postgresql/src/backend/access/gist/gistget.c

586 lines
15 KiB
C

/*-------------------------------------------------------------------------
*
* gistget.c
* fetch tuples from a GiST scan.
*
*
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/access/gist/gistget.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/gist_private.h"
#include "access/relscan.h"
#include "executor/execdebug.h"
#include "miscadmin.h"
#include "pgstat.h"
#include "storage/bufmgr.h"
#include "utils/builtins.h"
#include "utils/memutils.h"
/*
* gistindex_keytest() -- does this index tuple satisfy the scan key(s)?
*
* The index tuple might represent either a heap tuple or a lower index page,
* depending on whether the containing page is a leaf page or not.
*
* On success return for a heap tuple, *recheck_p is set to indicate
* whether recheck is needed. We recheck if any of the consistent() functions
* request it. recheck is not interesting when examining a non-leaf entry,
* since we must visit the lower index page if there's any doubt.
*
* If we are doing an ordered scan, so->distances[] is filled with distance
* data from the distance() functions before returning success.
*
* We must decompress the key in the IndexTuple before passing it to the
* sk_funcs (which actually are the opclass Consistent or Distance methods).
*
* Note that this function is always invoked in a short-lived memory context,
* so we don't need to worry about cleaning up allocated memory, either here
* or in the implementation of any Consistent or Distance methods.
*/
static bool
gistindex_keytest(IndexScanDesc scan,
IndexTuple tuple,
Page page,
OffsetNumber offset,
bool *recheck_p)
{
GISTScanOpaque so = (GISTScanOpaque) scan->opaque;
GISTSTATE *giststate = so->giststate;
ScanKey key = scan->keyData;
int keySize = scan->numberOfKeys;
double *distance_p;
Relation r = scan->indexRelation;
*recheck_p = false;
/*
* If it's a leftover invalid tuple from pre-9.1, treat it as a match with
* minimum possible distances. This means we'll always follow it to the
* referenced page.
*/
if (GistTupleIsInvalid(tuple))
{
int i;
if (GistPageIsLeaf(page)) /* shouldn't happen */
elog(ERROR, "invalid GIST tuple found on leaf page");
for (i = 0; i < scan->numberOfOrderBys; i++)
so->distances[i] = -get_float8_infinity();
return true;
}
/* Check whether it matches according to the Consistent functions */
while (keySize > 0)
{
Datum datum;
bool isNull;
datum = index_getattr(tuple,
key->sk_attno,
giststate->tupdesc,
&isNull);
if (key->sk_flags & SK_ISNULL)
{
/*
* On non-leaf page we can't conclude that child hasn't NULL
* values because of assumption in GiST: union (VAL, NULL) is VAL.
* But if on non-leaf page key IS NULL, then all children are
* NULL.
*/
if (key->sk_flags & SK_SEARCHNULL)
{
if (GistPageIsLeaf(page) && !isNull)
return false;
}
else
{
Assert(key->sk_flags & SK_SEARCHNOTNULL);
if (isNull)
return false;
}
}
else if (isNull)
{
return false;
}
else
{
Datum test;
bool recheck;
GISTENTRY de;
gistdentryinit(giststate, key->sk_attno - 1, &de,
datum, r, page, offset,
FALSE, isNull);
/*
* Call the Consistent function to evaluate the test. The
* arguments are the index datum (as a GISTENTRY*), the comparison
* datum, the comparison operator's strategy number and subtype
* from pg_amop, and the recheck flag.
*
* (Presently there's no need to pass the subtype since it'll
* always be zero, but might as well pass it for possible future
* use.)
*
* We initialize the recheck flag to true (the safest assumption)
* in case the Consistent function forgets to set it.
*/
recheck = true;
test = FunctionCall5(&key->sk_func,
PointerGetDatum(&de),
key->sk_argument,
Int32GetDatum(key->sk_strategy),
ObjectIdGetDatum(key->sk_subtype),
PointerGetDatum(&recheck));
if (!DatumGetBool(test))
return false;
*recheck_p |= recheck;
}
key++;
keySize--;
}
/* OK, it passes --- now let's compute the distances */
key = scan->orderByData;
distance_p = so->distances;
keySize = scan->numberOfOrderBys;
while (keySize > 0)
{
Datum datum;
bool isNull;
datum = index_getattr(tuple,
key->sk_attno,
giststate->tupdesc,
&isNull);
if ((key->sk_flags & SK_ISNULL) || isNull)
{
/* Assume distance computes as null and sorts to the end */
*distance_p = get_float8_infinity();
}
else
{
Datum dist;
GISTENTRY de;
gistdentryinit(giststate, key->sk_attno - 1, &de,
datum, r, page, offset,
FALSE, isNull);
/*
* Call the Distance function to evaluate the distance. The
* arguments are the index datum (as a GISTENTRY*), the comparison
* datum, and the ordering operator's strategy number and subtype
* from pg_amop.
*
* (Presently there's no need to pass the subtype since it'll
* always be zero, but might as well pass it for possible future
* use.)
*
* Note that Distance functions don't get a recheck argument. We
* can't tolerate lossy distance calculations on leaf tuples;
* there is no opportunity to re-sort the tuples afterwards.
*/
dist = FunctionCall4(&key->sk_func,
PointerGetDatum(&de),
key->sk_argument,
Int32GetDatum(key->sk_strategy),
ObjectIdGetDatum(key->sk_subtype));
*distance_p = DatumGetFloat8(dist);
}
key++;
distance_p++;
keySize--;
}
return true;
}
/*
* Scan all items on the GiST index page identified by *pageItem, and insert
* them into the queue (or directly to output areas)
*
* scan: index scan we are executing
* pageItem: search queue item identifying an index page to scan
* myDistances: distances array associated with pageItem, or NULL at the root
* tbm: if not NULL, gistgetbitmap's output bitmap
* ntids: if not NULL, gistgetbitmap's output tuple counter
*
* If tbm/ntids aren't NULL, we are doing an amgetbitmap scan, and heap
* tuples should be reported directly into the bitmap. If they are NULL,
* we're doing a plain or ordered indexscan. For a plain indexscan, heap
* tuple TIDs are returned into so->pageData[]. For an ordered indexscan,
* heap tuple TIDs are pushed into individual search queue items.
*
* If we detect that the index page has split since we saw its downlink
* in the parent, we push its new right sibling onto the queue so the
* sibling will be processed next.
*/
static void
gistScanPage(IndexScanDesc scan, GISTSearchItem *pageItem, double *myDistances,
TIDBitmap *tbm, int64 *ntids)
{
GISTScanOpaque so = (GISTScanOpaque) scan->opaque;
Buffer buffer;
Page page;
GISTPageOpaque opaque;
OffsetNumber maxoff;
OffsetNumber i;
GISTSearchTreeItem *tmpItem = so->tmpTreeItem;
bool isNew;
MemoryContext oldcxt;
Assert(!GISTSearchItemIsHeap(*pageItem));
buffer = ReadBuffer(scan->indexRelation, pageItem->blkno);
LockBuffer(buffer, GIST_SHARE);
gistcheckpage(scan->indexRelation, buffer);
page = BufferGetPage(buffer);
opaque = GistPageGetOpaque(page);
/*
* Check if we need to follow the rightlink. We need to follow it if the
* page was concurrently split since we visited the parent (in which case
* parentlsn < nsn), or if the the system crashed after a page split but
* before the downlink was inserted into the parent.
*/
if (!XLogRecPtrIsInvalid(pageItem->data.parentlsn) &&
(GistFollowRight(page) ||
XLByteLT(pageItem->data.parentlsn, opaque->nsn)) &&
opaque->rightlink != InvalidBlockNumber /* sanity check */ )
{
/* There was a page split, follow right link to add pages */
GISTSearchItem *item;
/* This can't happen when starting at the root */
Assert(myDistances != NULL);
oldcxt = MemoryContextSwitchTo(so->queueCxt);
/* Create new GISTSearchItem for the right sibling index page */
item = palloc(sizeof(GISTSearchItem));
item->next = NULL;
item->blkno = opaque->rightlink;
item->data.parentlsn = pageItem->data.parentlsn;
/* Insert it into the queue using same distances as for this page */
tmpItem->head = item;
tmpItem->lastHeap = NULL;
memcpy(tmpItem->distances, myDistances,
sizeof(double) * scan->numberOfOrderBys);
(void) rb_insert(so->queue, (RBNode *) tmpItem, &isNew);
MemoryContextSwitchTo(oldcxt);
}
so->nPageData = so->curPageData = 0;
/*
* check all tuples on page
*/
maxoff = PageGetMaxOffsetNumber(page);
for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
{
IndexTuple it = (IndexTuple) PageGetItem(page, PageGetItemId(page, i));
bool match;
bool recheck;
/*
* Must call gistindex_keytest in tempCxt, and clean up any leftover
* junk afterward.
*/
oldcxt = MemoryContextSwitchTo(so->tempCxt);
match = gistindex_keytest(scan, it, page, i, &recheck);
MemoryContextSwitchTo(oldcxt);
MemoryContextReset(so->tempCxt);
/* Ignore tuple if it doesn't match */
if (!match)
continue;
if (tbm && GistPageIsLeaf(page))
{
/*
* getbitmap scan, so just push heap tuple TIDs into the bitmap
* without worrying about ordering
*/
tbm_add_tuples(tbm, &it->t_tid, 1, recheck);
(*ntids)++;
}
else if (scan->numberOfOrderBys == 0 && GistPageIsLeaf(page))
{
/*
* Non-ordered scan, so report heap tuples in so->pageData[]
*/
so->pageData[so->nPageData].heapPtr = it->t_tid;
so->pageData[so->nPageData].recheck = recheck;
so->nPageData++;
}
else
{
/*
* Must push item into search queue. We get here for any lower
* index page, and also for heap tuples if doing an ordered
* search.
*/
GISTSearchItem *item;
oldcxt = MemoryContextSwitchTo(so->queueCxt);
/* Create new GISTSearchItem for this item */
item = palloc(sizeof(GISTSearchItem));
item->next = NULL;
if (GistPageIsLeaf(page))
{
/* Creating heap-tuple GISTSearchItem */
item->blkno = InvalidBlockNumber;
item->data.heap.heapPtr = it->t_tid;
item->data.heap.recheck = recheck;
}
else
{
/* Creating index-page GISTSearchItem */
item->blkno = ItemPointerGetBlockNumber(&it->t_tid);
/* lsn of current page is lsn of parent page for child */
item->data.parentlsn = PageGetLSN(page);
}
/* Insert it into the queue using new distance data */
tmpItem->head = item;
tmpItem->lastHeap = GISTSearchItemIsHeap(*item) ? item : NULL;
memcpy(tmpItem->distances, so->distances,
sizeof(double) * scan->numberOfOrderBys);
(void) rb_insert(so->queue, (RBNode *) tmpItem, &isNew);
MemoryContextSwitchTo(oldcxt);
}
}
UnlockReleaseBuffer(buffer);
}
/*
* Extract next item (in order) from search queue
*
* Returns a GISTSearchItem or NULL. Caller must pfree item when done with it.
*
* NOTE: on successful return, so->curTreeItem is the GISTSearchTreeItem that
* contained the result item. Callers can use so->curTreeItem->distances as
* the distances value for the item.
*/
static GISTSearchItem *
getNextGISTSearchItem(GISTScanOpaque so)
{
for (;;)
{
GISTSearchItem *item;
/* Update curTreeItem if we don't have one */
if (so->curTreeItem == NULL)
{
so->curTreeItem = (GISTSearchTreeItem *) rb_leftmost(so->queue);
/* Done when tree is empty */
if (so->curTreeItem == NULL)
break;
}
item = so->curTreeItem->head;
if (item != NULL)
{
/* Delink item from chain */
so->curTreeItem->head = item->next;
if (item == so->curTreeItem->lastHeap)
so->curTreeItem->lastHeap = NULL;
/* Return item; caller is responsible to pfree it */
return item;
}
/* curTreeItem is exhausted, so remove it from rbtree */
rb_delete(so->queue, (RBNode *) so->curTreeItem);
so->curTreeItem = NULL;
}
return NULL;
}
/*
* Fetch next heap tuple in an ordered search
*/
static bool
getNextNearest(IndexScanDesc scan)
{
GISTScanOpaque so = (GISTScanOpaque) scan->opaque;
bool res = false;
do
{
GISTSearchItem *item = getNextGISTSearchItem(so);
if (!item)
break;
if (GISTSearchItemIsHeap(*item))
{
/* found a heap item at currently minimal distance */
scan->xs_ctup.t_self = item->data.heap.heapPtr;
scan->xs_recheck = item->data.heap.recheck;
res = true;
}
else
{
/* visit an index page, extract its items into queue */
CHECK_FOR_INTERRUPTS();
gistScanPage(scan, item, so->curTreeItem->distances, NULL, NULL);
}
pfree(item);
} while (!res);
return res;
}
/*
* gistgettuple() -- Get the next tuple in the scan
*/
Datum
gistgettuple(PG_FUNCTION_ARGS)
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
ScanDirection dir = (ScanDirection) PG_GETARG_INT32(1);
GISTScanOpaque so = (GISTScanOpaque) scan->opaque;
if (dir != ForwardScanDirection)
elog(ERROR, "GiST only supports forward scan direction");
if (!so->qual_ok)
PG_RETURN_BOOL(false);
if (so->firstCall)
{
/* Begin the scan by processing the root page */
GISTSearchItem fakeItem;
pgstat_count_index_scan(scan->indexRelation);
so->firstCall = false;
so->curTreeItem = NULL;
so->curPageData = so->nPageData = 0;
fakeItem.blkno = GIST_ROOT_BLKNO;
memset(&fakeItem.data.parentlsn, 0, sizeof(GistNSN));
gistScanPage(scan, &fakeItem, NULL, NULL, NULL);
}
if (scan->numberOfOrderBys > 0)
{
/* Must fetch tuples in strict distance order */
PG_RETURN_BOOL(getNextNearest(scan));
}
else
{
/* Fetch tuples index-page-at-a-time */
for (;;)
{
if (so->curPageData < so->nPageData)
{
/* continuing to return tuples from a leaf page */
scan->xs_ctup.t_self = so->pageData[so->curPageData].heapPtr;
scan->xs_recheck = so->pageData[so->curPageData].recheck;
so->curPageData++;
PG_RETURN_BOOL(true);
}
/* find and process the next index page */
do
{
GISTSearchItem *item = getNextGISTSearchItem(so);
if (!item)
PG_RETURN_BOOL(false);
CHECK_FOR_INTERRUPTS();
/*
* While scanning a leaf page, ItemPointers of matching heap
* tuples are stored in so->pageData. If there are any on
* this page, we fall out of the inner "do" and loop around to
* return them.
*/
gistScanPage(scan, item, so->curTreeItem->distances, NULL, NULL);
pfree(item);
} while (so->nPageData == 0);
}
}
PG_RETURN_BOOL(false); /* keep compiler quiet */
}
/*
* gistgetbitmap() -- Get a bitmap of all heap tuple locations
*/
Datum
gistgetbitmap(PG_FUNCTION_ARGS)
{
IndexScanDesc scan = (IndexScanDesc) PG_GETARG_POINTER(0);
TIDBitmap *tbm = (TIDBitmap *) PG_GETARG_POINTER(1);
GISTScanOpaque so = (GISTScanOpaque) scan->opaque;
int64 ntids = 0;
GISTSearchItem fakeItem;
if (!so->qual_ok)
PG_RETURN_INT64(0);
pgstat_count_index_scan(scan->indexRelation);
/* Begin the scan by processing the root page */
so->curTreeItem = NULL;
so->curPageData = so->nPageData = 0;
fakeItem.blkno = GIST_ROOT_BLKNO;
memset(&fakeItem.data.parentlsn, 0, sizeof(GistNSN));
gistScanPage(scan, &fakeItem, NULL, tbm, &ntids);
/*
* While scanning a leaf page, ItemPointers of matching heap tuples will
* be stored directly into tbm, so we don't need to deal with them here.
*/
for (;;)
{
GISTSearchItem *item = getNextGISTSearchItem(so);
if (!item)
break;
CHECK_FOR_INTERRUPTS();
gistScanPage(scan, item, so->curTreeItem->distances, tbm, &ntids);
pfree(item);
}
PG_RETURN_INT64(ntids);
}