postgresql/src/backend/access/transam/transam.c
Andres Freund c91560defc Move remaining code from tqual.[ch] to heapam.h / heapam_visibility.c.
Given these routines are heap specific, and that there will be more
generic visibility support in via table AM, it makes sense to move the
prototypes to heapam.h (routines like HeapTupleSatisfiesVacuum will
not be exposed in a generic fashion, because they are too storage
specific).

Similarly, the code in tqual.c is specific to heap, so moving it into
access/heap/ makes sense.

Author: Andres Freund
Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
2019-01-21 17:07:10 -08:00

426 lines
11 KiB
C

/*-------------------------------------------------------------------------
*
* transam.c
* postgres transaction (commit) log interface routines
*
* Portions Copyright (c) 1996-2019, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/access/transam/transam.c
*
* NOTES
* This file contains the high level access-method interface to the
* transaction system.
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/clog.h"
#include "access/subtrans.h"
#include "access/transam.h"
#include "utils/snapmgr.h"
/*
* Single-item cache for results of TransactionLogFetch. It's worth having
* such a cache because we frequently find ourselves repeatedly checking the
* same XID, for example when scanning a table just after a bulk insert,
* update, or delete.
*/
static TransactionId cachedFetchXid = InvalidTransactionId;
static XidStatus cachedFetchXidStatus;
static XLogRecPtr cachedCommitLSN;
/* Local functions */
static XidStatus TransactionLogFetch(TransactionId transactionId);
/* ----------------------------------------------------------------
* Postgres log access method interface
*
* TransactionLogFetch
* ----------------------------------------------------------------
*/
/*
* TransactionLogFetch --- fetch commit status of specified transaction id
*/
static XidStatus
TransactionLogFetch(TransactionId transactionId)
{
XidStatus xidstatus;
XLogRecPtr xidlsn;
/*
* Before going to the commit log manager, check our single item cache to
* see if we didn't just check the transaction status a moment ago.
*/
if (TransactionIdEquals(transactionId, cachedFetchXid))
return cachedFetchXidStatus;
/*
* Also, check to see if the transaction ID is a permanent one.
*/
if (!TransactionIdIsNormal(transactionId))
{
if (TransactionIdEquals(transactionId, BootstrapTransactionId))
return TRANSACTION_STATUS_COMMITTED;
if (TransactionIdEquals(transactionId, FrozenTransactionId))
return TRANSACTION_STATUS_COMMITTED;
return TRANSACTION_STATUS_ABORTED;
}
/*
* Get the transaction status.
*/
xidstatus = TransactionIdGetStatus(transactionId, &xidlsn);
/*
* Cache it, but DO NOT cache status for unfinished or sub-committed
* transactions! We only cache status that is guaranteed not to change.
*/
if (xidstatus != TRANSACTION_STATUS_IN_PROGRESS &&
xidstatus != TRANSACTION_STATUS_SUB_COMMITTED)
{
cachedFetchXid = transactionId;
cachedFetchXidStatus = xidstatus;
cachedCommitLSN = xidlsn;
}
return xidstatus;
}
/* ----------------------------------------------------------------
* Interface functions
*
* TransactionIdDidCommit
* TransactionIdDidAbort
* ========
* these functions test the transaction status of
* a specified transaction id.
*
* TransactionIdCommitTree
* TransactionIdAsyncCommitTree
* TransactionIdAbortTree
* ========
* these functions set the transaction status of the specified
* transaction tree.
*
* See also TransactionIdIsInProgress, which once was in this module
* but now lives in procarray.c.
* ----------------------------------------------------------------
*/
/*
* TransactionIdDidCommit
* True iff transaction associated with the identifier did commit.
*
* Note:
* Assumes transaction identifier is valid and exists in clog.
*/
bool /* true if given transaction committed */
TransactionIdDidCommit(TransactionId transactionId)
{
XidStatus xidstatus;
xidstatus = TransactionLogFetch(transactionId);
/*
* If it's marked committed, it's committed.
*/
if (xidstatus == TRANSACTION_STATUS_COMMITTED)
return true;
/*
* If it's marked subcommitted, we have to check the parent recursively.
* However, if it's older than TransactionXmin, we can't look at
* pg_subtrans; instead assume that the parent crashed without cleaning up
* its children.
*
* Originally we Assert'ed that the result of SubTransGetParent was not
* zero. However with the introduction of prepared transactions, there can
* be a window just after database startup where we do not have complete
* knowledge in pg_subtrans of the transactions after TransactionXmin.
* StartupSUBTRANS() has ensured that any missing information will be
* zeroed. Since this case should not happen under normal conditions, it
* seems reasonable to emit a WARNING for it.
*/
if (xidstatus == TRANSACTION_STATUS_SUB_COMMITTED)
{
TransactionId parentXid;
if (TransactionIdPrecedes(transactionId, TransactionXmin))
return false;
parentXid = SubTransGetParent(transactionId);
if (!TransactionIdIsValid(parentXid))
{
elog(WARNING, "no pg_subtrans entry for subcommitted XID %u",
transactionId);
return false;
}
return TransactionIdDidCommit(parentXid);
}
/*
* It's not committed.
*/
return false;
}
/*
* TransactionIdDidAbort
* True iff transaction associated with the identifier did abort.
*
* Note:
* Assumes transaction identifier is valid and exists in clog.
*/
bool /* true if given transaction aborted */
TransactionIdDidAbort(TransactionId transactionId)
{
XidStatus xidstatus;
xidstatus = TransactionLogFetch(transactionId);
/*
* If it's marked aborted, it's aborted.
*/
if (xidstatus == TRANSACTION_STATUS_ABORTED)
return true;
/*
* If it's marked subcommitted, we have to check the parent recursively.
* However, if it's older than TransactionXmin, we can't look at
* pg_subtrans; instead assume that the parent crashed without cleaning up
* its children.
*/
if (xidstatus == TRANSACTION_STATUS_SUB_COMMITTED)
{
TransactionId parentXid;
if (TransactionIdPrecedes(transactionId, TransactionXmin))
return true;
parentXid = SubTransGetParent(transactionId);
if (!TransactionIdIsValid(parentXid))
{
/* see notes in TransactionIdDidCommit */
elog(WARNING, "no pg_subtrans entry for subcommitted XID %u",
transactionId);
return true;
}
return TransactionIdDidAbort(parentXid);
}
/*
* It's not aborted.
*/
return false;
}
/*
* TransactionIdIsKnownCompleted
* True iff transaction associated with the identifier is currently
* known to have either committed or aborted.
*
* This does NOT look into pg_xact but merely probes our local cache
* (and so it's not named TransactionIdDidComplete, which would be the
* appropriate name for a function that worked that way). The intended
* use is just to short-circuit TransactionIdIsInProgress calls when doing
* repeated heapam_visibility.c checks for the same XID. If this isn't
* extremely fast then it will be counterproductive.
*
* Note:
* Assumes transaction identifier is valid.
*/
bool
TransactionIdIsKnownCompleted(TransactionId transactionId)
{
if (TransactionIdEquals(transactionId, cachedFetchXid))
{
/* If it's in the cache at all, it must be completed. */
return true;
}
return false;
}
/*
* TransactionIdCommitTree
* Marks the given transaction and children as committed
*
* "xid" is a toplevel transaction commit, and the xids array contains its
* committed subtransactions.
*
* This commit operation is not guaranteed to be atomic, but if not, subxids
* are correctly marked subcommit first.
*/
void
TransactionIdCommitTree(TransactionId xid, int nxids, TransactionId *xids)
{
TransactionIdSetTreeStatus(xid, nxids, xids,
TRANSACTION_STATUS_COMMITTED,
InvalidXLogRecPtr);
}
/*
* TransactionIdAsyncCommitTree
* Same as above, but for async commits. The commit record LSN is needed.
*/
void
TransactionIdAsyncCommitTree(TransactionId xid, int nxids, TransactionId *xids,
XLogRecPtr lsn)
{
TransactionIdSetTreeStatus(xid, nxids, xids,
TRANSACTION_STATUS_COMMITTED, lsn);
}
/*
* TransactionIdAbortTree
* Marks the given transaction and children as aborted.
*
* "xid" is a toplevel transaction commit, and the xids array contains its
* committed subtransactions.
*
* We don't need to worry about the non-atomic behavior, since any onlookers
* will consider all the xacts as not-yet-committed anyway.
*/
void
TransactionIdAbortTree(TransactionId xid, int nxids, TransactionId *xids)
{
TransactionIdSetTreeStatus(xid, nxids, xids,
TRANSACTION_STATUS_ABORTED, InvalidXLogRecPtr);
}
/*
* TransactionIdPrecedes --- is id1 logically < id2?
*/
bool
TransactionIdPrecedes(TransactionId id1, TransactionId id2)
{
/*
* If either ID is a permanent XID then we can just do unsigned
* comparison. If both are normal, do a modulo-2^32 comparison.
*/
int32 diff;
if (!TransactionIdIsNormal(id1) || !TransactionIdIsNormal(id2))
return (id1 < id2);
diff = (int32) (id1 - id2);
return (diff < 0);
}
/*
* TransactionIdPrecedesOrEquals --- is id1 logically <= id2?
*/
bool
TransactionIdPrecedesOrEquals(TransactionId id1, TransactionId id2)
{
int32 diff;
if (!TransactionIdIsNormal(id1) || !TransactionIdIsNormal(id2))
return (id1 <= id2);
diff = (int32) (id1 - id2);
return (diff <= 0);
}
/*
* TransactionIdFollows --- is id1 logically > id2?
*/
bool
TransactionIdFollows(TransactionId id1, TransactionId id2)
{
int32 diff;
if (!TransactionIdIsNormal(id1) || !TransactionIdIsNormal(id2))
return (id1 > id2);
diff = (int32) (id1 - id2);
return (diff > 0);
}
/*
* TransactionIdFollowsOrEquals --- is id1 logically >= id2?
*/
bool
TransactionIdFollowsOrEquals(TransactionId id1, TransactionId id2)
{
int32 diff;
if (!TransactionIdIsNormal(id1) || !TransactionIdIsNormal(id2))
return (id1 >= id2);
diff = (int32) (id1 - id2);
return (diff >= 0);
}
/*
* TransactionIdLatest --- get latest XID among a main xact and its children
*/
TransactionId
TransactionIdLatest(TransactionId mainxid,
int nxids, const TransactionId *xids)
{
TransactionId result;
/*
* In practice it is highly likely that the xids[] array is sorted, and so
* we could save some cycles by just taking the last child XID, but this
* probably isn't so performance-critical that it's worth depending on
* that assumption. But just to show we're not totally stupid, scan the
* array back-to-front to avoid useless assignments.
*/
result = mainxid;
while (--nxids >= 0)
{
if (TransactionIdPrecedes(result, xids[nxids]))
result = xids[nxids];
}
return result;
}
/*
* TransactionIdGetCommitLSN
*
* This function returns an LSN that is late enough to be able
* to guarantee that if we flush up to the LSN returned then we
* will have flushed the transaction's commit record to disk.
*
* The result is not necessarily the exact LSN of the transaction's
* commit record! For example, for long-past transactions (those whose
* clog pages already migrated to disk), we'll return InvalidXLogRecPtr.
* Also, because we group transactions on the same clog page to conserve
* storage, we might return the LSN of a later transaction that falls into
* the same group.
*/
XLogRecPtr
TransactionIdGetCommitLSN(TransactionId xid)
{
XLogRecPtr result;
/*
* Currently, all uses of this function are for xids that were just
* reported to be committed by TransactionLogFetch, so we expect that
* checking TransactionLogFetch's cache will usually succeed and avoid an
* extra trip to shared memory.
*/
if (TransactionIdEquals(xid, cachedFetchXid))
return cachedCommitLSN;
/* Special XIDs are always known committed */
if (!TransactionIdIsNormal(xid))
return InvalidXLogRecPtr;
/*
* Get the transaction status.
*/
(void) TransactionIdGetStatus(xid, &result);
return result;
}