postgresql/src/backend/access/spgist/spgutils.c

1344 lines
37 KiB
C

/*-------------------------------------------------------------------------
*
* spgutils.c
* various support functions for SP-GiST
*
*
* Portions Copyright (c) 1996-2023, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/spgist/spgutils.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/amvalidate.h"
#include "access/htup_details.h"
#include "access/reloptions.h"
#include "access/spgist_private.h"
#include "access/toast_compression.h"
#include "access/transam.h"
#include "access/xact.h"
#include "catalog/pg_amop.h"
#include "commands/vacuum.h"
#include "nodes/nodeFuncs.h"
#include "parser/parse_coerce.h"
#include "storage/bufmgr.h"
#include "storage/indexfsm.h"
#include "storage/lmgr.h"
#include "utils/builtins.h"
#include "utils/catcache.h"
#include "utils/index_selfuncs.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
/*
* SP-GiST handler function: return IndexAmRoutine with access method parameters
* and callbacks.
*/
Datum
spghandler(PG_FUNCTION_ARGS)
{
IndexAmRoutine *amroutine = makeNode(IndexAmRoutine);
amroutine->amstrategies = 0;
amroutine->amsupport = SPGISTNProc;
amroutine->amoptsprocnum = SPGIST_OPTIONS_PROC;
amroutine->amcanorder = false;
amroutine->amcanorderbyop = true;
amroutine->amcanbackward = false;
amroutine->amcanunique = false;
amroutine->amcanmulticol = false;
amroutine->amoptionalkey = true;
amroutine->amsearcharray = false;
amroutine->amsearchnulls = true;
amroutine->amstorage = true;
amroutine->amclusterable = false;
amroutine->ampredlocks = false;
amroutine->amcanparallel = false;
amroutine->amcanbuildparallel = false;
amroutine->amcaninclude = true;
amroutine->amusemaintenanceworkmem = false;
amroutine->amsummarizing = false;
amroutine->amparallelvacuumoptions =
VACUUM_OPTION_PARALLEL_BULKDEL | VACUUM_OPTION_PARALLEL_COND_CLEANUP;
amroutine->amkeytype = InvalidOid;
amroutine->ambuild = spgbuild;
amroutine->ambuildempty = spgbuildempty;
amroutine->aminsert = spginsert;
amroutine->aminsertcleanup = NULL;
amroutine->ambulkdelete = spgbulkdelete;
amroutine->amvacuumcleanup = spgvacuumcleanup;
amroutine->amcanreturn = spgcanreturn;
amroutine->amcostestimate = spgcostestimate;
amroutine->amoptions = spgoptions;
amroutine->amproperty = spgproperty;
amroutine->ambuildphasename = NULL;
amroutine->amvalidate = spgvalidate;
amroutine->amadjustmembers = spgadjustmembers;
amroutine->ambeginscan = spgbeginscan;
amroutine->amrescan = spgrescan;
amroutine->amgettuple = spggettuple;
amroutine->amgetbitmap = spggetbitmap;
amroutine->amendscan = spgendscan;
amroutine->ammarkpos = NULL;
amroutine->amrestrpos = NULL;
amroutine->amestimateparallelscan = NULL;
amroutine->aminitparallelscan = NULL;
amroutine->amparallelrescan = NULL;
PG_RETURN_POINTER(amroutine);
}
/*
* GetIndexInputType
* Determine the nominal input data type for an index column
*
* We define the "nominal" input type as the associated opclass's opcintype,
* or if that is a polymorphic type, the base type of the heap column or
* expression that is the index's input. The reason for preferring the
* opcintype is that non-polymorphic opclasses probably don't want to hear
* about binary-compatible input types. For instance, if a text opclass
* is being used with a varchar heap column, we want to report "text" not
* "varchar". Likewise, opclasses don't want to hear about domain types,
* so if we do consult the actual input type, we make sure to flatten domains.
*
* At some point maybe this should go somewhere else, but it's not clear
* if any other index AMs have a use for it.
*/
static Oid
GetIndexInputType(Relation index, AttrNumber indexcol)
{
Oid opcintype;
AttrNumber heapcol;
List *indexprs;
ListCell *indexpr_item;
Assert(index->rd_index != NULL);
Assert(indexcol > 0 && indexcol <= index->rd_index->indnkeyatts);
opcintype = index->rd_opcintype[indexcol - 1];
if (!IsPolymorphicType(opcintype))
return opcintype;
heapcol = index->rd_index->indkey.values[indexcol - 1];
if (heapcol != 0) /* Simple index column? */
return getBaseType(get_atttype(index->rd_index->indrelid, heapcol));
/*
* If the index expressions are already cached, skip calling
* RelationGetIndexExpressions, as it will make a copy which is overkill.
* We're not going to modify the trees, and we're not going to do anything
* that would invalidate the relcache entry before we're done.
*/
if (index->rd_indexprs)
indexprs = index->rd_indexprs;
else
indexprs = RelationGetIndexExpressions(index);
indexpr_item = list_head(indexprs);
for (int i = 1; i <= index->rd_index->indnkeyatts; i++)
{
if (index->rd_index->indkey.values[i - 1] == 0)
{
/* expression column */
if (indexpr_item == NULL)
elog(ERROR, "wrong number of index expressions");
if (i == indexcol)
return getBaseType(exprType((Node *) lfirst(indexpr_item)));
indexpr_item = lnext(indexprs, indexpr_item);
}
}
elog(ERROR, "wrong number of index expressions");
return InvalidOid; /* keep compiler quiet */
}
/* Fill in a SpGistTypeDesc struct with info about the specified data type */
static void
fillTypeDesc(SpGistTypeDesc *desc, Oid type)
{
HeapTuple tp;
Form_pg_type typtup;
desc->type = type;
tp = SearchSysCache1(TYPEOID, ObjectIdGetDatum(type));
if (!HeapTupleIsValid(tp))
elog(ERROR, "cache lookup failed for type %u", type);
typtup = (Form_pg_type) GETSTRUCT(tp);
desc->attlen = typtup->typlen;
desc->attbyval = typtup->typbyval;
desc->attalign = typtup->typalign;
desc->attstorage = typtup->typstorage;
ReleaseSysCache(tp);
}
/*
* Fetch local cache of AM-specific info about the index, initializing it
* if necessary
*/
SpGistCache *
spgGetCache(Relation index)
{
SpGistCache *cache;
if (index->rd_amcache == NULL)
{
Oid atttype;
spgConfigIn in;
FmgrInfo *procinfo;
Buffer metabuffer;
SpGistMetaPageData *metadata;
cache = MemoryContextAllocZero(index->rd_indexcxt,
sizeof(SpGistCache));
/* SPGiST must have one key column and can also have INCLUDE columns */
Assert(IndexRelationGetNumberOfKeyAttributes(index) == 1);
Assert(IndexRelationGetNumberOfAttributes(index) <= INDEX_MAX_KEYS);
/*
* Get the actual (well, nominal) data type of the key column. We
* pass this to the opclass config function so that polymorphic
* opclasses are possible.
*/
atttype = GetIndexInputType(index, spgKeyColumn + 1);
/* Call the config function to get config info for the opclass */
in.attType = atttype;
procinfo = index_getprocinfo(index, 1, SPGIST_CONFIG_PROC);
FunctionCall2Coll(procinfo,
index->rd_indcollation[spgKeyColumn],
PointerGetDatum(&in),
PointerGetDatum(&cache->config));
/*
* If leafType isn't specified, use the declared index column type,
* which index.c will have derived from the opclass's opcintype.
* (Although we now make spgvalidate.c warn if these aren't the same,
* old user-defined opclasses may not set the STORAGE parameter
* correctly, so believe leafType if it's given.)
*/
if (!OidIsValid(cache->config.leafType))
{
cache->config.leafType =
TupleDescAttr(RelationGetDescr(index), spgKeyColumn)->atttypid;
/*
* If index column type is binary-coercible to atttype (for
* example, it's a domain over atttype), treat it as plain atttype
* to avoid thinking we need to compress.
*/
if (cache->config.leafType != atttype &&
IsBinaryCoercible(cache->config.leafType, atttype))
cache->config.leafType = atttype;
}
/* Get the information we need about each relevant datatype */
fillTypeDesc(&cache->attType, atttype);
if (cache->config.leafType != atttype)
{
if (!OidIsValid(index_getprocid(index, 1, SPGIST_COMPRESS_PROC)))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("compress method must be defined when leaf type is different from input type")));
fillTypeDesc(&cache->attLeafType, cache->config.leafType);
}
else
{
/* Save lookups in this common case */
cache->attLeafType = cache->attType;
}
fillTypeDesc(&cache->attPrefixType, cache->config.prefixType);
fillTypeDesc(&cache->attLabelType, cache->config.labelType);
/* Last, get the lastUsedPages data from the metapage */
metabuffer = ReadBuffer(index, SPGIST_METAPAGE_BLKNO);
LockBuffer(metabuffer, BUFFER_LOCK_SHARE);
metadata = SpGistPageGetMeta(BufferGetPage(metabuffer));
if (metadata->magicNumber != SPGIST_MAGIC_NUMBER)
elog(ERROR, "index \"%s\" is not an SP-GiST index",
RelationGetRelationName(index));
cache->lastUsedPages = metadata->lastUsedPages;
UnlockReleaseBuffer(metabuffer);
index->rd_amcache = (void *) cache;
}
else
{
/* assume it's up to date */
cache = (SpGistCache *) index->rd_amcache;
}
return cache;
}
/*
* Compute a tuple descriptor for leaf tuples or index-only-scan result tuples.
*
* We can use the relcache's tupdesc as-is in many cases, and it's always
* OK so far as any INCLUDE columns are concerned. However, the entry for
* the key column has to match leafType in the first case or attType in the
* second case. While the relcache's tupdesc *should* show leafType, this
* might not hold for legacy user-defined opclasses, since before v14 they
* were not allowed to declare their true storage type in CREATE OPCLASS.
* Also, attType can be different from what is in the relcache.
*
* This function gives back either a pointer to the relcache's tupdesc
* if that is suitable, or a palloc'd copy that's been adjusted to match
* the specified key column type. We can avoid doing any catalog lookups
* here by insisting that the caller pass an SpGistTypeDesc not just an OID.
*/
TupleDesc
getSpGistTupleDesc(Relation index, SpGistTypeDesc *keyType)
{
TupleDesc outTupDesc;
Form_pg_attribute att;
if (keyType->type ==
TupleDescAttr(RelationGetDescr(index), spgKeyColumn)->atttypid)
outTupDesc = RelationGetDescr(index);
else
{
outTupDesc = CreateTupleDescCopy(RelationGetDescr(index));
att = TupleDescAttr(outTupDesc, spgKeyColumn);
/* It's sufficient to update the type-dependent fields of the column */
att->atttypid = keyType->type;
att->atttypmod = -1;
att->attlen = keyType->attlen;
att->attbyval = keyType->attbyval;
att->attalign = keyType->attalign;
att->attstorage = keyType->attstorage;
/* We shouldn't need to bother with making these valid: */
att->attcompression = InvalidCompressionMethod;
att->attcollation = InvalidOid;
/* In case we changed typlen, we'd better reset following offsets */
for (int i = spgFirstIncludeColumn; i < outTupDesc->natts; i++)
TupleDescAttr(outTupDesc, i)->attcacheoff = -1;
}
return outTupDesc;
}
/* Initialize SpGistState for working with the given index */
void
initSpGistState(SpGistState *state, Relation index)
{
SpGistCache *cache;
state->index = index;
/* Get cached static information about index */
cache = spgGetCache(index);
state->config = cache->config;
state->attType = cache->attType;
state->attLeafType = cache->attLeafType;
state->attPrefixType = cache->attPrefixType;
state->attLabelType = cache->attLabelType;
/* Ensure we have a valid descriptor for leaf tuples */
state->leafTupDesc = getSpGistTupleDesc(state->index, &state->attLeafType);
/* Make workspace for constructing dead tuples */
state->deadTupleStorage = palloc0(SGDTSIZE);
/* Set XID to use in redirection tuples */
state->myXid = GetTopTransactionIdIfAny();
/* Assume we're not in an index build (spgbuild will override) */
state->isBuild = false;
}
/*
* Allocate a new page (either by recycling, or by extending the index file).
*
* The returned buffer is already pinned and exclusive-locked.
* Caller is responsible for initializing the page by calling SpGistInitBuffer.
*/
Buffer
SpGistNewBuffer(Relation index)
{
Buffer buffer;
/* First, try to get a page from FSM */
for (;;)
{
BlockNumber blkno = GetFreeIndexPage(index);
if (blkno == InvalidBlockNumber)
break; /* nothing known to FSM */
/*
* The fixed pages shouldn't ever be listed in FSM, but just in case
* one is, ignore it.
*/
if (SpGistBlockIsFixed(blkno))
continue;
buffer = ReadBuffer(index, blkno);
/*
* We have to guard against the possibility that someone else already
* recycled this page; the buffer may be locked if so.
*/
if (ConditionalLockBuffer(buffer))
{
Page page = BufferGetPage(buffer);
if (PageIsNew(page))
return buffer; /* OK to use, if never initialized */
if (SpGistPageIsDeleted(page) || PageIsEmpty(page))
return buffer; /* OK to use */
LockBuffer(buffer, BUFFER_LOCK_UNLOCK);
}
/* Can't use it, so release buffer and try again */
ReleaseBuffer(buffer);
}
buffer = ExtendBufferedRel(BMR_REL(index), MAIN_FORKNUM, NULL,
EB_LOCK_FIRST);
return buffer;
}
/*
* Update index metapage's lastUsedPages info from local cache, if possible
*
* Updating meta page isn't critical for index working, so
* 1 use ConditionalLockBuffer to improve concurrency
* 2 don't WAL-log metabuffer changes to decrease WAL traffic
*/
void
SpGistUpdateMetaPage(Relation index)
{
SpGistCache *cache = (SpGistCache *) index->rd_amcache;
if (cache != NULL)
{
Buffer metabuffer;
metabuffer = ReadBuffer(index, SPGIST_METAPAGE_BLKNO);
if (ConditionalLockBuffer(metabuffer))
{
Page metapage = BufferGetPage(metabuffer);
SpGistMetaPageData *metadata = SpGistPageGetMeta(metapage);
metadata->lastUsedPages = cache->lastUsedPages;
/*
* Set pd_lower just past the end of the metadata. This is
* essential, because without doing so, metadata will be lost if
* xlog.c compresses the page. (We must do this here because
* pre-v11 versions of PG did not set the metapage's pd_lower
* correctly, so a pg_upgraded index might contain the wrong
* value.)
*/
((PageHeader) metapage)->pd_lower =
((char *) metadata + sizeof(SpGistMetaPageData)) - (char *) metapage;
MarkBufferDirty(metabuffer);
UnlockReleaseBuffer(metabuffer);
}
else
{
ReleaseBuffer(metabuffer);
}
}
}
/* Macro to select proper element of lastUsedPages cache depending on flags */
/* Masking flags with SPGIST_CACHED_PAGES is just for paranoia's sake */
#define GET_LUP(c, f) (&(c)->lastUsedPages.cachedPage[((unsigned int) (f)) % SPGIST_CACHED_PAGES])
/*
* Allocate and initialize a new buffer of the type and parity specified by
* flags. The returned buffer is already pinned and exclusive-locked.
*
* When requesting an inner page, if we get one with the wrong parity,
* we just release the buffer and try again. We will get a different page
* because GetFreeIndexPage will have marked the page used in FSM. The page
* is entered in our local lastUsedPages cache, so there's some hope of
* making use of it later in this session, but otherwise we rely on VACUUM
* to eventually re-enter the page in FSM, making it available for recycling.
* Note that such a page does not get marked dirty here, so unless it's used
* fairly soon, the buffer will just get discarded and the page will remain
* as it was on disk.
*
* When we return a buffer to the caller, the page is *not* entered into
* the lastUsedPages cache; we expect the caller will do so after it's taken
* whatever space it will use. This is because after the caller has used up
* some space, the page might have less space than whatever was cached already
* so we'd rather not trash the old cache entry.
*/
static Buffer
allocNewBuffer(Relation index, int flags)
{
SpGistCache *cache = spgGetCache(index);
uint16 pageflags = 0;
if (GBUF_REQ_LEAF(flags))
pageflags |= SPGIST_LEAF;
if (GBUF_REQ_NULLS(flags))
pageflags |= SPGIST_NULLS;
for (;;)
{
Buffer buffer;
buffer = SpGistNewBuffer(index);
SpGistInitBuffer(buffer, pageflags);
if (pageflags & SPGIST_LEAF)
{
/* Leaf pages have no parity concerns, so just use it */
return buffer;
}
else
{
BlockNumber blkno = BufferGetBlockNumber(buffer);
int blkFlags = GBUF_INNER_PARITY(blkno);
if ((flags & GBUF_PARITY_MASK) == blkFlags)
{
/* Page has right parity, use it */
return buffer;
}
else
{
/* Page has wrong parity, record it in cache and try again */
if (pageflags & SPGIST_NULLS)
blkFlags |= GBUF_NULLS;
cache->lastUsedPages.cachedPage[blkFlags].blkno = blkno;
cache->lastUsedPages.cachedPage[blkFlags].freeSpace =
PageGetExactFreeSpace(BufferGetPage(buffer));
UnlockReleaseBuffer(buffer);
}
}
}
}
/*
* Get a buffer of the type and parity specified by flags, having at least
* as much free space as indicated by needSpace. We use the lastUsedPages
* cache to assign the same buffer previously requested when possible.
* The returned buffer is already pinned and exclusive-locked.
*
* *isNew is set true if the page was initialized here, false if it was
* already valid.
*/
Buffer
SpGistGetBuffer(Relation index, int flags, int needSpace, bool *isNew)
{
SpGistCache *cache = spgGetCache(index);
SpGistLastUsedPage *lup;
/* Bail out if even an empty page wouldn't meet the demand */
if (needSpace > SPGIST_PAGE_CAPACITY)
elog(ERROR, "desired SPGiST tuple size is too big");
/*
* If possible, increase the space request to include relation's
* fillfactor. This ensures that when we add unrelated tuples to a page,
* we try to keep 100-fillfactor% available for adding tuples that are
* related to the ones already on it. But fillfactor mustn't cause an
* error for requests that would otherwise be legal.
*/
needSpace += SpGistGetTargetPageFreeSpace(index);
needSpace = Min(needSpace, SPGIST_PAGE_CAPACITY);
/* Get the cache entry for this flags setting */
lup = GET_LUP(cache, flags);
/* If we have nothing cached, just turn it over to allocNewBuffer */
if (lup->blkno == InvalidBlockNumber)
{
*isNew = true;
return allocNewBuffer(index, flags);
}
/* fixed pages should never be in cache */
Assert(!SpGistBlockIsFixed(lup->blkno));
/* If cached freeSpace isn't enough, don't bother looking at the page */
if (lup->freeSpace >= needSpace)
{
Buffer buffer;
Page page;
buffer = ReadBuffer(index, lup->blkno);
if (!ConditionalLockBuffer(buffer))
{
/*
* buffer is locked by another process, so return a new buffer
*/
ReleaseBuffer(buffer);
*isNew = true;
return allocNewBuffer(index, flags);
}
page = BufferGetPage(buffer);
if (PageIsNew(page) || SpGistPageIsDeleted(page) || PageIsEmpty(page))
{
/* OK to initialize the page */
uint16 pageflags = 0;
if (GBUF_REQ_LEAF(flags))
pageflags |= SPGIST_LEAF;
if (GBUF_REQ_NULLS(flags))
pageflags |= SPGIST_NULLS;
SpGistInitBuffer(buffer, pageflags);
lup->freeSpace = PageGetExactFreeSpace(page) - needSpace;
*isNew = true;
return buffer;
}
/*
* Check that page is of right type and has enough space. We must
* recheck this since our cache isn't necessarily up to date.
*/
if ((GBUF_REQ_LEAF(flags) ? SpGistPageIsLeaf(page) : !SpGistPageIsLeaf(page)) &&
(GBUF_REQ_NULLS(flags) ? SpGistPageStoresNulls(page) : !SpGistPageStoresNulls(page)))
{
int freeSpace = PageGetExactFreeSpace(page);
if (freeSpace >= needSpace)
{
/* Success, update freespace info and return the buffer */
lup->freeSpace = freeSpace - needSpace;
*isNew = false;
return buffer;
}
}
/*
* fallback to allocation of new buffer
*/
UnlockReleaseBuffer(buffer);
}
/* No success with cache, so return a new buffer */
*isNew = true;
return allocNewBuffer(index, flags);
}
/*
* Update lastUsedPages cache when done modifying a page.
*
* We update the appropriate cache entry if it already contained this page
* (its freeSpace is likely obsolete), or if this page has more space than
* whatever we had cached.
*/
void
SpGistSetLastUsedPage(Relation index, Buffer buffer)
{
SpGistCache *cache = spgGetCache(index);
SpGistLastUsedPage *lup;
int freeSpace;
Page page = BufferGetPage(buffer);
BlockNumber blkno = BufferGetBlockNumber(buffer);
int flags;
/* Never enter fixed pages (root pages) in cache, though */
if (SpGistBlockIsFixed(blkno))
return;
if (SpGistPageIsLeaf(page))
flags = GBUF_LEAF;
else
flags = GBUF_INNER_PARITY(blkno);
if (SpGistPageStoresNulls(page))
flags |= GBUF_NULLS;
lup = GET_LUP(cache, flags);
freeSpace = PageGetExactFreeSpace(page);
if (lup->blkno == InvalidBlockNumber || lup->blkno == blkno ||
lup->freeSpace < freeSpace)
{
lup->blkno = blkno;
lup->freeSpace = freeSpace;
}
}
/*
* Initialize an SPGiST page to empty, with specified flags
*/
void
SpGistInitPage(Page page, uint16 f)
{
SpGistPageOpaque opaque;
PageInit(page, BLCKSZ, sizeof(SpGistPageOpaqueData));
opaque = SpGistPageGetOpaque(page);
opaque->flags = f;
opaque->spgist_page_id = SPGIST_PAGE_ID;
}
/*
* Initialize a buffer's page to empty, with specified flags
*/
void
SpGistInitBuffer(Buffer b, uint16 f)
{
Assert(BufferGetPageSize(b) == BLCKSZ);
SpGistInitPage(BufferGetPage(b), f);
}
/*
* Initialize metadata page
*/
void
SpGistInitMetapage(Page page)
{
SpGistMetaPageData *metadata;
int i;
SpGistInitPage(page, SPGIST_META);
metadata = SpGistPageGetMeta(page);
memset(metadata, 0, sizeof(SpGistMetaPageData));
metadata->magicNumber = SPGIST_MAGIC_NUMBER;
/* initialize last-used-page cache to empty */
for (i = 0; i < SPGIST_CACHED_PAGES; i++)
metadata->lastUsedPages.cachedPage[i].blkno = InvalidBlockNumber;
/*
* Set pd_lower just past the end of the metadata. This is essential,
* because without doing so, metadata will be lost if xlog.c compresses
* the page.
*/
((PageHeader) page)->pd_lower =
((char *) metadata + sizeof(SpGistMetaPageData)) - (char *) page;
}
/*
* reloptions processing for SPGiST
*/
bytea *
spgoptions(Datum reloptions, bool validate)
{
static const relopt_parse_elt tab[] = {
{"fillfactor", RELOPT_TYPE_INT, offsetof(SpGistOptions, fillfactor)},
};
return (bytea *) build_reloptions(reloptions, validate,
RELOPT_KIND_SPGIST,
sizeof(SpGistOptions),
tab, lengthof(tab));
}
/*
* Get the space needed to store a non-null datum of the indicated type
* in an inner tuple (that is, as a prefix or node label).
* Note the result is already rounded up to a MAXALIGN boundary.
* Here we follow the convention that pass-by-val types are just stored
* in their Datum representation (compare memcpyInnerDatum).
*/
unsigned int
SpGistGetInnerTypeSize(SpGistTypeDesc *att, Datum datum)
{
unsigned int size;
if (att->attbyval)
size = sizeof(Datum);
else if (att->attlen > 0)
size = att->attlen;
else
size = VARSIZE_ANY(datum);
return MAXALIGN(size);
}
/*
* Copy the given non-null datum to *target, in the inner-tuple case
*/
static void
memcpyInnerDatum(void *target, SpGistTypeDesc *att, Datum datum)
{
unsigned int size;
if (att->attbyval)
{
memcpy(target, &datum, sizeof(Datum));
}
else
{
size = (att->attlen > 0) ? att->attlen : VARSIZE_ANY(datum);
memcpy(target, DatumGetPointer(datum), size);
}
}
/*
* Compute space required for a leaf tuple holding the given data.
*
* This must match the size-calculation portion of spgFormLeafTuple.
*/
Size
SpGistGetLeafTupleSize(TupleDesc tupleDescriptor,
const Datum *datums, const bool *isnulls)
{
Size size;
Size data_size;
bool needs_null_mask = false;
int natts = tupleDescriptor->natts;
/*
* Decide whether we need a nulls bitmask.
*
* If there is only a key attribute (natts == 1), never use a bitmask, for
* compatibility with the pre-v14 layout of leaf tuples. Otherwise, we
* need one if any attribute is null.
*/
if (natts > 1)
{
for (int i = 0; i < natts; i++)
{
if (isnulls[i])
{
needs_null_mask = true;
break;
}
}
}
/*
* Calculate size of the data part; same as for heap tuples.
*/
data_size = heap_compute_data_size(tupleDescriptor, datums, isnulls);
/*
* Compute total size.
*/
size = SGLTHDRSZ(needs_null_mask);
size += data_size;
size = MAXALIGN(size);
/*
* Ensure that we can replace the tuple with a dead tuple later. This test
* is unnecessary when there are any non-null attributes, but be safe.
*/
if (size < SGDTSIZE)
size = SGDTSIZE;
return size;
}
/*
* Construct a leaf tuple containing the given heap TID and datum values
*/
SpGistLeafTuple
spgFormLeafTuple(SpGistState *state, ItemPointer heapPtr,
const Datum *datums, const bool *isnulls)
{
SpGistLeafTuple tup;
TupleDesc tupleDescriptor = state->leafTupDesc;
Size size;
Size hoff;
Size data_size;
bool needs_null_mask = false;
int natts = tupleDescriptor->natts;
char *tp; /* ptr to tuple data */
uint16 tupmask = 0; /* unused heap_fill_tuple output */
/*
* Decide whether we need a nulls bitmask.
*
* If there is only a key attribute (natts == 1), never use a bitmask, for
* compatibility with the pre-v14 layout of leaf tuples. Otherwise, we
* need one if any attribute is null.
*/
if (natts > 1)
{
for (int i = 0; i < natts; i++)
{
if (isnulls[i])
{
needs_null_mask = true;
break;
}
}
}
/*
* Calculate size of the data part; same as for heap tuples.
*/
data_size = heap_compute_data_size(tupleDescriptor, datums, isnulls);
/*
* Compute total size.
*/
hoff = SGLTHDRSZ(needs_null_mask);
size = hoff + data_size;
size = MAXALIGN(size);
/*
* Ensure that we can replace the tuple with a dead tuple later. This test
* is unnecessary when there are any non-null attributes, but be safe.
*/
if (size < SGDTSIZE)
size = SGDTSIZE;
/* OK, form the tuple */
tup = (SpGistLeafTuple) palloc0(size);
tup->size = size;
SGLT_SET_NEXTOFFSET(tup, InvalidOffsetNumber);
tup->heapPtr = *heapPtr;
tp = (char *) tup + hoff;
if (needs_null_mask)
{
bits8 *bp; /* ptr to null bitmap in tuple */
/* Set nullmask presence bit in SpGistLeafTuple header */
SGLT_SET_HASNULLMASK(tup, true);
/* Fill the data area and null mask */
bp = (bits8 *) ((char *) tup + sizeof(SpGistLeafTupleData));
heap_fill_tuple(tupleDescriptor, datums, isnulls, tp, data_size,
&tupmask, bp);
}
else if (natts > 1 || !isnulls[spgKeyColumn])
{
/* Fill data area only */
heap_fill_tuple(tupleDescriptor, datums, isnulls, tp, data_size,
&tupmask, (bits8 *) NULL);
}
/* otherwise we have no data, nor a bitmap, to fill */
return tup;
}
/*
* Construct a node (to go into an inner tuple) containing the given label
*
* Note that the node's downlink is just set invalid here. Caller will fill
* it in later.
*/
SpGistNodeTuple
spgFormNodeTuple(SpGistState *state, Datum label, bool isnull)
{
SpGistNodeTuple tup;
unsigned int size;
unsigned short infomask = 0;
/* compute space needed (note result is already maxaligned) */
size = SGNTHDRSZ;
if (!isnull)
size += SpGistGetInnerTypeSize(&state->attLabelType, label);
/*
* Here we make sure that the size will fit in the field reserved for it
* in t_info.
*/
if ((size & INDEX_SIZE_MASK) != size)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("index row requires %zu bytes, maximum size is %zu",
(Size) size, (Size) INDEX_SIZE_MASK)));
tup = (SpGistNodeTuple) palloc0(size);
if (isnull)
infomask |= INDEX_NULL_MASK;
/* we don't bother setting the INDEX_VAR_MASK bit */
infomask |= size;
tup->t_info = infomask;
/* The TID field will be filled in later */
ItemPointerSetInvalid(&tup->t_tid);
if (!isnull)
memcpyInnerDatum(SGNTDATAPTR(tup), &state->attLabelType, label);
return tup;
}
/*
* Construct an inner tuple containing the given prefix and node array
*/
SpGistInnerTuple
spgFormInnerTuple(SpGistState *state, bool hasPrefix, Datum prefix,
int nNodes, SpGistNodeTuple *nodes)
{
SpGistInnerTuple tup;
unsigned int size;
unsigned int prefixSize;
int i;
char *ptr;
/* Compute size needed */
if (hasPrefix)
prefixSize = SpGistGetInnerTypeSize(&state->attPrefixType, prefix);
else
prefixSize = 0;
size = SGITHDRSZ + prefixSize;
/* Note: we rely on node tuple sizes to be maxaligned already */
for (i = 0; i < nNodes; i++)
size += IndexTupleSize(nodes[i]);
/*
* Ensure that we can replace the tuple with a dead tuple later. This
* test is unnecessary given current tuple layouts, but let's be safe.
*/
if (size < SGDTSIZE)
size = SGDTSIZE;
/*
* Inner tuple should be small enough to fit on a page
*/
if (size > SPGIST_PAGE_CAPACITY - sizeof(ItemIdData))
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg("SP-GiST inner tuple size %zu exceeds maximum %zu",
(Size) size,
SPGIST_PAGE_CAPACITY - sizeof(ItemIdData)),
errhint("Values larger than a buffer page cannot be indexed.")));
/*
* Check for overflow of header fields --- probably can't fail if the
* above succeeded, but let's be paranoid
*/
if (size > SGITMAXSIZE ||
prefixSize > SGITMAXPREFIXSIZE ||
nNodes > SGITMAXNNODES)
elog(ERROR, "SPGiST inner tuple header field is too small");
/* OK, form the tuple */
tup = (SpGistInnerTuple) palloc0(size);
tup->nNodes = nNodes;
tup->prefixSize = prefixSize;
tup->size = size;
if (hasPrefix)
memcpyInnerDatum(SGITDATAPTR(tup), &state->attPrefixType, prefix);
ptr = (char *) SGITNODEPTR(tup);
for (i = 0; i < nNodes; i++)
{
SpGistNodeTuple node = nodes[i];
memcpy(ptr, node, IndexTupleSize(node));
ptr += IndexTupleSize(node);
}
return tup;
}
/*
* Construct a "dead" tuple to replace a tuple being deleted.
*
* The state can be SPGIST_REDIRECT, SPGIST_DEAD, or SPGIST_PLACEHOLDER.
* For a REDIRECT tuple, a pointer (blkno+offset) must be supplied, and
* the xid field is filled in automatically.
*
* This is called in critical sections, so we don't use palloc; the tuple
* is built in preallocated storage. It should be copied before another
* call with different parameters can occur.
*/
SpGistDeadTuple
spgFormDeadTuple(SpGistState *state, int tupstate,
BlockNumber blkno, OffsetNumber offnum)
{
SpGistDeadTuple tuple = (SpGistDeadTuple) state->deadTupleStorage;
tuple->tupstate = tupstate;
tuple->size = SGDTSIZE;
SGLT_SET_NEXTOFFSET(tuple, InvalidOffsetNumber);
if (tupstate == SPGIST_REDIRECT)
{
ItemPointerSet(&tuple->pointer, blkno, offnum);
Assert(TransactionIdIsValid(state->myXid));
tuple->xid = state->myXid;
}
else
{
ItemPointerSetInvalid(&tuple->pointer);
tuple->xid = InvalidTransactionId;
}
return tuple;
}
/*
* Convert an SPGiST leaf tuple into Datum/isnull arrays.
*
* The caller must allocate sufficient storage for the output arrays.
* (INDEX_MAX_KEYS entries should be enough.)
*/
void
spgDeformLeafTuple(SpGistLeafTuple tup, TupleDesc tupleDescriptor,
Datum *datums, bool *isnulls, bool keyColumnIsNull)
{
bool hasNullsMask = SGLT_GET_HASNULLMASK(tup);
char *tp; /* ptr to tuple data */
bits8 *bp; /* ptr to null bitmap in tuple */
if (keyColumnIsNull && tupleDescriptor->natts == 1)
{
/*
* Trivial case: there is only the key attribute and we're in a nulls
* tree. The hasNullsMask bit in the tuple header should not be set
* (and thus we can't use index_deform_tuple_internal), but
* nonetheless the result is NULL.
*
* Note: currently this is dead code, because noplace calls this when
* there is only the key attribute. But we should cover the case.
*/
Assert(!hasNullsMask);
datums[spgKeyColumn] = (Datum) 0;
isnulls[spgKeyColumn] = true;
return;
}
tp = (char *) tup + SGLTHDRSZ(hasNullsMask);
bp = (bits8 *) ((char *) tup + sizeof(SpGistLeafTupleData));
index_deform_tuple_internal(tupleDescriptor,
datums, isnulls,
tp, bp, hasNullsMask);
/*
* Key column isnull value from the tuple should be consistent with
* keyColumnIsNull flag from the caller.
*/
Assert(keyColumnIsNull == isnulls[spgKeyColumn]);
}
/*
* Extract the label datums of the nodes within innerTuple
*
* Returns NULL if label datums are NULLs
*/
Datum *
spgExtractNodeLabels(SpGistState *state, SpGistInnerTuple innerTuple)
{
Datum *nodeLabels;
int i;
SpGistNodeTuple node;
/* Either all the labels must be NULL, or none. */
node = SGITNODEPTR(innerTuple);
if (IndexTupleHasNulls(node))
{
SGITITERATE(innerTuple, i, node)
{
if (!IndexTupleHasNulls(node))
elog(ERROR, "some but not all node labels are null in SPGiST inner tuple");
}
/* They're all null, so just return NULL */
return NULL;
}
else
{
nodeLabels = (Datum *) palloc(sizeof(Datum) * innerTuple->nNodes);
SGITITERATE(innerTuple, i, node)
{
if (IndexTupleHasNulls(node))
elog(ERROR, "some but not all node labels are null in SPGiST inner tuple");
nodeLabels[i] = SGNTDATUM(node, state);
}
return nodeLabels;
}
}
/*
* Add a new item to the page, replacing a PLACEHOLDER item if possible.
* Return the location it's inserted at, or InvalidOffsetNumber on failure.
*
* If startOffset isn't NULL, we start searching for placeholders at
* *startOffset, and update that to the next place to search. This is just
* an optimization for repeated insertions.
*
* If errorOK is false, we throw error when there's not enough room,
* rather than returning InvalidOffsetNumber.
*/
OffsetNumber
SpGistPageAddNewItem(SpGistState *state, Page page, Item item, Size size,
OffsetNumber *startOffset, bool errorOK)
{
SpGistPageOpaque opaque = SpGistPageGetOpaque(page);
OffsetNumber i,
maxoff,
offnum;
if (opaque->nPlaceholder > 0 &&
PageGetExactFreeSpace(page) + SGDTSIZE >= MAXALIGN(size))
{
/* Try to replace a placeholder */
maxoff = PageGetMaxOffsetNumber(page);
offnum = InvalidOffsetNumber;
for (;;)
{
if (startOffset && *startOffset != InvalidOffsetNumber)
i = *startOffset;
else
i = FirstOffsetNumber;
for (; i <= maxoff; i++)
{
SpGistDeadTuple it = (SpGistDeadTuple) PageGetItem(page,
PageGetItemId(page, i));
if (it->tupstate == SPGIST_PLACEHOLDER)
{
offnum = i;
break;
}
}
/* Done if we found a placeholder */
if (offnum != InvalidOffsetNumber)
break;
if (startOffset && *startOffset != InvalidOffsetNumber)
{
/* Hint was no good, re-search from beginning */
*startOffset = InvalidOffsetNumber;
continue;
}
/* Hmm, no placeholder found? */
opaque->nPlaceholder = 0;
break;
}
if (offnum != InvalidOffsetNumber)
{
/* Replace the placeholder tuple */
PageIndexTupleDelete(page, offnum);
offnum = PageAddItem(page, item, size, offnum, false, false);
/*
* We should not have failed given the size check at the top of
* the function, but test anyway. If we did fail, we must PANIC
* because we've already deleted the placeholder tuple, and
* there's no other way to keep the damage from getting to disk.
*/
if (offnum != InvalidOffsetNumber)
{
Assert(opaque->nPlaceholder > 0);
opaque->nPlaceholder--;
if (startOffset)
*startOffset = offnum + 1;
}
else
elog(PANIC, "failed to add item of size %zu to SPGiST index page",
size);
return offnum;
}
}
/* No luck in replacing a placeholder, so just add it to the page */
offnum = PageAddItem(page, item, size,
InvalidOffsetNumber, false, false);
if (offnum == InvalidOffsetNumber && !errorOK)
elog(ERROR, "failed to add item of size %zu to SPGiST index page",
size);
return offnum;
}
/*
* spgproperty() -- Check boolean properties of indexes.
*
* This is optional for most AMs, but is required for SP-GiST because the core
* property code doesn't support AMPROP_DISTANCE_ORDERABLE.
*/
bool
spgproperty(Oid index_oid, int attno,
IndexAMProperty prop, const char *propname,
bool *res, bool *isnull)
{
Oid opclass,
opfamily,
opcintype;
CatCList *catlist;
int i;
/* Only answer column-level inquiries */
if (attno == 0)
return false;
switch (prop)
{
case AMPROP_DISTANCE_ORDERABLE:
break;
default:
return false;
}
/*
* Currently, SP-GiST distance-ordered scans require that there be a
* distance operator in the opclass with the default types. So we assume
* that if such an operator exists, then there's a reason for it.
*/
/* First we need to know the column's opclass. */
opclass = get_index_column_opclass(index_oid, attno);
if (!OidIsValid(opclass))
{
*isnull = true;
return true;
}
/* Now look up the opclass family and input datatype. */
if (!get_opclass_opfamily_and_input_type(opclass, &opfamily, &opcintype))
{
*isnull = true;
return true;
}
/* And now we can check whether the operator is provided. */
catlist = SearchSysCacheList1(AMOPSTRATEGY,
ObjectIdGetDatum(opfamily));
*res = false;
for (i = 0; i < catlist->n_members; i++)
{
HeapTuple amoptup = &catlist->members[i]->tuple;
Form_pg_amop amopform = (Form_pg_amop) GETSTRUCT(amoptup);
if (amopform->amoppurpose == AMOP_ORDER &&
(amopform->amoplefttype == opcintype ||
amopform->amoprighttype == opcintype) &&
opfamily_can_sort_type(amopform->amopsortfamily,
get_op_rettype(amopform->amopopr)))
{
*res = true;
break;
}
}
ReleaseSysCacheList(catlist);
*isnull = false;
return true;
}