postgresql/src/backend/parser/parse_node.c
Tom Lane 20ab467d76 Improve parser so that we can show an error cursor position for errors
during parse analysis, not only errors detected in the flex/bison stages.
This is per my earlier proposal.  This commit includes all the basic
infrastructure, but locations are only tracked and reported for errors
involving column references, function calls, and operators.  More could
be done later but this seems like a good set to start with.  I've also
moved the ReportSyntaxErrorPosition logic out of psql and into libpq,
which should make it available to more people --- even within psql this
is an improvement because warnings weren't handled by ReportSyntaxErrorPosition.
2006-03-14 22:48:25 +00:00

422 lines
11 KiB
C

/*-------------------------------------------------------------------------
*
* parse_node.c
* various routines that make nodes for querytrees
*
* Portions Copyright (c) 1996-2006, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/parser/parse_node.c,v 1.92 2006/03/14 22:48:21 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/pg_type.h"
#include "mb/pg_wchar.h"
#include "nodes/makefuncs.h"
#include "parser/parsetree.h"
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "parser/parse_node.h"
#include "parser/parse_relation.h"
#include "utils/builtins.h"
#include "utils/int8.h"
#include "utils/syscache.h"
#include "utils/varbit.h"
/* make_parsestate()
* Allocate and initialize a new ParseState.
* The CALLER is responsible for freeing the ParseState* returned.
*/
ParseState *
make_parsestate(ParseState *parentParseState)
{
ParseState *pstate;
pstate = palloc0(sizeof(ParseState));
pstate->parentParseState = parentParseState;
/* Fill in fields that don't start at null/false/zero */
pstate->p_next_resno = 1;
if (parentParseState)
{
pstate->p_sourcetext = parentParseState->p_sourcetext;
pstate->p_variableparams = parentParseState->p_variableparams;
}
return pstate;
}
/*
* parser_errposition
* Report a parse-analysis-time cursor position, if possible.
*
* This is expected to be used within an ereport() call. The return value
* is a dummy (always 0, in fact).
*
* The locations stored in raw parsetrees are byte offsets into the source
* string. We have to convert them to 1-based character indexes for reporting
* to clients. (We do things this way to avoid unnecessary overhead in the
* normal non-error case: computing character indexes would be much more
* expensive than storing token offsets.)
*/
int
parser_errposition(ParseState *pstate, int location)
{
int pos;
/* No-op if location was not provided */
if (location < 0)
return 0;
/* Can't do anything if source text is not available */
if (pstate == NULL || pstate->p_sourcetext == NULL)
return 0;
/* Convert offset to character number */
pos = pg_mbstrlen_with_len(pstate->p_sourcetext, location) + 1;
/* And pass it to the ereport mechanism */
return errposition(pos);
}
/*
* make_var
* Build a Var node for an attribute identified by RTE and attrno
*/
Var *
make_var(ParseState *pstate, RangeTblEntry *rte, int attrno)
{
int vnum,
sublevels_up;
Oid vartypeid;
int32 type_mod;
vnum = RTERangeTablePosn(pstate, rte, &sublevels_up);
get_rte_attribute_type(rte, attrno, &vartypeid, &type_mod);
return makeVar(vnum, attrno, vartypeid, type_mod, sublevels_up);
}
/*
* transformArrayType()
* Get the element type of an array type in preparation for subscripting
*/
Oid
transformArrayType(Oid arrayType)
{
Oid elementType;
HeapTuple type_tuple_array;
Form_pg_type type_struct_array;
/* Get the type tuple for the array */
type_tuple_array = SearchSysCache(TYPEOID,
ObjectIdGetDatum(arrayType),
0, 0, 0);
if (!HeapTupleIsValid(type_tuple_array))
elog(ERROR, "cache lookup failed for type %u", arrayType);
type_struct_array = (Form_pg_type) GETSTRUCT(type_tuple_array);
/* needn't check typisdefined since this will fail anyway */
elementType = type_struct_array->typelem;
if (elementType == InvalidOid)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("cannot subscript type %s because it is not an array",
format_type_be(arrayType))));
ReleaseSysCache(type_tuple_array);
return elementType;
}
/*
* transformArraySubscripts()
* Transform array subscripting. This is used for both
* array fetch and array assignment.
*
* In an array fetch, we are given a source array value and we produce an
* expression that represents the result of extracting a single array element
* or an array slice.
*
* In an array assignment, we are given a destination array value plus a
* source value that is to be assigned to a single element or a slice of
* that array. We produce an expression that represents the new array value
* with the source data inserted into the right part of the array.
*
* pstate Parse state
* arrayBase Already-transformed expression for the array as a whole
* arrayType OID of array's datatype (should match type of arrayBase)
* elementType OID of array's element type (fetch with transformArrayType,
* or pass InvalidOid to do it here)
* elementTypMod typmod to be applied to array elements (if storing)
* indirection Untransformed list of subscripts (must not be NIL)
* assignFrom NULL for array fetch, else transformed expression for source.
*/
ArrayRef *
transformArraySubscripts(ParseState *pstate,
Node *arrayBase,
Oid arrayType,
Oid elementType,
int32 elementTypMod,
List *indirection,
Node *assignFrom)
{
Oid resultType;
bool isSlice = false;
List *upperIndexpr = NIL;
List *lowerIndexpr = NIL;
ListCell *idx;
ArrayRef *aref;
/* Caller may or may not have bothered to determine elementType */
if (!OidIsValid(elementType))
elementType = transformArrayType(arrayType);
/*
* A list containing only single subscripts refers to a single array
* element. If any of the items are double subscripts (lower:upper), then
* the subscript expression means an array slice operation. In this case,
* we supply a default lower bound of 1 for any items that contain only a
* single subscript. We have to prescan the indirection list to see if
* there are any double subscripts.
*/
foreach(idx, indirection)
{
A_Indices *ai = (A_Indices *) lfirst(idx);
if (ai->lidx != NULL)
{
isSlice = true;
break;
}
}
/*
* The type represented by the subscript expression is the element type if
* we are fetching a single element, but it is the same as the array type
* if we are fetching a slice or storing.
*/
if (isSlice || assignFrom != NULL)
resultType = arrayType;
else
resultType = elementType;
/*
* Transform the subscript expressions.
*/
foreach(idx, indirection)
{
A_Indices *ai = (A_Indices *) lfirst(idx);
Node *subexpr;
Assert(IsA(ai, A_Indices));
if (isSlice)
{
if (ai->lidx)
{
subexpr = transformExpr(pstate, ai->lidx);
/* If it's not int4 already, try to coerce */
subexpr = coerce_to_target_type(pstate,
subexpr, exprType(subexpr),
INT4OID, -1,
COERCION_ASSIGNMENT,
COERCE_IMPLICIT_CAST);
if (subexpr == NULL)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("array subscript must have type integer")));
}
else
{
/* Make a constant 1 */
subexpr = (Node *) makeConst(INT4OID,
sizeof(int32),
Int32GetDatum(1),
false,
true); /* pass by value */
}
lowerIndexpr = lappend(lowerIndexpr, subexpr);
}
subexpr = transformExpr(pstate, ai->uidx);
/* If it's not int4 already, try to coerce */
subexpr = coerce_to_target_type(pstate,
subexpr, exprType(subexpr),
INT4OID, -1,
COERCION_ASSIGNMENT,
COERCE_IMPLICIT_CAST);
if (subexpr == NULL)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("array subscript must have type integer")));
upperIndexpr = lappend(upperIndexpr, subexpr);
}
/*
* If doing an array store, coerce the source value to the right type.
* (This should agree with the coercion done by updateTargetListEntry.)
*/
if (assignFrom != NULL)
{
Oid typesource = exprType(assignFrom);
Oid typeneeded = isSlice ? arrayType : elementType;
assignFrom = coerce_to_target_type(pstate,
assignFrom, typesource,
typeneeded, elementTypMod,
COERCION_ASSIGNMENT,
COERCE_IMPLICIT_CAST);
if (assignFrom == NULL)
ereport(ERROR,
(errcode(ERRCODE_DATATYPE_MISMATCH),
errmsg("array assignment requires type %s"
" but expression is of type %s",
format_type_be(typeneeded),
format_type_be(typesource)),
errhint("You will need to rewrite or cast the expression.")));
}
/*
* Ready to build the ArrayRef node.
*/
aref = makeNode(ArrayRef);
aref->refrestype = resultType;
aref->refarraytype = arrayType;
aref->refelemtype = elementType;
aref->refupperindexpr = upperIndexpr;
aref->reflowerindexpr = lowerIndexpr;
aref->refexpr = (Expr *) arrayBase;
aref->refassgnexpr = (Expr *) assignFrom;
return aref;
}
/*
* make_const
*
* Convert a Value node (as returned by the grammar) to a Const node
* of the "natural" type for the constant. Note that this routine is
* only used when there is no explicit cast for the constant, so we
* have to guess what type is wanted.
*
* For string literals we produce a constant of type UNKNOWN ---- whose
* representation is the same as cstring, but it indicates to later type
* resolution that we're not sure yet what type it should be considered.
* Explicit "NULL" constants are also typed as UNKNOWN.
*
* For integers and floats we produce int4, int8, or numeric depending
* on the value of the number. XXX We should produce int2 as well,
* but additional cleanup is needed before we can do that; there are
* too many examples that fail if we try.
*/
Const *
make_const(Value *value)
{
Datum val;
int64 val64;
Oid typeid;
int typelen;
bool typebyval;
Const *con;
switch (nodeTag(value))
{
case T_Integer:
val = Int32GetDatum(intVal(value));
typeid = INT4OID;
typelen = sizeof(int32);
typebyval = true;
break;
case T_Float:
/* could be an oversize integer as well as a float ... */
if (scanint8(strVal(value), true, &val64))
{
/*
* It might actually fit in int32. Probably only INT_MIN can
* occur, but we'll code the test generally just to be sure.
*/
int32 val32 = (int32) val64;
if (val64 == (int64) val32)
{
val = Int32GetDatum(val32);
typeid = INT4OID;
typelen = sizeof(int32);
typebyval = true;
}
else
{
val = Int64GetDatum(val64);
typeid = INT8OID;
typelen = sizeof(int64);
typebyval = false; /* XXX might change someday */
}
}
else
{
val = DirectFunctionCall3(numeric_in,
CStringGetDatum(strVal(value)),
ObjectIdGetDatum(InvalidOid),
Int32GetDatum(-1));
typeid = NUMERICOID;
typelen = -1; /* variable len */
typebyval = false;
}
break;
case T_String:
/*
* We assume here that UNKNOWN's internal representation is the
* same as CSTRING
*/
val = CStringGetDatum(strVal(value));
typeid = UNKNOWNOID; /* will be coerced later */
typelen = -2; /* cstring-style varwidth type */
typebyval = false;
break;
case T_BitString:
val = DirectFunctionCall3(bit_in,
CStringGetDatum(strVal(value)),
ObjectIdGetDatum(InvalidOid),
Int32GetDatum(-1));
typeid = BITOID;
typelen = -1;
typebyval = false;
break;
case T_Null:
/* return a null const */
con = makeConst(UNKNOWNOID,
-2,
(Datum) 0,
true,
false);
return con;
default:
elog(ERROR, "unrecognized node type: %d", (int) nodeTag(value));
return NULL; /* keep compiler quiet */
}
con = makeConst(typeid,
typelen,
val,
false,
typebyval);
return con;
}