postgresql/contrib/seg/seg.c
Tom Lane c8e81afc60 Convert contrib/seg's bool-returning SQL functions to V1 call convention.
It appears that we can no longer get away with using V0 call convention
for bool-returning functions in newer versions of MSVC.  The compiler
seems to generate code that doesn't clear the higher-order bits of the
result register, causing the bool result Datum to often read as "true"
when "false" was intended.  This is not very surprising, since the
function thinks it's returning a bool-width result but fmgr_oldstyle
assumes that V0 functions return "char *"; what's surprising is that
that hack worked for so long on so many platforms.

The only functions of this description in core+contrib are in contrib/seg,
which we'd intentionally left mostly in V0 style to serve as a warning
canary if V0 call convention breaks.  We could imagine hacking things
so that they're still V0 (we'd have to redeclare the bool-returning
functions as returning some suitably wide integer type, like size_t,
at the C level).  But on the whole it seems better to convert 'em to V1.
We can still leave the pointer- and int-returning functions in V0 style,
so that the test coverage isn't gone entirely.

Back-patch to 9.5, since our intention is to support VS2015 in 9.5
and later.  There's no SQL-level change in the functions' behavior
so back-patching should be safe enough.

Discussion: <22094.1461273324@sss.pgh.pa.us>

Michael Paquier, adjusted some by me
2016-04-22 11:54:23 -04:00

1132 lines
24 KiB
C

/*
* contrib/seg/seg.c
*
******************************************************************************
This file contains routines that can be bound to a Postgres backend and
called by the backend in the process of processing queries. The calling
format for these routines is dictated by Postgres architecture.
******************************************************************************/
#include "postgres.h"
#include <float.h>
#include "access/gist.h"
#include "access/stratnum.h"
#include "fmgr.h"
#include "segdata.h"
/*
#define GIST_DEBUG
#define GIST_QUERY_DEBUG
*/
PG_MODULE_MAGIC;
/*
* Auxiliary data structure for picksplit method.
*/
typedef struct
{
float center;
OffsetNumber index;
SEG *data;
} gseg_picksplit_item;
/*
* Declarations for SQL-visible functions.
*
* Note: many of these functions have intentionally been left using V0 call
* convention, as a means of testing that that still works. However, we had
* to convert functions taking or returning float4 to V1 convention, as it was
* otherwise too painful to deal with both pass-by-val and pass-by-ref cases.
* Also, on some modern platforms V0 functions returning bool do not work
* (because the compiler doesn't ensure that high-order bits of the
* pointer-sized result are zeroed), so those have been converted to V1 also.
*/
/*
** Input/Output routines
*/
PG_FUNCTION_INFO_V1(seg_in);
PG_FUNCTION_INFO_V1(seg_out);
PG_FUNCTION_INFO_V1(seg_size);
PG_FUNCTION_INFO_V1(seg_lower);
PG_FUNCTION_INFO_V1(seg_upper);
PG_FUNCTION_INFO_V1(seg_center);
/*
** GiST support methods
*/
PG_FUNCTION_INFO_V1(gseg_consistent);
GISTENTRY *gseg_compress(GISTENTRY *entry);
GISTENTRY *gseg_decompress(GISTENTRY *entry);
float *gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result);
GIST_SPLITVEC *gseg_picksplit(GistEntryVector *entryvec, GIST_SPLITVEC *v);
static bool gseg_leaf_consistent(SEG *key, SEG *query, StrategyNumber strategy);
static bool gseg_internal_consistent(SEG *key, SEG *query, StrategyNumber strategy);
SEG *gseg_union(GistEntryVector *entryvec, int *sizep);
static SEG *gseg_binary_union(SEG *r1, SEG *r2, int *sizep);
bool *gseg_same(SEG *b1, SEG *b2, bool *result);
/*
** R-tree support functions
*/
PG_FUNCTION_INFO_V1(seg_same);
PG_FUNCTION_INFO_V1(seg_contains);
PG_FUNCTION_INFO_V1(seg_contained);
PG_FUNCTION_INFO_V1(seg_overlap);
PG_FUNCTION_INFO_V1(seg_left);
PG_FUNCTION_INFO_V1(seg_over_left);
PG_FUNCTION_INFO_V1(seg_right);
PG_FUNCTION_INFO_V1(seg_over_right);
static bool seg_same_internal(SEG *a, SEG *b);
static bool seg_contains_internal(SEG *a, SEG *b);
static bool seg_contained_internal(SEG *a, SEG *b);
static bool seg_overlap_internal(SEG *a, SEG *b);
static bool seg_left_internal(SEG *a, SEG *b);
static bool seg_over_left_internal(SEG *a, SEG *b);
static bool seg_right_internal(SEG *a, SEG *b);
static bool seg_over_right_internal(SEG *a, SEG *b);
SEG *seg_union(SEG *a, SEG *b);
SEG *seg_inter(SEG *a, SEG *b);
static void rt_seg_size(SEG *a, float *sz);
/*
** Various operators
*/
int32 seg_cmp(SEG *a, SEG *b);
PG_FUNCTION_INFO_V1(seg_lt);
PG_FUNCTION_INFO_V1(seg_le);
PG_FUNCTION_INFO_V1(seg_gt);
PG_FUNCTION_INFO_V1(seg_ge);
PG_FUNCTION_INFO_V1(seg_different);
/*
** Auxiliary functions
*/
static int restore(char *s, float val, int n);
/*****************************************************************************
* Input/Output functions
*****************************************************************************/
Datum
seg_in(PG_FUNCTION_ARGS)
{
char *str = PG_GETARG_CSTRING(0);
SEG *result = palloc(sizeof(SEG));
seg_scanner_init(str);
if (seg_yyparse(result) != 0)
seg_yyerror(result, "bogus input");
seg_scanner_finish();
PG_RETURN_POINTER(result);
}
Datum
seg_out(PG_FUNCTION_ARGS)
{
SEG *seg = (SEG *) PG_GETARG_POINTER(0);
char *result;
char *p;
p = result = (char *) palloc(40);
if (seg->l_ext == '>' || seg->l_ext == '<' || seg->l_ext == '~')
p += sprintf(p, "%c", seg->l_ext);
if (seg->lower == seg->upper && seg->l_ext == seg->u_ext)
{
/*
* indicates that this interval was built by seg_in off a single point
*/
p += restore(p, seg->lower, seg->l_sigd);
}
else
{
if (seg->l_ext != '-')
{
/* print the lower boundary if exists */
p += restore(p, seg->lower, seg->l_sigd);
p += sprintf(p, " ");
}
p += sprintf(p, "..");
if (seg->u_ext != '-')
{
/* print the upper boundary if exists */
p += sprintf(p, " ");
if (seg->u_ext == '>' || seg->u_ext == '<' || seg->l_ext == '~')
p += sprintf(p, "%c", seg->u_ext);
p += restore(p, seg->upper, seg->u_sigd);
}
}
PG_RETURN_CSTRING(result);
}
Datum
seg_center(PG_FUNCTION_ARGS)
{
SEG *seg = (SEG *) PG_GETARG_POINTER(0);
PG_RETURN_FLOAT4(((float) seg->lower + (float) seg->upper) / 2.0);
}
Datum
seg_lower(PG_FUNCTION_ARGS)
{
SEG *seg = (SEG *) PG_GETARG_POINTER(0);
PG_RETURN_FLOAT4(seg->lower);
}
Datum
seg_upper(PG_FUNCTION_ARGS)
{
SEG *seg = (SEG *) PG_GETARG_POINTER(0);
PG_RETURN_FLOAT4(seg->upper);
}
/*****************************************************************************
* GiST functions
*****************************************************************************/
/*
** The GiST Consistent method for segments
** Should return false if for all data items x below entry,
** the predicate x op query == FALSE, where op is the oper
** corresponding to strategy in the pg_amop table.
*/
Datum
gseg_consistent(PG_FUNCTION_ARGS)
{
GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
SEG *query = (SEG *) PG_GETARG_POINTER(1);
StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
/* Oid subtype = PG_GETARG_OID(3); */
bool *recheck = (bool *) PG_GETARG_POINTER(4);
bool result;
/* All cases served by this function are exact */
*recheck = false;
/*
* if entry is not leaf, use gseg_internal_consistent, else use
* gseg_leaf_consistent
*/
if (GIST_LEAF(entry))
result = gseg_leaf_consistent((SEG *) DatumGetPointer(entry->key),
query, strategy);
else
result = gseg_internal_consistent((SEG *) DatumGetPointer(entry->key),
query, strategy);
PG_RETURN_BOOL(result);
}
/*
** The GiST Union method for segments
** returns the minimal bounding seg that encloses all the entries in entryvec
*/
SEG *
gseg_union(GistEntryVector *entryvec, int *sizep)
{
int numranges,
i;
SEG *out = (SEG *) NULL;
SEG *tmp;
#ifdef GIST_DEBUG
fprintf(stderr, "union\n");
#endif
numranges = entryvec->n;
tmp = (SEG *) DatumGetPointer(entryvec->vector[0].key);
*sizep = sizeof(SEG);
for (i = 1; i < numranges; i++)
{
out = gseg_binary_union(tmp, (SEG *)
DatumGetPointer(entryvec->vector[i].key),
sizep);
tmp = out;
}
return (out);
}
/*
** GiST Compress and Decompress methods for segments
** do not do anything.
*/
GISTENTRY *
gseg_compress(GISTENTRY *entry)
{
return (entry);
}
GISTENTRY *
gseg_decompress(GISTENTRY *entry)
{
return (entry);
}
/*
** The GiST Penalty method for segments
** As in the R-tree paper, we use change in area as our penalty metric
*/
float *
gseg_penalty(GISTENTRY *origentry, GISTENTRY *newentry, float *result)
{
SEG *ud;
float tmp1,
tmp2;
ud = seg_union((SEG *) DatumGetPointer(origentry->key),
(SEG *) DatumGetPointer(newentry->key));
rt_seg_size(ud, &tmp1);
rt_seg_size((SEG *) DatumGetPointer(origentry->key), &tmp2);
*result = tmp1 - tmp2;
#ifdef GIST_DEBUG
fprintf(stderr, "penalty\n");
fprintf(stderr, "\t%g\n", *result);
#endif
return (result);
}
/*
* Compare function for gseg_picksplit_item: sort by center.
*/
static int
gseg_picksplit_item_cmp(const void *a, const void *b)
{
const gseg_picksplit_item *i1 = (const gseg_picksplit_item *) a;
const gseg_picksplit_item *i2 = (const gseg_picksplit_item *) b;
if (i1->center < i2->center)
return -1;
else if (i1->center == i2->center)
return 0;
else
return 1;
}
/*
* The GiST PickSplit method for segments
*
* We used to use Guttman's split algorithm here, but since the data is 1-D
* it's easier and more robust to just sort the segments by center-point and
* split at the middle.
*/
GIST_SPLITVEC *
gseg_picksplit(GistEntryVector *entryvec,
GIST_SPLITVEC *v)
{
int i;
SEG *datum_l,
*datum_r,
*seg;
gseg_picksplit_item *sort_items;
OffsetNumber *left,
*right;
OffsetNumber maxoff;
OffsetNumber firstright;
#ifdef GIST_DEBUG
fprintf(stderr, "picksplit\n");
#endif
/* Valid items in entryvec->vector[] are indexed 1..maxoff */
maxoff = entryvec->n - 1;
/*
* Prepare the auxiliary array and sort it.
*/
sort_items = (gseg_picksplit_item *)
palloc(maxoff * sizeof(gseg_picksplit_item));
for (i = 1; i <= maxoff; i++)
{
seg = (SEG *) DatumGetPointer(entryvec->vector[i].key);
/* center calculation is done this way to avoid possible overflow */
sort_items[i - 1].center = seg->lower * 0.5f + seg->upper * 0.5f;
sort_items[i - 1].index = i;
sort_items[i - 1].data = seg;
}
qsort(sort_items, maxoff, sizeof(gseg_picksplit_item),
gseg_picksplit_item_cmp);
/* sort items below "firstright" will go into the left side */
firstright = maxoff / 2;
v->spl_left = (OffsetNumber *) palloc(maxoff * sizeof(OffsetNumber));
v->spl_right = (OffsetNumber *) palloc(maxoff * sizeof(OffsetNumber));
left = v->spl_left;
v->spl_nleft = 0;
right = v->spl_right;
v->spl_nright = 0;
/*
* Emit segments to the left output page, and compute its bounding box.
*/
datum_l = (SEG *) palloc(sizeof(SEG));
memcpy(datum_l, sort_items[0].data, sizeof(SEG));
*left++ = sort_items[0].index;
v->spl_nleft++;
for (i = 1; i < firstright; i++)
{
datum_l = seg_union(datum_l, sort_items[i].data);
*left++ = sort_items[i].index;
v->spl_nleft++;
}
/*
* Likewise for the right page.
*/
datum_r = (SEG *) palloc(sizeof(SEG));
memcpy(datum_r, sort_items[firstright].data, sizeof(SEG));
*right++ = sort_items[firstright].index;
v->spl_nright++;
for (i = firstright + 1; i < maxoff; i++)
{
datum_r = seg_union(datum_r, sort_items[i].data);
*right++ = sort_items[i].index;
v->spl_nright++;
}
v->spl_ldatum = PointerGetDatum(datum_l);
v->spl_rdatum = PointerGetDatum(datum_r);
return v;
}
/*
** Equality methods
*/
bool *
gseg_same(SEG *b1, SEG *b2, bool *result)
{
if (seg_same_internal(b1, b2))
*result = TRUE;
else
*result = FALSE;
#ifdef GIST_DEBUG
fprintf(stderr, "same: %s\n", (*result ? "TRUE" : "FALSE"));
#endif
return (result);
}
/*
** SUPPORT ROUTINES
*/
static bool
gseg_leaf_consistent(SEG *key,
SEG *query,
StrategyNumber strategy)
{
bool retval;
#ifdef GIST_QUERY_DEBUG
fprintf(stderr, "leaf_consistent, %d\n", strategy);
#endif
switch (strategy)
{
case RTLeftStrategyNumber:
retval = seg_left_internal(key, query);
break;
case RTOverLeftStrategyNumber:
retval = seg_over_left_internal(key, query);
break;
case RTOverlapStrategyNumber:
retval = seg_overlap_internal(key, query);
break;
case RTOverRightStrategyNumber:
retval = seg_over_right_internal(key, query);
break;
case RTRightStrategyNumber:
retval = seg_right_internal(key, query);
break;
case RTSameStrategyNumber:
retval = seg_same_internal(key, query);
break;
case RTContainsStrategyNumber:
case RTOldContainsStrategyNumber:
retval = seg_contains_internal(key, query);
break;
case RTContainedByStrategyNumber:
case RTOldContainedByStrategyNumber:
retval = seg_contained_internal(key, query);
break;
default:
retval = FALSE;
}
return (retval);
}
static bool
gseg_internal_consistent(SEG *key,
SEG *query,
StrategyNumber strategy)
{
bool retval;
#ifdef GIST_QUERY_DEBUG
fprintf(stderr, "internal_consistent, %d\n", strategy);
#endif
switch (strategy)
{
case RTLeftStrategyNumber:
retval = !seg_over_right_internal(key, query);
break;
case RTOverLeftStrategyNumber:
retval = !seg_right_internal(key, query);
break;
case RTOverlapStrategyNumber:
retval = seg_overlap_internal(key, query);
break;
case RTOverRightStrategyNumber:
retval = !seg_left_internal(key, query);
break;
case RTRightStrategyNumber:
retval = !seg_over_left_internal(key, query);
break;
case RTSameStrategyNumber:
case RTContainsStrategyNumber:
case RTOldContainsStrategyNumber:
retval = seg_contains_internal(key, query);
break;
case RTContainedByStrategyNumber:
case RTOldContainedByStrategyNumber:
retval = seg_overlap_internal(key, query);
break;
default:
retval = FALSE;
}
return (retval);
}
static SEG *
gseg_binary_union(SEG *r1, SEG *r2, int *sizep)
{
SEG *retval;
retval = seg_union(r1, r2);
*sizep = sizeof(SEG);
return (retval);
}
Datum
seg_contains(PG_FUNCTION_ARGS)
{
SEG *a = (SEG *) PG_GETARG_POINTER(0);
SEG *b = (SEG *) PG_GETARG_POINTER(1);
PG_RETURN_BOOL(seg_contains_internal(a, b));
}
static bool
seg_contains_internal(SEG *a, SEG *b)
{
return ((a->lower <= b->lower) && (a->upper >= b->upper));
}
Datum
seg_contained(PG_FUNCTION_ARGS)
{
SEG *a = (SEG *) PG_GETARG_POINTER(0);
SEG *b = (SEG *) PG_GETARG_POINTER(1);
PG_RETURN_BOOL(seg_contained_internal(a, b));
}
static bool
seg_contained_internal(SEG *a, SEG *b)
{
return (seg_contains_internal(b, a));
}
/*****************************************************************************
* Operator class for R-tree indexing
*****************************************************************************/
Datum
seg_same(PG_FUNCTION_ARGS)
{
SEG *a = (SEG *) PG_GETARG_POINTER(0);
SEG *b = (SEG *) PG_GETARG_POINTER(1);
PG_RETURN_BOOL(seg_same_internal(a, b));
}
static bool
seg_same_internal(SEG *a, SEG *b)
{
return seg_cmp(a, b) == 0;
}
/* seg_overlap -- does a overlap b?
*/
Datum
seg_overlap(PG_FUNCTION_ARGS)
{
SEG *a = (SEG *) PG_GETARG_POINTER(0);
SEG *b = (SEG *) PG_GETARG_POINTER(1);
PG_RETURN_BOOL(seg_overlap_internal(a, b));
}
static bool
seg_overlap_internal(SEG *a, SEG *b)
{
return (
((a->upper >= b->upper) && (a->lower <= b->upper))
||
((b->upper >= a->upper) && (b->lower <= a->upper))
);
}
/* seg_overleft -- is the right edge of (a) located at or left of the right edge of (b)?
*/
Datum
seg_over_left(PG_FUNCTION_ARGS)
{
SEG *a = (SEG *) PG_GETARG_POINTER(0);
SEG *b = (SEG *) PG_GETARG_POINTER(1);
PG_RETURN_BOOL(seg_over_left_internal(a, b));
}
static bool
seg_over_left_internal(SEG *a, SEG *b)
{
return (a->upper <= b->upper);
}
/* seg_left -- is (a) entirely on the left of (b)?
*/
Datum
seg_left(PG_FUNCTION_ARGS)
{
SEG *a = (SEG *) PG_GETARG_POINTER(0);
SEG *b = (SEG *) PG_GETARG_POINTER(1);
PG_RETURN_BOOL(seg_left_internal(a, b));
}
static bool
seg_left_internal(SEG *a, SEG *b)
{
return (a->upper < b->lower);
}
/* seg_right -- is (a) entirely on the right of (b)?
*/
Datum
seg_right(PG_FUNCTION_ARGS)
{
SEG *a = (SEG *) PG_GETARG_POINTER(0);
SEG *b = (SEG *) PG_GETARG_POINTER(1);
PG_RETURN_BOOL(seg_right_internal(a, b));
}
static bool
seg_right_internal(SEG *a, SEG *b)
{
return (a->lower > b->upper);
}
/* seg_overright -- is the left edge of (a) located at or right of the left edge of (b)?
*/
Datum
seg_over_right(PG_FUNCTION_ARGS)
{
SEG *a = (SEG *) PG_GETARG_POINTER(0);
SEG *b = (SEG *) PG_GETARG_POINTER(1);
PG_RETURN_BOOL(seg_over_right_internal(a, b));
}
static bool
seg_over_right_internal(SEG *a, SEG *b)
{
return (a->lower >= b->lower);
}
SEG *
seg_union(SEG *a, SEG *b)
{
SEG *n;
n = (SEG *) palloc(sizeof(*n));
/* take max of upper endpoints */
if (a->upper > b->upper)
{
n->upper = a->upper;
n->u_sigd = a->u_sigd;
n->u_ext = a->u_ext;
}
else
{
n->upper = b->upper;
n->u_sigd = b->u_sigd;
n->u_ext = b->u_ext;
}
/* take min of lower endpoints */
if (a->lower < b->lower)
{
n->lower = a->lower;
n->l_sigd = a->l_sigd;
n->l_ext = a->l_ext;
}
else
{
n->lower = b->lower;
n->l_sigd = b->l_sigd;
n->l_ext = b->l_ext;
}
return (n);
}
SEG *
seg_inter(SEG *a, SEG *b)
{
SEG *n;
n = (SEG *) palloc(sizeof(*n));
/* take min of upper endpoints */
if (a->upper < b->upper)
{
n->upper = a->upper;
n->u_sigd = a->u_sigd;
n->u_ext = a->u_ext;
}
else
{
n->upper = b->upper;
n->u_sigd = b->u_sigd;
n->u_ext = b->u_ext;
}
/* take max of lower endpoints */
if (a->lower > b->lower)
{
n->lower = a->lower;
n->l_sigd = a->l_sigd;
n->l_ext = a->l_ext;
}
else
{
n->lower = b->lower;
n->l_sigd = b->l_sigd;
n->l_ext = b->l_ext;
}
return (n);
}
static void
rt_seg_size(SEG *a, float *size)
{
if (a == (SEG *) NULL || a->upper <= a->lower)
*size = 0.0;
else
*size = (float) Abs(a->upper - a->lower);
return;
}
Datum
seg_size(PG_FUNCTION_ARGS)
{
SEG *seg = (SEG *) PG_GETARG_POINTER(0);
PG_RETURN_FLOAT4((float) Abs(seg->upper - seg->lower));
}
/*****************************************************************************
* Miscellaneous operators
*****************************************************************************/
int32
seg_cmp(SEG *a, SEG *b)
{
/*
* First compare on lower boundary position
*/
if (a->lower < b->lower)
return -1;
if (a->lower > b->lower)
return 1;
/*
* a->lower == b->lower, so consider type of boundary.
*
* A '-' lower bound is < any other kind (this could only be relevant if
* -HUGE_VAL is used as a regular data value). A '<' lower bound is < any
* other kind except '-'. A '>' lower bound is > any other kind.
*/
if (a->l_ext != b->l_ext)
{
if (a->l_ext == '-')
return -1;
if (b->l_ext == '-')
return 1;
if (a->l_ext == '<')
return -1;
if (b->l_ext == '<')
return 1;
if (a->l_ext == '>')
return 1;
if (b->l_ext == '>')
return -1;
}
/*
* For other boundary types, consider # of significant digits first.
*/
if (a->l_sigd < b->l_sigd) /* (a) is blurred and is likely to include (b) */
return -1;
if (a->l_sigd > b->l_sigd) /* (a) is less blurred and is likely to be
* included in (b) */
return 1;
/*
* For same # of digits, an approximate boundary is more blurred than
* exact.
*/
if (a->l_ext != b->l_ext)
{
if (a->l_ext == '~') /* (a) is approximate, while (b) is exact */
return -1;
if (b->l_ext == '~')
return 1;
/* can't get here unless data is corrupt */
elog(ERROR, "bogus lower boundary types %d %d",
(int) a->l_ext, (int) b->l_ext);
}
/* at this point, the lower boundaries are identical */
/*
* First compare on upper boundary position
*/
if (a->upper < b->upper)
return -1;
if (a->upper > b->upper)
return 1;
/*
* a->upper == b->upper, so consider type of boundary.
*
* A '-' upper bound is > any other kind (this could only be relevant if
* HUGE_VAL is used as a regular data value). A '<' upper bound is < any
* other kind. A '>' upper bound is > any other kind except '-'.
*/
if (a->u_ext != b->u_ext)
{
if (a->u_ext == '-')
return 1;
if (b->u_ext == '-')
return -1;
if (a->u_ext == '<')
return -1;
if (b->u_ext == '<')
return 1;
if (a->u_ext == '>')
return 1;
if (b->u_ext == '>')
return -1;
}
/*
* For other boundary types, consider # of significant digits first. Note
* result here is converse of the lower-boundary case.
*/
if (a->u_sigd < b->u_sigd) /* (a) is blurred and is likely to include (b) */
return 1;
if (a->u_sigd > b->u_sigd) /* (a) is less blurred and is likely to be
* included in (b) */
return -1;
/*
* For same # of digits, an approximate boundary is more blurred than
* exact. Again, result is converse of lower-boundary case.
*/
if (a->u_ext != b->u_ext)
{
if (a->u_ext == '~') /* (a) is approximate, while (b) is exact */
return 1;
if (b->u_ext == '~')
return -1;
/* can't get here unless data is corrupt */
elog(ERROR, "bogus upper boundary types %d %d",
(int) a->u_ext, (int) b->u_ext);
}
return 0;
}
Datum
seg_lt(PG_FUNCTION_ARGS)
{
SEG *a = (SEG *) PG_GETARG_POINTER(0);
SEG *b = (SEG *) PG_GETARG_POINTER(1);
PG_RETURN_BOOL(seg_cmp(a, b) < 0);
}
Datum
seg_le(PG_FUNCTION_ARGS)
{
SEG *a = (SEG *) PG_GETARG_POINTER(0);
SEG *b = (SEG *) PG_GETARG_POINTER(1);
PG_RETURN_BOOL(seg_cmp(a, b) <= 0);
}
Datum
seg_gt(PG_FUNCTION_ARGS)
{
SEG *a = (SEG *) PG_GETARG_POINTER(0);
SEG *b = (SEG *) PG_GETARG_POINTER(1);
PG_RETURN_BOOL(seg_cmp(a, b) > 0);
}
Datum
seg_ge(PG_FUNCTION_ARGS)
{
SEG *a = (SEG *) PG_GETARG_POINTER(0);
SEG *b = (SEG *) PG_GETARG_POINTER(1);
PG_RETURN_BOOL(seg_cmp(a, b) >= 0);
}
Datum
seg_different(PG_FUNCTION_ARGS)
{
SEG *a = (SEG *) PG_GETARG_POINTER(0);
SEG *b = (SEG *) PG_GETARG_POINTER(1);
PG_RETURN_BOOL(seg_cmp(a, b) != 0);
}
/*****************************************************************************
* Auxiliary functions
*****************************************************************************/
/*
* The purpose of this routine is to print the given floating point
* value with exactly n significant digits. Its behaviour
* is similar to %.ng except it prints 8.00 where %.ng would
* print 8. Returns the length of the string written at "result".
*
* Caller must provide a sufficiently large result buffer; 16 bytes
* should be enough for all known float implementations.
*/
static int
restore(char *result, float val, int n)
{
char buf[25] = {
'0', '0', '0', '0', '0',
'0', '0', '0', '0', '0',
'0', '0', '0', '0', '0',
'0', '0', '0', '0', '0',
'0', '0', '0', '0', '\0'
};
char *p;
int exp;
int i,
dp,
sign;
/*
* Put a cap on the number of significant digits to avoid garbage in the
* output and ensure we don't overrun the result buffer.
*/
n = Min(n, FLT_DIG);
/* remember the sign */
sign = (val < 0 ? 1 : 0);
/* print, in %e style to start with */
sprintf(result, "%.*e", n - 1, val);
/* find the exponent */
p = strchr(result, 'e');
/* punt if we have 'inf' or similar */
if (p == NULL)
return strlen(result);
exp = atoi(p + 1);
if (exp == 0)
{
/* just truncate off the 'e+00' */
*p = '\0';
}
else
{
if (Abs(exp) <= 4)
{
/*
* remove the decimal point from the mantyssa and write the digits
* to the buf array
*/
for (p = result + sign, i = 10, dp = 0; *p != 'e'; p++, i++)
{
buf[i] = *p;
if (*p == '.')
{
dp = i--; /* skip the decimal point */
}
}
if (dp == 0)
dp = i--; /* no decimal point was found in the above
* for() loop */
if (exp > 0)
{
if (dp - 10 + exp >= n)
{
/*
* the decimal point is behind the last significant digit;
* the digits in between must be converted to the exponent
* and the decimal point placed after the first digit
*/
exp = dp - 10 + exp - n;
buf[10 + n] = '\0';
/* insert the decimal point */
if (n > 1)
{
dp = 11;
for (i = 23; i > dp; i--)
buf[i] = buf[i - 1];
buf[dp] = '.';
}
/*
* adjust the exponent by the number of digits after the
* decimal point
*/
if (n > 1)
sprintf(&buf[11 + n], "e%d", exp + n - 1);
else
sprintf(&buf[11], "e%d", exp + n - 1);
if (sign)
{
buf[9] = '-';
strcpy(result, &buf[9]);
}
else
strcpy(result, &buf[10]);
}
else
{ /* insert the decimal point */
dp += exp;
for (i = 23; i > dp; i--)
buf[i] = buf[i - 1];
buf[11 + n] = '\0';
buf[dp] = '.';
if (sign)
{
buf[9] = '-';
strcpy(result, &buf[9]);
}
else
strcpy(result, &buf[10]);
}
}
else
{ /* exp <= 0 */
dp += exp - 1;
buf[10 + n] = '\0';
buf[dp] = '.';
if (sign)
{
buf[dp - 2] = '-';
strcpy(result, &buf[dp - 2]);
}
else
strcpy(result, &buf[dp - 1]);
}
}
/* do nothing for Abs(exp) > 4; %e must be OK */
/* just get rid of zeroes after [eE]- and +zeroes after [Ee]. */
/* ... this is not done yet. */
}
return (strlen(result));
}
/*
** Miscellany
*/
/* find out the number of significant digits in a string representing
* a floating point number
*/
int
significant_digits(char *s)
{
char *p = s;
int n,
c,
zeroes;
zeroes = 1;
/* skip leading zeroes and sign */
for (c = *p; (c == '0' || c == '+' || c == '-') && c != 0; c = *(++p));
/* skip decimal point and following zeroes */
for (c = *p; (c == '0' || c == '.') && c != 0; c = *(++p))
{
if (c != '.')
zeroes++;
}
/* count significant digits (n) */
for (c = *p, n = 0; c != 0; c = *(++p))
{
if (!((c >= '0' && c <= '9') || (c == '.')))
break;
if (c != '.')
n++;
}
if (!n)
return (zeroes);
return (n);
}