postgresql/src/backend/parser/parse_agg.c

270 lines
8.2 KiB
C

/*-------------------------------------------------------------------------
*
* parse_agg.c
* handle aggregates in parser
*
* Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/parser/parse_agg.c,v 1.32 1999/12/13 01:26:58 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/pg_aggregate.h"
#include "optimizer/clauses.h"
#include "optimizer/tlist.h"
#include "parser/parse_agg.h"
#include "parser/parse_coerce.h"
#include "parser/parse_expr.h"
#include "parser/parsetree.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
typedef struct {
ParseState *pstate;
List *groupClauses;
} check_ungrouped_columns_context;
static void check_ungrouped_columns(Node *node, ParseState *pstate,
List *groupClauses);
static bool check_ungrouped_columns_walker(Node *node,
check_ungrouped_columns_context *context);
/*
* check_ungrouped_columns -
* Scan the given expression tree for ungrouped variables (variables
* that are not listed in the groupClauses list and are not within
* the arguments of aggregate functions). Emit a suitable error message
* if any are found.
*
* NOTE: we assume that the given clause has been transformed suitably for
* parser output. This means we can use the planner's expression_tree_walker.
*
* NOTE: in the case of a SubLink, expression_tree_walker does not descend
* into the subquery. This means we will fail to detect ungrouped columns
* that appear as outer-level variables within a subquery. That case seems
* unreasonably hard to handle here. Instead, we expect the planner to check
* for ungrouped columns after it's found all the outer-level references
* inside the subquery and converted them into a list of parameters for the
* subquery.
*/
static void
check_ungrouped_columns(Node *node, ParseState *pstate,
List *groupClauses)
{
check_ungrouped_columns_context context;
context.pstate = pstate;
context.groupClauses = groupClauses;
check_ungrouped_columns_walker(node, &context);
}
static bool
check_ungrouped_columns_walker(Node *node,
check_ungrouped_columns_context *context)
{
List *gl;
if (node == NULL)
return false;
if (IsA(node, Const) || IsA(node, Param))
return false; /* constants are always acceptable */
/*
* If we find an aggregate function, do not recurse into its arguments.
*/
if (IsA(node, Aggref))
return false;
/*
* Check to see if subexpression as a whole matches any GROUP BY item.
* We need to do this at every recursion level so that we recognize
* GROUPed-BY expressions before reaching variables within them.
*/
foreach(gl, context->groupClauses)
{
if (equal(node, lfirst(gl)))
return false; /* acceptable, do not descend more */
}
/*
* If we have an ungrouped Var, we have a failure --- unless it is an
* outer-level Var. In that case it's a constant as far as this query
* level is concerned, and we can accept it. (If it's ungrouped as far
* as the upper query is concerned, that's someone else's problem...)
*/
if (IsA(node, Var))
{
Var *var = (Var *) node;
RangeTblEntry *rte;
char *attname;
if (var->varlevelsup > 0)
return false; /* outer-level Var is acceptable */
/* Found an ungrouped local variable; generate error message */
Assert(var->varno > 0 &&
var->varno <= length(context->pstate->p_rtable));
rte = rt_fetch(var->varno, context->pstate->p_rtable);
attname = get_attname(rte->relid, var->varattno);
if (! attname)
elog(ERROR, "cache lookup of attribute %d in relation %u failed",
var->varattno, rte->relid);
elog(ERROR, "Attribute %s.%s must be GROUPed or used in an aggregate function",
rte->refname, attname);
}
/* Otherwise, recurse. */
return expression_tree_walker(node, check_ungrouped_columns_walker,
(void *) context);
}
/*
* parseCheckAggregates
* Check for aggregates where they shouldn't be and improper grouping.
*
* Ideally this should be done earlier, but it's difficult to distinguish
* aggregates from plain functions at the grammar level. So instead we
* check here. This function should be called after the target list and
* qualifications are finalized.
*/
void
parseCheckAggregates(ParseState *pstate, Query *qry)
{
List *groupClauses = NIL;
List *tl;
/* This should only be called if we found aggregates, GROUP, or HAVING */
Assert(pstate->p_hasAggs || qry->groupClause || qry->havingQual);
/*
* Aggregates must never appear in WHERE clauses. (Note this check
* should appear first to deliver an appropriate error message;
* otherwise we are likely to complain about some innocent variable
* in the target list, which is outright misleading if the problem
* is in WHERE.)
*/
if (contain_agg_clause(qry->qual))
elog(ERROR, "Aggregates not allowed in WHERE clause");
/*
* No aggregates allowed in GROUP BY clauses, either.
*
* While we are at it, build a list of the acceptable GROUP BY expressions
* for use by check_ungrouped_columns() (this avoids repeated scans of the
* targetlist within the recursive routine...)
*/
foreach(tl, qry->groupClause)
{
GroupClause *grpcl = lfirst(tl);
Node *expr;
expr = get_sortgroupclause_expr(grpcl, qry->targetList);
if (contain_agg_clause(expr))
elog(ERROR, "Aggregates not allowed in GROUP BY clause");
groupClauses = lcons(expr, groupClauses);
}
/*
* Check the targetlist and HAVING clause for ungrouped variables.
*/
check_ungrouped_columns((Node *) qry->targetList, pstate, groupClauses);
check_ungrouped_columns((Node *) qry->havingQual, pstate, groupClauses);
/* Release the list storage (but not the pointed-to expressions!) */
freeList(groupClauses);
}
Aggref *
ParseAgg(ParseState *pstate, char *aggname, Oid basetype,
List *args, bool agg_star, bool agg_distinct,
int precedence)
{
HeapTuple theAggTuple;
Form_pg_aggregate aggform;
Oid fintype;
Oid xfn1;
Oid vartype;
Aggref *aggref;
bool usenulls = false;
theAggTuple = SearchSysCacheTuple(AGGNAME,
PointerGetDatum(aggname),
ObjectIdGetDatum(basetype),
0, 0);
if (!HeapTupleIsValid(theAggTuple))
elog(ERROR, "Aggregate %s does not exist", aggname);
/*
* There used to be a really ugly hack for count(*) here.
*
* It's gone. Now, the grammar transforms count(*) into count(1),
* which does the right thing. (It didn't use to do the right thing,
* because the optimizer had the wrong ideas about semantics of queries
* without explicit variables. Fixed as of Oct 1999 --- tgl.)
*
* Since "1" never evaluates as null, we currently have no need of
* the "usenulls" flag, but it should be kept around; in fact, we should
* extend the pg_aggregate table to let usenulls be specified as an
* attribute of user-defined aggregates. In the meantime, usenulls
* is just always set to "false".
*/
aggform = (Form_pg_aggregate) GETSTRUCT(theAggTuple);
fintype = aggform->aggfinaltype;
xfn1 = aggform->aggtransfn1;
/* only aggregates with transfn1 need a base type */
if (OidIsValid(xfn1))
{
basetype = aggform->aggbasetype;
vartype = exprType(lfirst(args));
if ((basetype != vartype)
&& (!IS_BINARY_COMPATIBLE(basetype, vartype)))
{
Type tp1,
tp2;
tp1 = typeidType(basetype);
tp2 = typeidType(vartype);
elog(ERROR, "Aggregate type mismatch"
"\n\t%s() works on %s, not on %s",
aggname, typeTypeName(tp1), typeTypeName(tp2));
}
}
aggref = makeNode(Aggref);
aggref->aggname = pstrdup(aggname);
aggref->basetype = aggform->aggbasetype;
aggref->aggtype = fintype;
aggref->target = lfirst(args);
aggref->usenulls = usenulls;
aggref->aggstar = agg_star;
aggref->aggdistinct = agg_distinct;
pstate->p_hasAggs = true;
return aggref;
}
/*
* Error message when aggregate lookup fails that gives details of the
* basetype
*/
void
agg_error(char *caller, char *aggname, Oid basetypeID)
{
/*
* basetypeID that is Invalid (zero) means aggregate over all types.
* (count)
*/
if (basetypeID == InvalidOid)
elog(ERROR, "%s: aggregate '%s' for all types does not exist", caller, aggname);
else
{
elog(ERROR, "%s: aggregate '%s' for '%s' does not exist", caller, aggname,
typeidTypeName(basetypeID));
}
}