexpr_item = list_head(indexInfo->ii_Expressions);
HeapTuple amtuple;
Form_pg_am amform;
TupleDesc heapTupDesc;
TupleDesc indexTupDesc;
int natts; /* #atts in heap rel --- for error checks */
int i;
/* We need access to the index AM's pg_am tuple */
amtuple = SearchSysCache(AMOID,
ObjectIdGetDatum(accessMethodObjectId),
0, 0, 0);
if (!HeapTupleIsValid(amtuple))
elog(ERROR, "cache lookup failed for access method %u",
accessMethodObjectId);
amform = (Form_pg_am) GETSTRUCT(amtuple);
/* ... and to the table's tuple descriptor */
heapTupDesc = RelationGetDescr(heapRelation);
natts = RelationGetForm(heapRelation)->relnatts;
/*
* allocate the new tuple descriptor
*/
indexTupDesc = CreateTemplateTupleDesc(numatts, false);
/*
* For simple index columns, we copy the pg_attribute row from the parent
* relation and modify it as necessary. For expressions we have to cons
* up a pg_attribute row the hard way.
*/
for (i = 0; i < numatts; i++)
{
AttrNumber atnum = indexInfo->ii_KeyAttrNumbers[i];
Form_pg_attribute to = indexTupDesc->attrs[i];
HeapTuple tuple;
Form_pg_type typeTup;
Form_pg_opclass opclassTup;
Oid keyType;
if (atnum != 0)
{
/* Simple index column */
Form_pg_attribute from;
if (atnum < 0)
{
/*
* here we are indexing on a system attribute (-1...-n)
*/
from = SystemAttributeDefinition(atnum,
heapRelation->rd_rel->relhasoids);
}
else
{
/*
* here we are indexing on a normal attribute (1...n)
*/
if (atnum > natts) /* safety check */
elog(ERROR, "invalid column number %d", atnum);
from = heapTupDesc->attrs[AttrNumberGetAttrOffset(atnum)];
}
/*
* now that we've determined the "from", let's copy the tuple desc
* data...
*/
memcpy(to, from, ATTRIBUTE_FIXED_PART_SIZE);
/*
* Fix the stuff that should not be the same as the underlying
* attr
*/
to->attnum = i + 1;
to->attstattarget = -1;
to->attcacheoff = -1;
to->attnotnull = false;
to->atthasdef = false;
to->attislocal = true;
to->attinhcount = 0;
}
else
{
/* Expressional index */
Node *indexkey;
MemSet(to, 0, ATTRIBUTE_FIXED_PART_SIZE);
if (indexpr_item == NULL) /* shouldn't happen */
elog(ERROR, "too few entries in indexprs list");
indexkey = (Node *) lfirst(indexpr_item);
indexpr_item = lnext(indexpr_item);
/*
* Lookup the expression type in pg_type for the type length etc.
*/
keyType = exprType(indexkey);
tuple = SearchSysCache(TYPEOID,
ObjectIdGetDatum(keyType),
0, 0, 0);
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for type %u", keyType);
typeTup = (Form_pg_type) GETSTRUCT(tuple);
/*
* Assign some of the attributes values. Leave the rest as 0.
*/
to->attnum = i + 1;
to->atttypid = keyType;
to->attlen = typeTup->typlen;
to->attbyval = typeTup->typbyval;
to->attstorage = typeTup->typstorage;
to->attalign = typeTup->typalign;
to->attstattarget = -1;
to->attcacheoff = -1;
to->atttypmod = -1;
to->attislocal = true;
ReleaseSysCache(tuple);
/*
* Make sure the expression yields a type that's safe to store in
* an index. We need this defense because we have index opclasses
* for pseudo-types such as "record", and the actually stored type
* had better be safe; eg, a named composite type is okay, an
* anonymous record type is not. The test is the same as for
* whether a table column is of a safe type (which is why we
* needn't check for the non-expression case).
*/
CheckAttributeType(NameStr(to->attname), to->atttypid);
}
/*
* We do not yet have the correct relation OID for the index, so just
* set it invalid for now. InitializeAttributeOids() will fix it
* later.
*/
to->attrelid = InvalidOid;
/*
* Set the attribute name as specified by caller.
*/
if (colnames_item == NULL) /* shouldn't happen */
elog(ERROR, "too few entries in colnames list");
namestrcpy(&to->attname, (const char *) lfirst(colnames_item));
colnames_item = lnext(colnames_item);
/*
* Check the opclass and index AM to see if either provides a keytype
* (overriding the attribute type). Opclass takes precedence.
*/
tuple = SearchSysCache(CLAOID,
ObjectIdGetDatum(classObjectId[i]),
0, 0, 0);
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for opclass %u",
classObjectId[i]);
opclassTup = (Form_pg_opclass) GETSTRUCT(tuple);
if (OidIsValid(opclassTup->opckeytype))
keyType = opclassTup->opckeytype;
else
keyType = amform->amkeytype;
ReleaseSysCache(tuple);
if (OidIsValid(keyType) && keyType != to->atttypid)
{
/* index value and heap value have different types */
tuple = SearchSysCache(TYPEOID,
ObjectIdGetDatum(keyType),
0, 0, 0);
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for type %u", keyType);
typeTup = (Form_pg_type) GETSTRUCT(tuple);
to->atttypid = keyType;
to->atttypmod = -1;
to->attlen = typeTup->typlen;
to->attbyval = typeTup->typbyval;
to->attalign = typeTup->typalign;
to->attstorage = typeTup->typstorage;
ReleaseSysCache(tuple);
}
}
ReleaseSysCache(amtuple);
return indexTupDesc;
}
/* ----------------------------------------------------------------
* InitializeAttributeOids
* ----------------------------------------------------------------
*/
static void
InitializeAttributeOids(Relation indexRelation,
int numatts,
Oid indexoid)
{
TupleDesc tupleDescriptor;
int i;
tupleDescriptor = RelationGetDescr(indexRelation);
for (i = 0; i < numatts; i += 1)
tupleDescriptor->attrs[i]->attrelid = indexoid;
}
/* ----------------------------------------------------------------
* AppendAttributeTuples
* ----------------------------------------------------------------
*/
static void
AppendAttributeTuples(Relation indexRelation, int numatts)
{
Relation pg_attribute;
CatalogIndexState indstate;
TupleDesc indexTupDesc;
int i;
/*
* open the attribute relation and its indexes
*/
pg_attribute = heap_open(AttributeRelationId, RowExclusiveLock);
indstate = CatalogOpenIndexes(pg_attribute);
/*
* insert data from new index's tupdesc into pg_attribute
*/
indexTupDesc = RelationGetDescr(indexRelation);
for (i = 0; i < numatts; i++)
{
/*
* There used to be very grotty code here to set these fields, but I
* think it's unnecessary. They should be set already.
*/
Assert(indexTupDesc->attrs[i]->attnum == i + 1);
Assert(indexTupDesc->attrs[i]->attcacheoff == -1);
InsertPgAttributeTuple(pg_attribute, indexTupDesc->attrs[i], indstate);
}
CatalogCloseIndexes(indstate);
heap_close(pg_attribute, RowExclusiveLock);
}
/* ----------------------------------------------------------------
* UpdateIndexRelation
*
* Construct and insert a new entry in the pg_index catalog
* ----------------------------------------------------------------
*/
static void
UpdateIndexRelation(Oid indexoid,
Oid heapoid,
IndexInfo *indexInfo,
Oid *classOids,
int16 *coloptions,
bool primary,
bool immediate,
bool isvalid)
{
int2vector *indkey;
oidvector *indclass;
int2vector *indoption;
Datum exprsDatum;
Datum predDatum;
Datum values[Natts_pg_index];
bool nulls[Natts_pg_index];
Relation pg_index;
HeapTuple tuple;
int i;
/*
* Copy the index key, opclass, and indoption info into arrays (should we
* make the caller pass them like this to start with?)
*/
indkey = buildint2vector(NULL, indexInfo->ii_NumIndexAttrs);
for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
indkey->values[i] = indexInfo->ii_KeyAttrNumbers[i];
indclass = buildoidvector(classOids, indexInfo->ii_NumIndexAttrs);
indoption = buildint2vector(coloptions, indexInfo->ii_NumIndexAttrs);
/*
* Convert the index expressions (if any) to a text datum
*/
if (indexInfo->ii_Expressions != NIL)
{
char *exprsString;
exprsString = nodeToString(indexInfo->ii_Expressions);
exprsDatum = CStringGetTextDatum(exprsString);
pfree(exprsString);
}
else
exprsDatum = (Datum) 0;
/*
* Convert the index predicate (if any) to a text datum. Note we convert
* implicit-AND format to normal explicit-AND for storage.
*/
if (indexInfo->ii_Predicate != NIL)
{
char *predString;
predString = nodeToString(make_ands_explicit(indexInfo->ii_Predicate));
predDatum = CStringGetTextDatum(predString);
pfree(predString);
}
else
predDatum = (Datum) 0;
/*
* open the system catalog index relation
*/
pg_index = heap_open(IndexRelationId, RowExclusiveLock);
/*
* Build a pg_index tuple
*/
MemSet(nulls, false, sizeof(nulls));
values[Anum_pg_index_indexrelid - 1] = ObjectIdGetDatum(indexoid);
values[Anum_pg_index_indrelid - 1] = ObjectIdGetDatum(heapoid);
values[Anum_pg_index_indnatts - 1] = Int16GetDatum(indexInfo->ii_NumIndexAttrs);
values[Anum_pg_index_indisunique - 1] = BoolGetDatum(indexInfo->ii_Unique);
values[Anum_pg_index_indisprimary - 1] = BoolGetDatum(primary);
values[Anum_pg_index_indimmediate - 1] = BoolGetDatum(immediate);
values[Anum_pg_index_indisclustered - 1] = BoolGetDatum(false);
values[Anum_pg_index_indisvalid - 1] = BoolGetDatum(isvalid);
values[Anum_pg_index_indcheckxmin - 1] = BoolGetDatum(false);
/* we set isvalid and isready the same way */
values[Anum_pg_index_indisready - 1] = BoolGetDatum(isvalid);
values[Anum_pg_index_indkey - 1] = PointerGetDatum(indkey);
values[Anum_pg_index_indclass - 1] = PointerGetDatum(indclass);
values[Anum_pg_index_indoption - 1] = PointerGetDatum(indoption);
values[Anum_pg_index_indexprs - 1] = exprsDatum;
if (exprsDatum == (Datum) 0)
nulls[Anum_pg_index_indexprs - 1] = true;
values[Anum_pg_index_indpred - 1] = predDatum;
if (predDatum == (Datum) 0)
nulls[Anum_pg_index_indpred - 1] = true;
tuple = heap_form_tuple(RelationGetDescr(pg_index), values, nulls);
/*
* insert the tuple into the pg_index catalog
*/
simple_heap_insert(pg_index, tuple);
/* update the indexes on pg_index */
CatalogUpdateIndexes(pg_index, tuple);
/*
* close the relation and free the tuple
*/
heap_close(pg_index, RowExclusiveLock);
heap_freetuple(tuple);
}
/*
* index_create
*
* heapRelationId: OID of table to build index on
* indexRelationName: what it say
* indexRelationId: normally, pass InvalidOid to let this routine
* generate an OID for the index. During bootstrap this may be
* nonzero to specify a preselected OID.
* indexInfo: same info executor uses to insert into the index
* indexColNames: column names to use for index (List of char *)
* accessMethodObjectId: OID of index AM to use
* tableSpaceId: OID of tablespace to use
* classObjectId: array of index opclass OIDs, one per index column
* coloptions: array of per-index-column indoption settings
* reloptions: AM-specific options
* isprimary: index is a PRIMARY KEY
* isconstraint: index is owned by a PRIMARY KEY or UNIQUE constraint
* deferrable: constraint is DEFERRABLE
* initdeferred: constraint is INITIALLY DEFERRED
* allow_system_table_mods: allow table to be a system catalog
* skip_build: true to skip the index_build() step for the moment; caller
* must do it later (typically via reindex_index())
* concurrent: if true, do not lock the table against writers. The index
* will be marked "invalid" and the caller must take additional steps
* to fix it up.
*
* Returns the OID of the created index.
*/
Oid
index_create(Oid heapRelationId,
const char *indexRelationName,
Oid indexRelationId,
IndexInfo *indexInfo,
List *indexColNames,
Oid accessMethodObjectId,
Oid tableSpaceId,
Oid *classObjectId,
int16 *coloptions,
Datum reloptions,
bool isprimary,
bool isconstraint,
bool deferrable,
bool initdeferred,
bool allow_system_table_mods,
bool skip_build,
bool concurrent)
{
Relation pg_class;
Relation heapRelation;
Relation indexRelation;
TupleDesc indexTupDesc;
bool shared_relation;
bool is_exclusion;
Oid namespaceId;
int i;
is_exclusion = (indexInfo->ii_ExclusionOps != NULL);
pg_class = heap_open(RelationRelationId, RowExclusiveLock);
/*
* Only SELECT ... FOR UPDATE/SHARE are allowed while doing a standard
* index build; but for concurrent builds we allow INSERT/UPDATE/DELETE
* (but not VACUUM).
*/
heapRelation = heap_open(heapRelationId,
(concurrent ? ShareUpdateExclusiveLock : ShareLock));
/*
* The index will be in the same namespace as its parent table, and is
* shared across databases if and only if the parent is.
*/
namespaceId = RelationGetNamespace(heapRelation);
shared_relation = heapRelation->rd_rel->relisshared;
/*
* check parameters
*/
if (indexInfo->ii_NumIndexAttrs < 1)
elog(ERROR, "must index at least one column");
if (!allow_system_table_mods &&
IsSystemRelation(heapRelation) &&
IsNormalProcessingMode())
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("user-defined indexes on system catalog tables are not supported")));
/*
* concurrent index build on a system catalog is unsafe because we tend to
* release locks before committing in catalogs
*/
if (concurrent &&
IsSystemRelation(heapRelation))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("concurrent index creation on system catalog tables is not supported")));
/*
* This case is currently not supported, but there's no way to ask for
* it in the grammar anyway, so it can't happen.
*/
if (concurrent && is_exclusion)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg_internal("concurrent index creation for exclusion constraints is not supported")));
/*
* We cannot allow indexing a shared relation after initdb (because
* there's no way to make the entry in other databases' pg_class).
*/
if (shared_relation && !IsBootstrapProcessingMode())
ereport(ERROR,
(errcode(ERRCODE_OBJECT_NOT_IN_PREREQUISITE_STATE),
errmsg("shared indexes cannot be created after initdb")));
/*
* Validate shared/non-shared tablespace (must check this before doing
* GetNewRelFileNode, to prevent Assert therein)
*/
if (shared_relation)
{
if (tableSpaceId != GLOBALTABLESPACE_OID)
/* elog since this is not a user-facing error */
elog(ERROR,
"shared relations must be placed in pg_global tablespace");
}
else
{
if (tableSpaceId == GLOBALTABLESPACE_OID)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("only shared relations can be placed in pg_global tablespace")));
}
if (get_relname_relid(indexRelationName, namespaceId))
ereport(ERROR,
(errcode(ERRCODE_DUPLICATE_TABLE),
errmsg("relation \"%s\" already exists",
indexRelationName)));
/*
* construct tuple descriptor for index tuples
*/
indexTupDesc = ConstructTupleDescriptor(heapRelation,
indexInfo,
indexColNames,
accessMethodObjectId,
classObjectId);
if (OidIsValid(binary_upgrade_next_index_relfilenode))
{
indexRelationId = binary_upgrade_next_index_relfilenode;
binary_upgrade_next_index_relfilenode = InvalidOid;
}
else if (!OidIsValid(indexRelationId))
{
/*
* Allocate an OID for the index, unless we were told what to use.
*
* The OID will be the relfilenode as well, so make sure it doesn't
* collide with either pg_class OIDs or existing physical files.
*/
indexRelationId = GetNewRelFileNode(tableSpaceId, shared_relation,
pg_class);
}
/*
* create the index relation's relcache entry and physical disk file. (If
* we fail further down, it's the smgr's responsibility to remove the disk
* file again.)
*/
indexRelation = heap_create(indexRelationName,
namespaceId,
tableSpaceId,
indexRelationId,
indexTupDesc,
RELKIND_INDEX,
shared_relation,
allow_system_table_mods);
Assert(indexRelationId == RelationGetRelid(indexRelation));
/*
* Obtain exclusive lock on it. Although no other backends can see it
* until we commit, this prevents deadlock-risk complaints from lock
* manager in cases such as CLUSTER.
*/
LockRelation(indexRelation, AccessExclusiveLock);
/*
* Fill in fields of the index's pg_class entry that are not set correctly
* by heap_create.
*
* XXX should have a cleaner way to create cataloged indexes
*/
indexRelation->rd_rel->relowner = heapRelation->rd_rel->relowner;
indexRelation->rd_rel->relam = accessMethodObjectId;
indexRelation->rd_rel->relkind = RELKIND_INDEX;
indexRelation->rd_rel->relhasoids = false;
indexRelation->rd_rel->relhasexclusion = is_exclusion;
/*
* store index's pg_class entry
*/
InsertPgClassTuple(pg_class, indexRelation,
RelationGetRelid(indexRelation),
(Datum) 0,
reloptions);
/* done with pg_class */
heap_close(pg_class, RowExclusiveLock);
/*
* now update the object id's of all the attribute tuple forms in the
* index relation's tuple descriptor
*/
InitializeAttributeOids(indexRelation,
indexInfo->ii_NumIndexAttrs,
indexRelationId);
/*
* append ATTRIBUTE tuples for the index
*/
AppendAttributeTuples(indexRelation, indexInfo->ii_NumIndexAttrs);
/* ----------------
* update pg_index
* (append INDEX tuple)
*
* Note that this stows away a representation of "predicate".
* (Or, could define a rule to maintain the predicate) --Nels, Feb '92
* ----------------
*/
UpdateIndexRelation(indexRelationId, heapRelationId, indexInfo,
classObjectId, coloptions, isprimary,
!deferrable,
!concurrent);
/*
* Register constraint and dependencies for the index.
*
* If the index is from a CONSTRAINT clause, construct a pg_constraint
* entry. The index is then linked to the constraint, which in turn is
* linked to the table. If it's not a CONSTRAINT, make the dependency
* directly on the table.
*
* We don't need a dependency on the namespace, because there'll be an
* indirect dependency via our parent table.
*
* During bootstrap we can't register any dependencies, and we don't try
* to make a constraint either.
*/
if (!IsBootstrapProcessingMode())
{
ObjectAddress myself,
referenced;
myself.classId = RelationRelationId;
myself.objectId = indexRelationId;
myself.objectSubId = 0;
if (isconstraint)
{
char constraintType;
Oid conOid;
if (isprimary)
constraintType = CONSTRAINT_PRIMARY;
else if (indexInfo->ii_Unique)
constraintType = CONSTRAINT_UNIQUE;
else if (is_exclusion)
constraintType = CONSTRAINT_EXCLUSION;
else
{
elog(ERROR, "constraint must be PRIMARY, UNIQUE or EXCLUDE");
constraintType = 0; /* keep compiler quiet */
}
/* primary/unique constraints shouldn't have any expressions */
if (indexInfo->ii_Expressions &&
constraintType != CONSTRAINT_EXCLUSION)
elog(ERROR, "constraints cannot have index expressions");
conOid = CreateConstraintEntry(indexRelationName,
namespaceId,
constraintType,
deferrable,
initdeferred,
heapRelationId,
indexInfo->ii_KeyAttrNumbers,
indexInfo->ii_NumIndexAttrs,
InvalidOid, /* no domain */
indexRelationId, /* index OID */
InvalidOid, /* no foreign key */
NULL,
NULL,
NULL,
NULL,
0,
' ',
' ',
' ',
indexInfo->ii_ExclusionOps,
NULL, /* no check constraint */
NULL,
NULL,
true, /* islocal */
0); /* inhcount */
referenced.classId = ConstraintRelationId;
referenced.objectId = conOid;
referenced.objectSubId = 0;
recordDependencyOn(&myself, &referenced, DEPENDENCY_INTERNAL);
/*
* If the constraint is deferrable, create the deferred uniqueness
* checking trigger. (The trigger will be given an internal
* dependency on the constraint by CreateTrigger, so there's no
* need to do anything more here.)
*/
if (deferrable)
{
RangeVar *heapRel;
CreateTrigStmt *trigger;
heapRel = makeRangeVar(get_namespace_name(namespaceId),
pstrdup(RelationGetRelationName(heapRelation)),
-1);
trigger = makeNode(CreateTrigStmt);
trigger->trigname = (isprimary ? "PK_ConstraintTrigger" :
"Unique_ConstraintTrigger");
trigger->relation = heapRel;
trigger->funcname = SystemFuncName("unique_key_recheck");
trigger->args = NIL;
trigger->before = false;
trigger->row = true;
trigger->events = TRIGGER_TYPE_INSERT | TRIGGER_TYPE_UPDATE;
trigger->columns = NIL;
trigger->whenClause = NULL;
trigger->isconstraint = true;
trigger->deferrable = true;
trigger->initdeferred = initdeferred;
trigger->constrrel = NULL;
(void) CreateTrigger(trigger, NULL, conOid, indexRelationId,
true);
}
}
else
{
bool have_simple_col = false;
/* Create auto dependencies on simply-referenced columns */
for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
{
if (indexInfo->ii_KeyAttrNumbers[i] != 0)
{
referenced.classId = RelationRelationId;
referenced.objectId = heapRelationId;
referenced.objectSubId = indexInfo->ii_KeyAttrNumbers[i];
recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO);
have_simple_col = true;
}
}
/*
* It's possible for an index to not depend on any columns of the
* table at all, in which case we need to give it a dependency on
* the table as a whole; else it won't get dropped when the table
* is dropped. This edge case is not totally useless; for
* example, a unique index on a constant expression can serve to
* prevent a table from containing more than one row.
*/
if (!have_simple_col &&
!contain_vars_of_level((Node *) indexInfo->ii_Expressions, 0) &&
!contain_vars_of_level((Node *) indexInfo->ii_Predicate, 0))
{
referenced.classId = RelationRelationId;
referenced.objectId = heapRelationId;
referenced.objectSubId = 0;
recordDependencyOn(&myself, &referenced, DEPENDENCY_AUTO);
}
/* Non-constraint indexes can't be deferrable */
Assert(!deferrable);
Assert(!initdeferred);
}
/* Store dependency on operator classes */
for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
{
referenced.classId = OperatorClassRelationId;
referenced.objectId = classObjectId[i];
referenced.objectSubId = 0;
recordDependencyOn(&myself, &referenced, DEPENDENCY_NORMAL);
}
/* Store dependencies on anything mentioned in index expressions */
if (indexInfo->ii_Expressions)
{
recordDependencyOnSingleRelExpr(&myself,
(Node *) indexInfo->ii_Expressions,
heapRelationId,
DEPENDENCY_NORMAL,
DEPENDENCY_AUTO);
}
/* Store dependencies on anything mentioned in predicate */
if (indexInfo->ii_Predicate)
{
recordDependencyOnSingleRelExpr(&myself,
(Node *) indexInfo->ii_Predicate,
heapRelationId,
DEPENDENCY_NORMAL,
DEPENDENCY_AUTO);
}
}
else
{
/* Bootstrap mode - assert we weren't asked for constraint support */
Assert(!isconstraint);
Assert(!deferrable);
Assert(!initdeferred);
}
/*
* Advance the command counter so that we can see the newly-entered
* catalog tuples for the index.
*/
CommandCounterIncrement();
/*
* In bootstrap mode, we have to fill in the index strategy structure with
* information from the catalogs. If we aren't bootstrapping, then the
* relcache entry has already been rebuilt thanks to sinval update during
* CommandCounterIncrement.
*/
if (IsBootstrapProcessingMode())
RelationInitIndexAccessInfo(indexRelation);
else
Assert(indexRelation->rd_indexcxt != NULL);
/*
* If this is bootstrap (initdb) time, then we don't actually fill in the
* index yet. We'll be creating more indexes and classes later, so we
* delay filling them in until just before we're done with bootstrapping.
* Similarly, if the caller specified skip_build then filling the index is
* delayed till later (ALTER TABLE can save work in some cases with this).
* Otherwise, we call the AM routine that constructs the index.
*/
if (IsBootstrapProcessingMode())
{
index_register(heapRelationId, indexRelationId, indexInfo);
}
else if (skip_build)
{
/*
* Caller is responsible for filling the index later on. However,
* we'd better make sure that the heap relation is correctly marked as
* having an index.
*/
index_update_stats(heapRelation,
true,
isprimary,
is_exclusion,
InvalidOid,
heapRelation->rd_rel->reltuples);
/* Make the above update visible */
CommandCounterIncrement();
}
else
{
index_build(heapRelation, indexRelation, indexInfo, isprimary);
}
/*
* Close the heap and index; but we keep the locks that we acquired above
* until end of transaction.
*/
index_close(indexRelation, NoLock);
heap_close(heapRelation, NoLock);
return indexRelationId;
}
/*
* index_drop
*
* NOTE: this routine should now only be called through performDeletion(),
* else associated dependencies won't be cleaned up.
*/
void
index_drop(Oid indexId)
{
Oid heapId;
Relation userHeapRelation;
Relation userIndexRelation;
Relation indexRelation;
HeapTuple tuple;
bool hasexprs;
/*
* To drop an index safely, we must grab exclusive lock on its parent
* table. Exclusive lock on the index alone is insufficient because
* another backend might be about to execute a query on the parent table.
* If it relies on a previously cached list of index OIDs, then it could
* attempt to access the just-dropped index. We must therefore take a
* table lock strong enough to prevent all queries on the table from
* proceeding until we commit and send out a shared-cache-inval notice
* that will make them update their index lists.
*/
heapId = IndexGetRelation(indexId);
userHeapRelation = heap_open(heapId, AccessExclusiveLock);
userIndexRelation = index_open(indexId, AccessExclusiveLock);
/*
* Schedule physical removal of the files
*/
RelationDropStorage(userIndexRelation);
/*
* Close and flush the index's relcache entry, to ensure relcache doesn't
* try to rebuild it while we're deleting catalog entries. We keep the
* lock though.
*/
index_close(userIndexRelation, NoLock);
RelationForgetRelation(indexId);
/*
* fix INDEX relation, and check for expressional index
*/
indexRelation = heap_open(IndexRelationId, RowExclusiveLock);
tuple = SearchSysCache(INDEXRELID,
ObjectIdGetDatum(indexId),
0, 0, 0);
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for index %u", indexId);
hasexprs = !heap_attisnull(tuple, Anum_pg_index_indexprs);
simple_heap_delete(indexRelation, &tuple->t_self);
ReleaseSysCache(tuple);
heap_close(indexRelation, RowExclusiveLock);
/*
* if it has any expression columns, we might have stored statistics about
* them.
*/
if (hasexprs)
RemoveStatistics(indexId, 0);
/*
* fix ATTRIBUTE relation
*/
DeleteAttributeTuples(indexId);
/*
* fix RELATION relation
*/
DeleteRelationTuple(indexId);
/*
* We are presently too lazy to attempt to compute the new correct value
* of relhasindex (the next VACUUM will fix it if necessary). So there is
* no need to update the pg_class tuple for the owning relation. But we
* must send out a shared-cache-inval notice on the owning relation to
* ensure other backends update their relcache lists of indexes.
*/
CacheInvalidateRelcache(userHeapRelation);
/*
* Close owning rel, but keep lock
*/
heap_close(userHeapRelation, NoLock);
}
/* ----------------------------------------------------------------
* index_build support
* ----------------------------------------------------------------
*/
/* ----------------
* BuildIndexInfo
* Construct an IndexInfo record for an open index
*
* IndexInfo stores the information about the index that's needed by
* FormIndexDatum, which is used for both index_build() and later insertion
* of individual index tuples. Normally we build an IndexInfo for an index
* just once per command, and then use it for (potentially) many tuples.
* ----------------
*/
IndexInfo *
BuildIndexInfo(Relation index)
{
IndexInfo *ii = makeNode(IndexInfo);
Form_pg_index indexStruct = index->rd_index;
int i;
int numKeys;
/* check the number of keys, and copy attr numbers into the IndexInfo */
numKeys = indexStruct->indnatts;
if (numKeys < 1 || numKeys > INDEX_MAX_KEYS)
elog(ERROR, "invalid indnatts %d for index %u",
numKeys, RelationGetRelid(index));
ii->ii_NumIndexAttrs = numKeys;
for (i = 0; i < numKeys; i++)
ii->ii_KeyAttrNumbers[i] = indexStruct->indkey.values[i];
/* fetch any expressions needed for expressional indexes */
ii->ii_Expressions = RelationGetIndexExpressions(index);
ii->ii_ExpressionsState = NIL;
/* fetch index predicate if any */
ii->ii_Predicate = RelationGetIndexPredicate(index);
ii->ii_PredicateState = NIL;
/* fetch exclusion constraint info if any */
if (index->rd_rel->relhasexclusion)
{
RelationGetExclusionInfo(index,
&ii->ii_ExclusionOps,
&ii->ii_ExclusionProcs,
&ii->ii_ExclusionStrats);
}
else
{
ii->ii_ExclusionOps = NULL;
ii->ii_ExclusionProcs = NULL;
ii->ii_ExclusionStrats = NULL;
}
/* other info */
ii->ii_Unique = indexStruct->indisunique;
ii->ii_ReadyForInserts = indexStruct->indisready;
/* initialize index-build state to default */
ii->ii_Concurrent = false;
ii->ii_BrokenHotChain = false;
return ii;
}
/* ----------------
* FormIndexDatum
* Construct values[] and isnull[] arrays for a new index tuple.
*
* indexInfo Info about the index
* slot Heap tuple for which we must prepare an index entry
* estate executor state for evaluating any index expressions
* values Array of index Datums (output area)
* isnull Array of is-null indicators (output area)
*
* When there are no index expressions, estate may be NULL. Otherwise it
* must be supplied, *and* the ecxt_scantuple slot of its per-tuple expr
* context must point to the heap tuple passed in.
*
* Notice we don't actually call index_form_tuple() here; we just prepare
* its input arrays values[] and isnull[]. This is because the index AM
* may wish to alter the data before storage.
* ----------------
*/
void
FormIndexDatum(IndexInfo *indexInfo,
TupleTableSlot *slot,
EState *estate,
Datum *values,
bool *isnull)
{
ListCell *indexpr_item;
int i;
if (indexInfo->ii_Expressions != NIL &&
indexInfo->ii_ExpressionsState == NIL)
{
/* First time through, set up expression evaluation state */
indexInfo->ii_ExpressionsState = (List *)
ExecPrepareExpr((Expr *) indexInfo->ii_Expressions,
estate);
/* Check caller has set up context correctly */
Assert(GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
}
indexpr_item = list_head(indexInfo->ii_ExpressionsState);
for (i = 0; i < indexInfo->ii_NumIndexAttrs; i++)
{
int keycol = indexInfo->ii_KeyAttrNumbers[i];
Datum iDatum;
bool isNull;
if (keycol != 0)
{
/*
* Plain index column; get the value we need directly from the
* heap tuple.
*/
iDatum = slot_getattr(slot, keycol, &isNull);
}
else
{
/*
* Index expression --- need to evaluate it.
*/
if (indexpr_item == NULL)
elog(ERROR, "wrong number of index expressions");
iDatum = ExecEvalExprSwitchContext((ExprState *) lfirst(indexpr_item),
GetPerTupleExprContext(estate),
&isNull,
NULL);
indexpr_item = lnext(indexpr_item);
}
values[i] = iDatum;
isnull[i] = isNull;
}
if (indexpr_item != NULL)
elog(ERROR, "wrong number of index expressions");
}
/*
* index_update_stats --- update pg_class entry after CREATE INDEX or REINDEX
*
* This routine updates the pg_class row of either an index or its parent
* relation after CREATE INDEX or REINDEX. Its rather bizarre API is designed
* to ensure we can do all the necessary work in just one update.
*
* hasindex: set relhasindex to this value
* isprimary: if true, set relhaspkey true; else no change
* hasexclusion: if true, set relhasexclusion true; else no change
* reltoastidxid: if not InvalidOid, set reltoastidxid to this value;
* else no change
* reltuples: set reltuples to this value
*
* relpages is also updated (using RelationGetNumberOfBlocks()).
*
* NOTE: an important side-effect of this operation is that an SI invalidation
* message is sent out to all backends --- including me --- causing relcache
* entries to be flushed or updated with the new data. This must happen even
* if we find that no change is needed in the pg_class row. When updating
* a heap entry, this ensures that other backends find out about the new
* index. When updating an index, it's important because some index AMs
* expect a relcache flush to occur after REINDEX.
*/
static void
index_update_stats(Relation rel,
bool hasindex, bool isprimary, bool hasexclusion,
Oid reltoastidxid, double reltuples)
{
BlockNumber relpages = RelationGetNumberOfBlocks(rel);
Oid relid = RelationGetRelid(rel);
Relation pg_class;
HeapTuple tuple;
Form_pg_class rd_rel;
bool dirty;
/*
* We always update the pg_class row using a non-transactional,
* overwrite-in-place update. There are several reasons for this:
*
* 1. In bootstrap mode, we have no choice --- UPDATE wouldn't work.
*
* 2. We could be reindexing pg_class itself, in which case we can't move
* its pg_class row because CatalogUpdateIndexes might not know about all
* the indexes yet (see reindex_relation).
*
* 3. Because we execute CREATE INDEX with just share lock on the parent
* rel (to allow concurrent index creations), an ordinary update could
* suffer a tuple-concurrently-updated failure against another CREATE
* INDEX committing at about the same time. We can avoid that by having
* them both do nontransactional updates (we assume they will both be
* trying to change the pg_class row to the same thing, so it doesn't
* matter which goes first).
*
* 4. Even with just a single CREATE INDEX, there's a risk factor because
* someone else might be trying to open the rel while we commit, and this
* creates a race condition as to whether he will see both or neither of
* the pg_class row versions as valid. Again, a non-transactional update
* avoids the risk. It is indeterminate which state of the row the other
* process will see, but it doesn't matter (if he's only taking
* AccessShareLock, then it's not critical that he see relhasindex true).
*
* It is safe to use a non-transactional update even though our
* transaction could still fail before committing. Setting relhasindex
* true is safe even if there are no indexes (VACUUM will eventually fix
* it), likewise for relhaspkey and relhasexclusion. And of course the
* relpages and reltuples counts are correct (or at least more so than the
* old values) regardless.
*/
pg_class = heap_open(RelationRelationId, RowExclusiveLock);
/*
* Make a copy of the tuple to update. Normally we use the syscache, but
* we can't rely on that during bootstrap or while reindexing pg_class
* itself.
*/
if (IsBootstrapProcessingMode() ||
ReindexIsProcessingHeap(RelationRelationId))
{
/* don't assume syscache will work */
HeapScanDesc pg_class_scan;
ScanKeyData key[1];
ScanKeyInit(&key[0],
ObjectIdAttributeNumber,
BTEqualStrategyNumber, F_OIDEQ,
ObjectIdGetDatum(relid));
pg_class_scan = heap_beginscan(pg_class, SnapshotNow, 1, key);
tuple = heap_getnext(pg_class_scan, ForwardScanDirection);
tuple = heap_copytuple(tuple);
heap_endscan(pg_class_scan);
}
else
{
/* normal case, use syscache */
tuple = SearchSysCacheCopy(RELOID,
ObjectIdGetDatum(relid),
0, 0, 0);
}
if (!HeapTupleIsValid(tuple))
elog(ERROR, "could not find tuple for relation %u", relid);
rd_rel = (Form_pg_class) GETSTRUCT(tuple);
/* Apply required updates, if any, to copied tuple */
dirty = false;
if (rd_rel->relhasindex != hasindex)
{
rd_rel->relhasindex = hasindex;
dirty = true;
}
if (isprimary)
{
if (!rd_rel->relhaspkey)
{
rd_rel->relhaspkey = true;
dirty = true;
}
}
if (hasexclusion)
{
if (!rd_rel->relhasexclusion)
{
rd_rel->relhasexclusion = true;
dirty = true;
}
}
if (OidIsValid(reltoastidxid))
{
Assert(rd_rel->relkind == RELKIND_TOASTVALUE);
if (rd_rel->reltoastidxid != reltoastidxid)
{
rd_rel->reltoastidxid = reltoastidxid;
dirty = true;
}
}
if (rd_rel->reltuples != (float4) reltuples)
{
rd_rel->reltuples = (float4) reltuples;
dirty = true;
}
if (rd_rel->relpages != (int32) relpages)
{
rd_rel->relpages = (int32) relpages;
dirty = true;
}
/*
* If anything changed, write out the tuple
*/
if (dirty)
{
heap_inplace_update(pg_class, tuple);
/* the above sends a cache inval message */
}
else
{
/* no need to change tuple, but force relcache inval anyway */
CacheInvalidateRelcacheByTuple(tuple);
}
heap_freetuple(tuple);
heap_close(pg_class, RowExclusiveLock);
}
/*
* setNewRelfilenode - assign a new relfilenode value to the relation
*
* Caller must already hold exclusive lock on the relation.
*
* The relation is marked with relfrozenxid=freezeXid (InvalidTransactionId
* must be passed for indexes)
*/
void
setNewRelfilenode(Relation relation, TransactionId freezeXid)
{
Oid newrelfilenode;
RelFileNode newrnode;
Relation pg_class;
HeapTuple tuple;
Form_pg_class rd_rel;
/* Can't change relfilenode for nailed tables (indexes ok though) */
Assert(!relation->rd_isnailed ||
relation->rd_rel->relkind == RELKIND_INDEX);
/* Can't change for shared tables or indexes */
Assert(!relation->rd_rel->relisshared);
/* Indexes must have Invalid frozenxid; other relations must not */
Assert((relation->rd_rel->relkind == RELKIND_INDEX &&
freezeXid == InvalidTransactionId) ||
TransactionIdIsNormal(freezeXid));
/* Allocate a new relfilenode */
newrelfilenode = GetNewRelFileNode(relation->rd_rel->reltablespace,
relation->rd_rel->relisshared,
NULL);
/*
* Find the pg_class tuple for the given relation. This is not used
* during bootstrap, so okay to use heap_update always.
*/
pg_class = heap_open(RelationRelationId, RowExclusiveLock);
tuple = SearchSysCacheCopy(RELOID,
ObjectIdGetDatum(RelationGetRelid(relation)),
0, 0, 0);
if (!HeapTupleIsValid(tuple))
elog(ERROR, "could not find tuple for relation %u",
RelationGetRelid(relation));
rd_rel = (Form_pg_class) GETSTRUCT(tuple);
/*
* ... and create storage for corresponding forks in the new relfilenode.
*
* NOTE: any conflict in relfilenode value will be caught here
*/
newrnode = relation->rd_node;
newrnode.relNode = newrelfilenode;
/*
* Create the main fork, like heap_create() does, and drop the old
* storage.
*/
RelationCreateStorage(newrnode, relation->rd_istemp);
smgrclosenode(newrnode);
RelationDropStorage(relation);
/* update the pg_class row */
rd_rel->relfilenode = newrelfilenode;
rd_rel->relpages = 0; /* it's empty until further notice */
rd_rel->reltuples = 0;
rd_rel->relfrozenxid = freezeXid;
simple_heap_update(pg_class, &tuple->t_self, tuple);
CatalogUpdateIndexes(pg_class, tuple);
heap_freetuple(tuple);
heap_close(pg_class, RowExclusiveLock);
/* Make sure the relfilenode change is visible */
CommandCounterIncrement();
/* Mark the rel as having a new relfilenode in current transaction */
RelationCacheMarkNewRelfilenode(relation);
}
/*
* index_build - invoke access-method-specific index build procedure
*
* On entry, the index's catalog entries are valid, and its physical disk
* file has been created but is empty. We call the AM-specific build
* procedure to fill in the index contents. We then update the pg_class
* entries of the index and heap relation as needed, using statistics
* returned by ambuild as well as data passed by the caller.
*
* Note: when reindexing an existing index, isprimary can be false;
* the index is already properly marked and need not be re-marked.
*
* Note: before Postgres 8.2, the passed-in heap and index Relations
* were automatically closed by this routine. This is no longer the case.
* The caller opened 'em, and the caller should close 'em.
*/
void
index_build(Relation heapRelation,
Relation indexRelation,
IndexInfo *indexInfo,
bool isprimary)
{
RegProcedure procedure;
IndexBuildResult *stats;
Oid save_userid;
int save_sec_context;
int save_nestlevel;
/*
* sanity checks
*/
Assert(RelationIsValid(indexRelation));
Assert(PointerIsValid(indexRelation->rd_am));
procedure = indexRelation->rd_am->ambuild;
Assert(RegProcedureIsValid(procedure));
/*
* Switch to the table owner's userid, so that any index functions are run
* as that user. Also lock down security-restricted operations and
* arrange to make GUC variable changes local to this command.
*/
GetUserIdAndSecContext(&save_userid, &save_sec_context);
SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
save_sec_context | SECURITY_RESTRICTED_OPERATION);
save_nestlevel = NewGUCNestLevel();
/*
* Call the access method's build procedure
*/
stats = (IndexBuildResult *)
DatumGetPointer(OidFunctionCall3(procedure,
PointerGetDatum(heapRelation),
PointerGetDatum(indexRelation),
PointerGetDatum(indexInfo)));
Assert(PointerIsValid(stats));
/*
* If it's for an exclusion constraint, make a second pass over the
* heap to verify that the constraint is satisfied.
*/
if (indexInfo->ii_ExclusionOps != NULL)
IndexCheckExclusion(heapRelation, indexRelation, indexInfo);
/* Roll back any GUC changes executed by index functions */
AtEOXact_GUC(false, save_nestlevel);
/* Restore userid and security context */
SetUserIdAndSecContext(save_userid, save_sec_context);
/*
* If we found any potentially broken HOT chains, mark the index as not
* being usable until the current transaction is below the event horizon.
* See src/backend/access/heap/README.HOT for discussion.
*/
if (indexInfo->ii_BrokenHotChain)
{
Oid indexId = RelationGetRelid(indexRelation);
Relation pg_index;
HeapTuple indexTuple;
Form_pg_index indexForm;
pg_index = heap_open(IndexRelationId, RowExclusiveLock);
indexTuple = SearchSysCacheCopy(INDEXRELID,
ObjectIdGetDatum(indexId),
0, 0, 0);
if (!HeapTupleIsValid(indexTuple))
elog(ERROR, "cache lookup failed for index %u", indexId);
indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
indexForm->indcheckxmin = true;
simple_heap_update(pg_index, &indexTuple->t_self, indexTuple);
CatalogUpdateIndexes(pg_index, indexTuple);
heap_freetuple(indexTuple);
heap_close(pg_index, RowExclusiveLock);
}
/*
* Update heap and index pg_class rows
*/
index_update_stats(heapRelation,
true,
isprimary,
(indexInfo->ii_ExclusionOps != NULL),
(heapRelation->rd_rel->relkind == RELKIND_TOASTVALUE) ?
RelationGetRelid(indexRelation) : InvalidOid,
stats->heap_tuples);
index_update_stats(indexRelation,
false,
false,
false,
InvalidOid,
stats->index_tuples);
/* Make the updated versions visible */
CommandCounterIncrement();
}
/*
* IndexBuildHeapScan - scan the heap relation to find tuples to be indexed
*
* This is called back from an access-method-specific index build procedure
* after the AM has done whatever setup it needs. The parent heap relation
* is scanned to find tuples that should be entered into the index. Each
* such tuple is passed to the AM's callback routine, which does the right
* things to add it to the new index. After we return, the AM's index
* build procedure does whatever cleanup it needs.
*
* The total count of heap tuples is returned. This is for updating pg_class
* statistics. (It's annoying not to be able to do that here, but we want
* to merge that update with others; see index_update_stats.) Note that the
* index AM itself must keep track of the number of index tuples; we don't do
* so here because the AM might reject some of the tuples for its own reasons,
* such as being unable to store NULLs.
*
* A side effect is to set indexInfo->ii_BrokenHotChain to true if we detect
* any potentially broken HOT chains. Currently, we set this if there are
* any RECENTLY_DEAD entries in a HOT chain, without trying very hard to
* detect whether they're really incompatible with the chain tip.
*/
double
IndexBuildHeapScan(Relation heapRelation,
Relation indexRelation,
IndexInfo *indexInfo,
bool allow_sync,
IndexBuildCallback callback,
void *callback_state)
{
HeapScanDesc scan;
HeapTuple heapTuple;
Datum values[INDEX_MAX_KEYS];
bool isnull[INDEX_MAX_KEYS];
double reltuples;
List *predicate;
TupleTableSlot *slot;
EState *estate;
ExprContext *econtext;
Snapshot snapshot;
TransactionId OldestXmin;
BlockNumber root_blkno = InvalidBlockNumber;
OffsetNumber root_offsets[MaxHeapTuplesPerPage];
/*
* sanity checks
*/
Assert(OidIsValid(indexRelation->rd_rel->relam));
/*
* Need an EState for evaluation of index expressions and partial-index
* predicates. Also a slot to hold the current tuple.
*/
estate = CreateExecutorState();
econtext = GetPerTupleExprContext(estate);
slot = MakeSingleTupleTableSlot(RelationGetDescr(heapRelation));
/* Arrange for econtext's scan tuple to be the tuple under test */
econtext->ecxt_scantuple = slot;
/* Set up execution state for predicate, if any. */
predicate = (List *)
ExecPrepareExpr((Expr *) indexInfo->ii_Predicate,
estate);
/*
* Prepare for scan of the base relation. In a normal index build, we use
* SnapshotAny because we must retrieve all tuples and do our own time
* qual checks (because we have to index RECENTLY_DEAD tuples). In a
* concurrent build, we take a regular MVCC snapshot and index whatever's
* live according to that. During bootstrap we just use SnapshotNow.
*/
if (IsBootstrapProcessingMode())
{
snapshot = SnapshotNow;
OldestXmin = InvalidTransactionId; /* not used */
}
else if (indexInfo->ii_Concurrent)
{
snapshot = RegisterSnapshot(GetTransactionSnapshot());
OldestXmin = InvalidTransactionId; /* not used */
}
else
{
snapshot = SnapshotAny;
/* okay to ignore lazy VACUUMs here */
OldestXmin = GetOldestXmin(heapRelation->rd_rel->relisshared, true);
}
scan = heap_beginscan_strat(heapRelation, /* relation */
snapshot, /* snapshot */
0, /* number of keys */
NULL, /* scan key */
true, /* buffer access strategy OK */
allow_sync); /* syncscan OK? */
reltuples = 0;
/*
* Scan all tuples in the base relation.
*/
while ((heapTuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
{
bool tupleIsAlive;
CHECK_FOR_INTERRUPTS();
/*
* When dealing with a HOT-chain of updated tuples, we want to index
* the values of the live tuple (if any), but index it under the TID
* of the chain's root tuple. This approach is necessary to preserve
* the HOT-chain structure in the heap. So we need to be able to find
* the root item offset for every tuple that's in a HOT-chain. When
* first reaching a new page of the relation, call
* heap_get_root_tuples() to build a map of root item offsets on the
* page.
*
* It might look unsafe to use this information across buffer
* lock/unlock. However, we hold ShareLock on the table so no
* ordinary insert/update/delete should occur; and we hold pin on the
* buffer continuously while visiting the page, so no pruning
* operation can occur either.
*
* Note the implied assumption that there is no more than one live
* tuple per HOT-chain ...
*/
if (scan->rs_cblock != root_blkno)
{
Page page = BufferGetPage(scan->rs_cbuf);
LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
heap_get_root_tuples(page, root_offsets);
LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
root_blkno = scan->rs_cblock;
}
if (snapshot == SnapshotAny)
{
/* do our own time qual check */
bool indexIt;
recheck:
/*
* We could possibly get away with not locking the buffer here,
* since caller should hold ShareLock on the relation, but let's
* be conservative about it. (This remark is still correct even
* with HOT-pruning: our pin on the buffer prevents pruning.)
*/
LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
switch (HeapTupleSatisfiesVacuum(heapTuple->t_data, OldestXmin,
scan->rs_cbuf))
{
case HEAPTUPLE_DEAD:
/* Definitely dead, we can ignore it */
indexIt = false;
tupleIsAlive = false;
break;
case HEAPTUPLE_LIVE:
/* Normal case, index and unique-check it */
indexIt = true;
tupleIsAlive = true;
break;
case HEAPTUPLE_RECENTLY_DEAD:
/*
* If tuple is recently deleted then we must index it
* anyway to preserve MVCC semantics. (Pre-existing
* transactions could try to use the index after we finish
* building it, and may need to see such tuples.)
*
* However, if it was HOT-updated then we must only index
* the live tuple at the end of the HOT-chain. Since this
* breaks semantics for pre-existing snapshots, mark the
* index as unusable for them.
*
* If we've already decided that the index will be unsafe
* for old snapshots, we may as well stop indexing
* recently-dead tuples, since there's no longer any
* point.
*/
if (HeapTupleIsHotUpdated(heapTuple))
{
indexIt = false;
/* mark the index as unsafe for old snapshots */
indexInfo->ii_BrokenHotChain = true;
}
else if (indexInfo->ii_BrokenHotChain)
indexIt = false;
else
indexIt = true;
/* In any case, exclude the tuple from unique-checking */
tupleIsAlive = false;
break;
case HEAPTUPLE_INSERT_IN_PROGRESS:
/*
* Since caller should hold ShareLock or better, we should
* not see any tuples inserted by open transactions ---
* unless it's our own transaction. (Consider INSERT
* followed by CREATE INDEX within a transaction.) An
* exception occurs when reindexing a system catalog,
* because we often release lock on system catalogs before
* committing. In that case we wait for the inserting
* transaction to finish and check again. (We could do
* that on user tables too, but since the case is not
* expected it seems better to throw an error.)
*/
if (!TransactionIdIsCurrentTransactionId(
HeapTupleHeaderGetXmin(heapTuple->t_data)))
{
if (!IsSystemRelation(heapRelation))
elog(ERROR, "concurrent insert in progress");
else
{
/*
* Must drop the lock on the buffer before we wait
*/
TransactionId xwait = HeapTupleHeaderGetXmin(heapTuple->t_data);
LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
XactLockTableWait(xwait);
goto recheck;
}
}
/*
* We must index such tuples, since if the index build
* commits then they're good.
*/
indexIt = true;
tupleIsAlive = true;
break;
case HEAPTUPLE_DELETE_IN_PROGRESS:
/*
* Since caller should hold ShareLock or better, we should
* not see any tuples deleted by open transactions ---
* unless it's our own transaction. (Consider DELETE
* followed by CREATE INDEX within a transaction.) An
* exception occurs when reindexing a system catalog,
* because we often release lock on system catalogs before
* committing. In that case we wait for the deleting
* transaction to finish and check again. (We could do
* that on user tables too, but since the case is not
* expected it seems better to throw an error.)
*/
Assert(!(heapTuple->t_data->t_infomask & HEAP_XMAX_IS_MULTI));
if (!TransactionIdIsCurrentTransactionId(
HeapTupleHeaderGetXmax(heapTuple->t_data)))
{
if (!IsSystemRelation(heapRelation))
elog(ERROR, "concurrent delete in progress");
else
{
/*
* Must drop the lock on the buffer before we wait
*/
TransactionId xwait = HeapTupleHeaderGetXmax(heapTuple->t_data);
LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
XactLockTableWait(xwait);
goto recheck;
}
}
/*
* Otherwise, we have to treat these tuples just like
* RECENTLY_DELETED ones.
*/
if (HeapTupleIsHotUpdated(heapTuple))
{
indexIt = false;
/* mark the index as unsafe for old snapshots */
indexInfo->ii_BrokenHotChain = true;
}
else if (indexInfo->ii_BrokenHotChain)
indexIt = false;
else
indexIt = true;
/* In any case, exclude the tuple from unique-checking */
tupleIsAlive = false;
break;
default:
elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
indexIt = tupleIsAlive = false; /* keep compiler quiet */
break;
}
LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
if (!indexIt)
continue;
}
else
{
/* heap_getnext did the time qual check */
tupleIsAlive = true;
}
reltuples += 1;
MemoryContextReset(econtext->ecxt_per_tuple_memory);
/* Set up for predicate or expression evaluation */
ExecStoreTuple(heapTuple, slot, InvalidBuffer, false);
/*
* In a partial index, discard tuples that don't satisfy the
* predicate.
*/
if (predicate != NIL)
{
if (!ExecQual(predicate, econtext, false))
continue;
}
/*
* For the current heap tuple, extract all the attributes we use in
* this index, and note which are null. This also performs evaluation
* of any expressions needed.
*/
FormIndexDatum(indexInfo,
slot,
estate,
values,
isnull);
/*
* You'd think we should go ahead and build the index tuple here, but
* some index AMs want to do further processing on the data first. So
* pass the values[] and isnull[] arrays, instead.
*/
if (HeapTupleIsHeapOnly(heapTuple))
{
/*
* For a heap-only tuple, pretend its TID is that of the root. See
* src/backend/access/heap/README.HOT for discussion.
*/
HeapTupleData rootTuple;
OffsetNumber offnum;
rootTuple = *heapTuple;
offnum = ItemPointerGetOffsetNumber(&heapTuple->t_self);
Assert(OffsetNumberIsValid(root_offsets[offnum - 1]));
ItemPointerSetOffsetNumber(&rootTuple.t_self,
root_offsets[offnum - 1]);
/* Call the AM's callback routine to process the tuple */
callback(indexRelation, &rootTuple, values, isnull, tupleIsAlive,
callback_state);
}
else
{
/* Call the AM's callback routine to process the tuple */
callback(indexRelation, heapTuple, values, isnull, tupleIsAlive,
callback_state);
}
}
heap_endscan(scan);
/* we can now forget our snapshot, if set */
if (indexInfo->ii_Concurrent)
UnregisterSnapshot(snapshot);
ExecDropSingleTupleTableSlot(slot);
FreeExecutorState(estate);
/* These may have been pointing to the now-gone estate */
indexInfo->ii_ExpressionsState = NIL;
indexInfo->ii_PredicateState = NIL;
return reltuples;
}
/*
* IndexCheckExclusion - verify that a new exclusion constraint is satisfied
*
* When creating an exclusion constraint, we first build the index normally
* and then rescan the heap to check for conflicts. We assume that we only
* need to validate tuples that are live according to SnapshotNow, and that
* these were correctly indexed even in the presence of broken HOT chains.
* This should be OK since we are holding at least ShareLock on the table,
* meaning there can be no uncommitted updates from other transactions.
* (Note: that wouldn't necessarily work for system catalogs, since many
* operations release write lock early on the system catalogs.)
*/
static void
IndexCheckExclusion(Relation heapRelation,
Relation indexRelation,
IndexInfo *indexInfo)
{
HeapScanDesc scan;
HeapTuple heapTuple;
Datum values[INDEX_MAX_KEYS];
bool isnull[INDEX_MAX_KEYS];
List *predicate;
TupleTableSlot *slot;
EState *estate;
ExprContext *econtext;
/*
* Need an EState for evaluation of index expressions and partial-index
* predicates. Also a slot to hold the current tuple.
*/
estate = CreateExecutorState();
econtext = GetPerTupleExprContext(estate);
slot = MakeSingleTupleTableSlot(RelationGetDescr(heapRelation));
/* Arrange for econtext's scan tuple to be the tuple under test */
econtext->ecxt_scantuple = slot;
/* Set up execution state for predicate, if any. */
predicate = (List *)
ExecPrepareExpr((Expr *) indexInfo->ii_Predicate,
estate);
/*
* Scan all live tuples in the base relation.
*/
scan = heap_beginscan_strat(heapRelation, /* relation */
SnapshotNow, /* snapshot */
0, /* number of keys */
NULL, /* scan key */
true, /* buffer access strategy OK */
true); /* syncscan OK */
while ((heapTuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
{
CHECK_FOR_INTERRUPTS();
MemoryContextReset(econtext->ecxt_per_tuple_memory);
/* Set up for predicate or expression evaluation */
ExecStoreTuple(heapTuple, slot, InvalidBuffer, false);
/*
* In a partial index, ignore tuples that don't satisfy the predicate.
*/
if (predicate != NIL)
{
if (!ExecQual(predicate, econtext, false))
continue;
}
/*
* Extract index column values, including computing expressions.
*/
FormIndexDatum(indexInfo,
slot,
estate,
values,
isnull);
/*
* Check that this tuple has no conflicts.
*/
check_exclusion_constraint(heapRelation,
indexRelation, indexInfo,
&(heapTuple->t_self), values, isnull,
estate, true, false);
}
heap_endscan(scan);
ExecDropSingleTupleTableSlot(slot);
FreeExecutorState(estate);
/* These may have been pointing to the now-gone estate */
indexInfo->ii_ExpressionsState = NIL;
indexInfo->ii_PredicateState = NIL;
}
/*
* validate_index - support code for concurrent index builds
*
* We do a concurrent index build by first inserting the catalog entry for the
* index via index_create(), marking it not indisready and not indisvalid.
* Then we commit our transaction and start a new one, then we wait for all
* transactions that could have been modifying the table to terminate. Now
* we know that any subsequently-started transactions will see the index and
* honor its constraints on HOT updates; so while existing HOT-chains might
* be broken with respect to the index, no currently live tuple will have an
* incompatible HOT update done to it. We now build the index normally via
* index_build(), while holding a weak lock that allows concurrent
* insert/update/delete. Also, we index only tuples that are valid
* as of the start of the scan (see IndexBuildHeapScan), whereas a normal
* build takes care to include recently-dead tuples. This is OK because
* we won't mark the index valid until all transactions that might be able
* to see those tuples are gone. The reason for doing that is to avoid
* bogus unique-index failures due to concurrent UPDATEs (we might see
* different versions of the same row as being valid when we pass over them,
* if we used HeapTupleSatisfiesVacuum). This leaves us with an index that
* does not contain any tuples added to the table while we built the index.
*
* Next, we mark the index "indisready" (but still not "indisvalid") and
* commit the second transaction and start a third. Again we wait for all
* transactions that could have been modifying the table to terminate. Now
* we know that any subsequently-started transactions will see the index and
* insert their new tuples into it. We then take a new reference snapshot
* which is passed to validate_index(). Any tuples that are valid according
* to this snap, but are not in the index, must be added to the index.
* (Any tuples committed live after the snap will be inserted into the
* index by their originating transaction. Any tuples committed dead before
* the snap need not be indexed, because we will wait out all transactions
* that might care about them before we mark the index valid.)
*
* validate_index() works by first gathering all the TIDs currently in the
* index, using a bulkdelete callback that just stores the TIDs and doesn't
* ever say "delete it". (This should be faster than a plain indexscan;
* also, not all index AMs support full-index indexscan.) Then we sort the
* TIDs, and finally scan the table doing a "merge join" against the TID list
* to see which tuples are missing from the index. Thus we will ensure that
* all tuples valid according to the reference snapshot are in the index.
*
* Building a unique index this way is tricky: we might try to insert a
* tuple that is already dead or is in process of being deleted, and we
* mustn't have a uniqueness failure against an updated version of the same
* row. We could try to check the tuple to see if it's already dead and tell
* index_insert() not to do the uniqueness check, but that still leaves us
* with a race condition against an in-progress update. To handle that,
* we expect the index AM to recheck liveness of the to-be-inserted tuple
* before it declares a uniqueness error.
*
* After completing validate_index(), we wait until all transactions that
* were alive at the time of the reference snapshot are gone; this is
* necessary to be sure there are none left with a serializable snapshot
* older than the reference (and hence possibly able to see tuples we did
* not index). Then we mark the index "indisvalid" and commit. Subsequent
* transactions will be able to use it for queries.
*
* Doing two full table scans is a brute-force strategy. We could try to be
* cleverer, eg storing new tuples in a special area of the table (perhaps
* making the table append-only by setting use_fsm). However that would
* add yet more locking issues.
*/
void
validate_index(Oid heapId, Oid indexId, Snapshot snapshot)
{
Relation heapRelation,
indexRelation;
IndexInfo *indexInfo;
IndexVacuumInfo ivinfo;
v_i_state state;
Oid save_userid;
int save_sec_context;
int save_nestlevel;
/* Open and lock the parent heap relation */
heapRelation = heap_open(heapId, ShareUpdateExclusiveLock);
/* And the target index relation */
indexRelation = index_open(indexId, RowExclusiveLock);
/*
* Fetch info needed for index_insert. (You might think this should be
* passed in from DefineIndex, but its copy is long gone due to having
* been built in a previous transaction.)
*/
indexInfo = BuildIndexInfo(indexRelation);
/* mark build is concurrent just for consistency */
indexInfo->ii_Concurrent = true;
/*
* Switch to the table owner's userid, so that any index functions are run
* as that user. Also lock down security-restricted operations and
* arrange to make GUC variable changes local to this command.
*/
GetUserIdAndSecContext(&save_userid, &save_sec_context);
SetUserIdAndSecContext(heapRelation->rd_rel->relowner,
save_sec_context | SECURITY_RESTRICTED_OPERATION);
save_nestlevel = NewGUCNestLevel();
/*
* Scan the index and gather up all the TIDs into a tuplesort object.
*/
ivinfo.index = indexRelation;
ivinfo.vacuum_full = false;
ivinfo.analyze_only = false;
ivinfo.estimated_count = true;
ivinfo.message_level = DEBUG2;
ivinfo.num_heap_tuples = heapRelation->rd_rel->reltuples;
ivinfo.strategy = NULL;
state.tuplesort = tuplesort_begin_datum(TIDOID,
TIDLessOperator, false,
maintenance_work_mem,
false);
state.htups = state.itups = state.tups_inserted = 0;
(void) index_bulk_delete(&ivinfo, NULL,
validate_index_callback, (void *) &state);
/* Execute the sort */
tuplesort_performsort(state.tuplesort);
/*
* Now scan the heap and "merge" it with the index
*/
validate_index_heapscan(heapRelation,
indexRelation,
indexInfo,
snapshot,
&state);
/* Done with tuplesort object */
tuplesort_end(state.tuplesort);
elog(DEBUG2,
"validate_index found %.0f heap tuples, %.0f index tuples; inserted %.0f missing tuples",
state.htups, state.itups, state.tups_inserted);
/* Roll back any GUC changes executed by index functions */
AtEOXact_GUC(false, save_nestlevel);
/* Restore userid and security context */
SetUserIdAndSecContext(save_userid, save_sec_context);
/* Close rels, but keep locks */
index_close(indexRelation, NoLock);
heap_close(heapRelation, NoLock);
}
/*
* validate_index_callback - bulkdelete callback to collect the index TIDs
*/
static bool
validate_index_callback(ItemPointer itemptr, void *opaque)
{
v_i_state *state = (v_i_state *) opaque;
tuplesort_putdatum(state->tuplesort, PointerGetDatum(itemptr), false);
state->itups += 1;
return false; /* never actually delete anything */
}
/*
* validate_index_heapscan - second table scan for concurrent index build
*
* This has much code in common with IndexBuildHeapScan, but it's enough
* different that it seems cleaner to have two routines not one.
*/
static void
validate_index_heapscan(Relation heapRelation,
Relation indexRelation,
IndexInfo *indexInfo,
Snapshot snapshot,
v_i_state *state)
{
HeapScanDesc scan;
HeapTuple heapTuple;
Datum values[INDEX_MAX_KEYS];
bool isnull[INDEX_MAX_KEYS];
List *predicate;
TupleTableSlot *slot;
EState *estate;
ExprContext *econtext;
BlockNumber root_blkno = InvalidBlockNumber;
OffsetNumber root_offsets[MaxHeapTuplesPerPage];
bool in_index[MaxHeapTuplesPerPage];
/* state variables for the merge */
ItemPointer indexcursor = NULL;
bool tuplesort_empty = false;
/*
* sanity checks
*/
Assert(OidIsValid(indexRelation->rd_rel->relam));
/*
* Need an EState for evaluation of index expressions and partial-index
* predicates. Also a slot to hold the current tuple.
*/
estate = CreateExecutorState();
econtext = GetPerTupleExprContext(estate);
slot = MakeSingleTupleTableSlot(RelationGetDescr(heapRelation));
/* Arrange for econtext's scan tuple to be the tuple under test */
econtext->ecxt_scantuple = slot;
/* Set up execution state for predicate, if any. */
predicate = (List *)
ExecPrepareExpr((Expr *) indexInfo->ii_Predicate,
estate);
/*
* Prepare for scan of the base relation. We need just those tuples
* satisfying the passed-in reference snapshot. We must disable syncscan
* here, because it's critical that we read from block zero forward to
* match the sorted TIDs.
*/
scan = heap_beginscan_strat(heapRelation, /* relation */
snapshot, /* snapshot */
0, /* number of keys */
NULL, /* scan key */
true, /* buffer access strategy OK */
false); /* syncscan not OK */
/*
* Scan all tuples matching the snapshot.
*/
while ((heapTuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
{
ItemPointer heapcursor = &heapTuple->t_self;
ItemPointerData rootTuple;
OffsetNumber root_offnum;
CHECK_FOR_INTERRUPTS();
state->htups += 1;
/*
* As commented in IndexBuildHeapScan, we should index heap-only
* tuples under the TIDs of their root tuples; so when we advance onto
* a new heap page, build a map of root item offsets on the page.
*
* This complicates merging against the tuplesort output: we will
* visit the live tuples in order by their offsets, but the root
* offsets that we need to compare against the index contents might be
* ordered differently. So we might have to "look back" within the
* tuplesort output, but only within the current page. We handle that
* by keeping a bool array in_index[] showing all the
* already-passed-over tuplesort output TIDs of the current page. We
* clear that array here, when advancing onto a new heap page.
*/
if (scan->rs_cblock != root_blkno)
{
Page page = BufferGetPage(scan->rs_cbuf);
LockBuffer(scan->rs_cbuf, BUFFER_LOCK_SHARE);
heap_get_root_tuples(page, root_offsets);
LockBuffer(scan->rs_cbuf, BUFFER_LOCK_UNLOCK);
memset(in_index, 0, sizeof(in_index));
root_blkno = scan->rs_cblock;
}
/* Convert actual tuple TID to root TID */
rootTuple = *heapcursor;
root_offnum = ItemPointerGetOffsetNumber(heapcursor);
if (HeapTupleIsHeapOnly(heapTuple))
{
root_offnum = root_offsets[root_offnum - 1];
Assert(OffsetNumberIsValid(root_offnum));
ItemPointerSetOffsetNumber(&rootTuple, root_offnum);
}
/*
* "merge" by skipping through the index tuples until we find or pass
* the current root tuple.
*/
while (!tuplesort_empty &&
(!indexcursor ||
ItemPointerCompare(indexcursor, &rootTuple) < 0))
{
Datum ts_val;
bool ts_isnull;
if (indexcursor)
{
/*
* Remember index items seen earlier on the current heap page
*/
if (ItemPointerGetBlockNumber(indexcursor) == root_blkno)
in_index[ItemPointerGetOffsetNumber(indexcursor) - 1] = true;
pfree(indexcursor);
}
tuplesort_empty = !tuplesort_getdatum(state->tuplesort, true,
&ts_val, &ts_isnull);
Assert(tuplesort_empty || !ts_isnull);
indexcursor = (ItemPointer) DatumGetPointer(ts_val);
}
/*
* If the tuplesort has overshot *and* we didn't see a match earlier,
* then this tuple is missing from the index, so insert it.
*/
if ((tuplesort_empty ||
ItemPointerCompare(indexcursor, &rootTuple) > 0) &&
!in_index[root_offnum - 1])
{
MemoryContextReset(econtext->ecxt_per_tuple_memory);
/* Set up for predicate or expression evaluation */
ExecStoreTuple(heapTuple, slot, InvalidBuffer, false);
/*
* In a partial index, discard tuples that don't satisfy the
* predicate.
*/
if (predicate != NIL)
{
if (!ExecQual(predicate, econtext, false))
continue;
}
/*
* For the current heap tuple, extract all the attributes we use
* in this index, and note which are null. This also performs
* evaluation of any expressions needed.
*/
FormIndexDatum(indexInfo,
slot,
estate,
values,
isnull);
/*
* You'd think we should go ahead and build the index tuple here,
* but some index AMs want to do further processing on the data
* first. So pass the values[] and isnull[] arrays, instead.
*/
/*
* If the tuple is already committed dead, you might think we
* could suppress uniqueness checking, but this is no longer true
* in the presence of HOT, because the insert is actually a proxy
* for a uniqueness check on the whole HOT-chain. That is, the
* tuple we have here could be dead because it was already
* HOT-updated, and if so the updating transaction will not have
* thought it should insert index entries. The index AM will
* check the whole HOT-chain and correctly detect a conflict if
* there is one.
*/
index_insert(indexRelation,
values,
isnull,
&rootTuple,
heapRelation,
indexInfo->ii_Unique ?
UNIQUE_CHECK_YES : UNIQUE_CHECK_NO);
state->tups_inserted += 1;
}
}
heap_endscan(scan);
ExecDropSingleTupleTableSlot(slot);
FreeExecutorState(estate);
/* These may have been pointing to the now-gone estate */
indexInfo->ii_ExpressionsState = NIL;
indexInfo->ii_PredicateState = NIL;
}
/*
* IndexGetRelation: given an index's relation OID, get the OID of the
* relation it is an index on. Uses the system cache.
*/
static Oid
IndexGetRelation(Oid indexId)
{
HeapTuple tuple;
Form_pg_index index;
Oid result;
tuple = SearchSysCache(INDEXRELID,
ObjectIdGetDatum(indexId),
0, 0, 0);
if (!HeapTupleIsValid(tuple))
elog(ERROR, "cache lookup failed for index %u", indexId);
index = (Form_pg_index) GETSTRUCT(tuple);
Assert(index->indexrelid == indexId);
result = index->indrelid;
ReleaseSysCache(tuple);
return result;
}
/*
* reindex_index - This routine is used to recreate a single index
*/
void
reindex_index(Oid indexId)
{
Relation iRel,
heapRelation,
pg_index;
Oid heapId;
bool inplace;
IndexInfo *indexInfo;
HeapTuple indexTuple;
Form_pg_index indexForm;
/*
* Open and lock the parent heap relation. ShareLock is sufficient since
* we only need to be sure no schema or data changes are going on.
*/
heapId = IndexGetRelation(indexId);
heapRelation = heap_open(heapId, ShareLock);
/*
* Open the target index relation and get an exclusive lock on it, to
* ensure that no one else is touching this particular index.
*/
iRel = index_open(indexId, AccessExclusiveLock);
/*
* Don't allow reindex on temp tables of other backends ... their local
* buffer manager is not going to cope.
*/
if (RELATION_IS_OTHER_TEMP(iRel))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("cannot reindex temporary tables of other sessions")));
/*
* Also check for active uses of the index in the current transaction; we
* don't want to reindex underneath an open indexscan.
*/
CheckTableNotInUse(iRel, "REINDEX INDEX");
/*
* If it's a shared index, we must do inplace processing (because we have
* no way to update relfilenode in other databases). Otherwise we can do
* it the normal transaction-safe way.
*
* Since inplace processing isn't crash-safe, we only allow it in a
* standalone backend. (In the REINDEX TABLE and REINDEX DATABASE cases,
* the caller should have detected this.)
*/
inplace = iRel->rd_rel->relisshared;
if (inplace && IsUnderPostmaster)
ereport(ERROR,
(errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
errmsg("shared index \"%s\" can only be reindexed in stand-alone mode",
RelationGetRelationName(iRel))));
PG_TRY();
{
/* Suppress use of the target index while rebuilding it */
SetReindexProcessing(heapId, indexId);
/* Fetch info needed for index_build */
indexInfo = BuildIndexInfo(iRel);
if (inplace)
{
/*
* Truncate the actual file (and discard buffers).
*/
RelationTruncate(iRel, 0);
}
else
{
/*
* We'll build a new physical relation for the index.
*/
setNewRelfilenode(iRel, InvalidTransactionId);
}
/* Initialize the index and rebuild */
/* Note: we do not need to re-establish pkey setting */
index_build(heapRelation, iRel, indexInfo, false);
}
PG_CATCH();
{
/* Make sure flag gets cleared on error exit */
ResetReindexProcessing();
PG_RE_THROW();
}
PG_END_TRY();
ResetReindexProcessing();
/*
* If the index is marked invalid or not ready (ie, it's from a failed
* CREATE INDEX CONCURRENTLY), we can now mark it valid. This allows
* REINDEX to be used to clean up in such cases.
*
* We can also reset indcheckxmin, because we have now done a
* non-concurrent index build, *except* in the case where index_build
* found some still-broken HOT chains.
*/
pg_index = heap_open(IndexRelationId, RowExclusiveLock);
indexTuple = SearchSysCacheCopy(INDEXRELID,
ObjectIdGetDatum(indexId),
0, 0, 0);
if (!HeapTupleIsValid(indexTuple))
elog(ERROR, "cache lookup failed for index %u", indexId);
indexForm = (Form_pg_index) GETSTRUCT(indexTuple);
if (!indexForm->indisvalid || !indexForm->indisready ||
(indexForm->indcheckxmin && !indexInfo->ii_BrokenHotChain))
{
indexForm->indisvalid = true;
indexForm->indisready = true;
if (!indexInfo->ii_BrokenHotChain)
indexForm->indcheckxmin = false;
simple_heap_update(pg_index, &indexTuple->t_self, indexTuple);
CatalogUpdateIndexes(pg_index, indexTuple);
}
heap_close(pg_index, RowExclusiveLock);
/* Close rels, but keep locks */
index_close(iRel, NoLock);
heap_close(heapRelation, NoLock);
}
/*
* reindex_relation - This routine is used to recreate all indexes
* of a relation (and optionally its toast relation too, if any).
*
* Returns true if any indexes were rebuilt. Note that a
* CommandCounterIncrement will occur after each index rebuild.
*/
bool
reindex_relation(Oid relid, bool toast_too)
{
Relation rel;
Oid toast_relid;
bool is_pg_class;
bool result;
List *indexIds,
*doneIndexes;
ListCell *indexId;
/*
* Open and lock the relation. ShareLock is sufficient since we only need
* to prevent schema and data changes in it.
*/
rel = heap_open(relid, ShareLock);
toast_relid = rel->rd_rel->reltoastrelid;
/*
* Get the list of index OIDs for this relation. (We trust to the
* relcache to get this with a sequential scan if ignoring system
* indexes.)
*/
indexIds = RelationGetIndexList(rel);
/*
* reindex_index will attempt to update the pg_class rows for the relation
* and index. If we are processing pg_class itself, we want to make sure
* that the updates do not try to insert index entries into indexes we
* have not processed yet. (When we are trying to recover from corrupted
* indexes, that could easily cause a crash.) We can accomplish this
* because CatalogUpdateIndexes will use the relcache's index list to know
* which indexes to update. We just force the index list to be only the
* stuff we've processed.
*
* It is okay to not insert entries into the indexes we have not processed
* yet because all of this is transaction-safe. If we fail partway
* through, the updated rows are dead and it doesn't matter whether they
* have index entries. Also, a new pg_class index will be created with an
* entry for its own pg_class row because we do setNewRelfilenode() before
* we do index_build().
*
* Note that we also clear pg_class's rd_oidindex until the loop is done,
* so that that index can't be accessed either. This means we cannot
* safely generate new relation OIDs while in the loop; shouldn't be a
* problem.
*/
is_pg_class = (RelationGetRelid(rel) == RelationRelationId);
/* Ensure rd_indexattr is valid; see comments for RelationSetIndexList */
if (is_pg_class)
(void) RelationGetIndexAttrBitmap(rel);
/* Reindex all the indexes. */
doneIndexes = NIL;
foreach(indexId, indexIds)
{
Oid indexOid = lfirst_oid(indexId);
if (is_pg_class)
RelationSetIndexList(rel, doneIndexes, InvalidOid);
reindex_index(indexOid);
CommandCounterIncrement();
if (is_pg_class)
doneIndexes = lappend_oid(doneIndexes, indexOid);
}
if (is_pg_class)
RelationSetIndexList(rel, indexIds, ClassOidIndexId);
/*
* Close rel, but continue to hold the lock.
*/
heap_close(rel, NoLock);
result = (indexIds != NIL);
/*
* If the relation has a secondary toast rel, reindex that too while we
* still hold the lock on the master table.
*/
if (toast_too && OidIsValid(toast_relid))
result |= reindex_relation(toast_relid, false);
return result;
}