postgresql/src/backend/executor/execPartition.c

1718 lines
54 KiB
C

/*-------------------------------------------------------------------------
*
* execPartition.c
* Support routines for partitioning.
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* src/backend/executor/execPartition.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/pg_inherits.h"
#include "catalog/pg_type.h"
#include "executor/execPartition.h"
#include "executor/executor.h"
#include "foreign/fdwapi.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "utils/lsyscache.h"
#include "utils/rls.h"
#include "utils/ruleutils.h"
static PartitionDispatch *RelationGetPartitionDispatchInfo(Relation rel,
int *num_parted, List **leaf_part_oids);
static void get_partition_dispatch_recurse(Relation rel, Relation parent,
List **pds, List **leaf_part_oids);
static void FormPartitionKeyDatum(PartitionDispatch pd,
TupleTableSlot *slot,
EState *estate,
Datum *values,
bool *isnull);
static char *ExecBuildSlotPartitionKeyDescription(Relation rel,
Datum *values,
bool *isnull,
int maxfieldlen);
static List *adjust_partition_tlist(List *tlist, TupleConversionMap *map);
static void find_subplans_for_params_recurse(PartitionPruneState *prunestate,
PartitionPruningData *pprune,
bool allparams,
Bitmapset **validsubplans);
/*
* ExecSetupPartitionTupleRouting - sets up information needed during
* tuple routing for partitioned tables, encapsulates it in
* PartitionTupleRouting, and returns it.
*
* Note that all the relations in the partition tree are locked using the
* RowExclusiveLock mode upon return from this function.
*
* While we allocate the arrays of pointers of ResultRelInfo and
* TupleConversionMap for all partitions here, actual objects themselves are
* lazily allocated for a given partition if a tuple is actually routed to it;
* see ExecInitPartitionInfo. However, if the function is invoked for update
* tuple routing, caller would already have initialized ResultRelInfo's for
* some of the partitions, which are reused and assigned to their respective
* slot in the aforementioned array. For such partitions, we delay setting
* up objects such as TupleConversionMap until those are actually chosen as
* the partitions to route tuples to. See ExecPrepareTupleRouting.
*/
PartitionTupleRouting *
ExecSetupPartitionTupleRouting(ModifyTableState *mtstate, Relation rel)
{
List *leaf_parts;
ListCell *cell;
int i;
ResultRelInfo *update_rri = NULL;
int num_update_rri = 0,
update_rri_index = 0;
bool is_update = false;
bool is_merge = false;
PartitionTupleRouting *proute;
int nparts;
ModifyTable *node = mtstate ? (ModifyTable *) mtstate->ps.plan : NULL;
/*
* Get the information about the partition tree after locking all the
* partitions.
*/
(void) find_all_inheritors(RelationGetRelid(rel), RowExclusiveLock, NULL);
proute = (PartitionTupleRouting *) palloc0(sizeof(PartitionTupleRouting));
proute->partition_dispatch_info =
RelationGetPartitionDispatchInfo(rel, &proute->num_dispatch,
&leaf_parts);
proute->num_partitions = nparts = list_length(leaf_parts);
proute->partitions =
(ResultRelInfo **) palloc(nparts * sizeof(ResultRelInfo *));
proute->parent_child_tupconv_maps =
(TupleConversionMap **) palloc0(nparts * sizeof(TupleConversionMap *));
proute->partition_oids = (Oid *) palloc(nparts * sizeof(Oid));
/* Set up details specific to the type of tuple routing we are doing. */
if (node && node->operation == CMD_UPDATE)
is_update = true;
else if (node && node->operation == CMD_MERGE)
is_merge = true;
if (is_update)
{
update_rri = mtstate->resultRelInfo;
num_update_rri = list_length(node->plans);
proute->subplan_partition_offsets =
palloc(num_update_rri * sizeof(int));
proute->num_subplan_partition_offsets = num_update_rri;
}
if (is_update || is_merge)
{
/*
* We need an additional tuple slot for storing transient tuples that
* are converted to the root table descriptor.
*/
proute->root_tuple_slot = MakeTupleTableSlot(NULL);
}
/*
* Initialize an empty slot that will be used to manipulate tuples of any
* given partition's rowtype. It is attached to the caller-specified node
* (such as ModifyTableState) and released when the node finishes
* processing.
*/
proute->partition_tuple_slot = MakeTupleTableSlot(NULL);
i = 0;
foreach(cell, leaf_parts)
{
ResultRelInfo *leaf_part_rri = NULL;
Oid leaf_oid = lfirst_oid(cell);
proute->partition_oids[i] = leaf_oid;
/*
* If the leaf partition is already present in the per-subplan result
* rels, we re-use that rather than initialize a new result rel. The
* per-subplan resultrels and the resultrels of the leaf partitions
* are both in the same canonical order. So while going through the
* leaf partition oids, we need to keep track of the next per-subplan
* result rel to be looked for in the leaf partition resultrels.
*/
if (update_rri_index < num_update_rri &&
RelationGetRelid(update_rri[update_rri_index].ri_RelationDesc) == leaf_oid)
{
leaf_part_rri = &update_rri[update_rri_index];
/*
* This is required in order to convert the partition's tuple to
* be compatible with the root partitioned table's tuple
* descriptor. When generating the per-subplan result rels, this
* was not set.
*/
leaf_part_rri->ri_PartitionRoot = rel;
/* Remember the subplan offset for this ResultRelInfo */
proute->subplan_partition_offsets[update_rri_index] = i;
update_rri_index++;
}
proute->partitions[i] = leaf_part_rri;
i++;
}
/*
* For UPDATE, we should have found all the per-subplan resultrels in the
* leaf partitions. (If this is an INSERT, both values will be zero.)
*/
Assert(update_rri_index == num_update_rri);
return proute;
}
/*
* ExecFindPartition -- Find a leaf partition in the partition tree rooted
* at parent, for the heap tuple contained in *slot
*
* estate must be non-NULL; we'll need it to compute any expressions in the
* partition key(s)
*
* If no leaf partition is found, this routine errors out with the appropriate
* error message, else it returns the leaf partition sequence number
* as an index into the array of (ResultRelInfos of) all leaf partitions in
* the partition tree.
*/
int
ExecFindPartition(ResultRelInfo *resultRelInfo, PartitionDispatch *pd,
TupleTableSlot *slot, EState *estate)
{
int result;
Datum values[PARTITION_MAX_KEYS];
bool isnull[PARTITION_MAX_KEYS];
Relation rel;
PartitionDispatch parent;
ExprContext *ecxt = GetPerTupleExprContext(estate);
TupleTableSlot *ecxt_scantuple_old = ecxt->ecxt_scantuple;
/*
* First check the root table's partition constraint, if any. No point in
* routing the tuple if it doesn't belong in the root table itself.
*/
if (resultRelInfo->ri_PartitionCheck &&
!ExecPartitionCheck(resultRelInfo, slot, estate))
ExecPartitionCheckEmitError(resultRelInfo, slot, estate);
/* start with the root partitioned table */
parent = pd[0];
while (true)
{
PartitionDesc partdesc;
TupleTableSlot *myslot = parent->tupslot;
TupleConversionMap *map = parent->tupmap;
int cur_index = -1;
rel = parent->reldesc;
partdesc = RelationGetPartitionDesc(rel);
/*
* Convert the tuple to this parent's layout so that we can do certain
* things we do below.
*/
if (myslot != NULL && map != NULL)
{
HeapTuple tuple = ExecFetchSlotTuple(slot);
ExecClearTuple(myslot);
tuple = do_convert_tuple(tuple, map);
ExecStoreTuple(tuple, myslot, InvalidBuffer, true);
slot = myslot;
}
/*
* Extract partition key from tuple. Expression evaluation machinery
* that FormPartitionKeyDatum() invokes expects ecxt_scantuple to
* point to the correct tuple slot. The slot might have changed from
* what was used for the parent table if the table of the current
* partitioning level has different tuple descriptor from the parent.
* So update ecxt_scantuple accordingly.
*/
ecxt->ecxt_scantuple = slot;
FormPartitionKeyDatum(parent, slot, estate, values, isnull);
/*
* Nothing for get_partition_for_tuple() to do if there are no
* partitions to begin with.
*/
if (partdesc->nparts == 0)
{
result = -1;
break;
}
cur_index = get_partition_for_tuple(rel, values, isnull);
/*
* cur_index < 0 means we failed to find a partition of this parent.
* cur_index >= 0 means we either found the leaf partition, or the
* next parent to find a partition of.
*/
if (cur_index < 0)
{
result = -1;
break;
}
else if (parent->indexes[cur_index] >= 0)
{
result = parent->indexes[cur_index];
break;
}
else
parent = pd[-parent->indexes[cur_index]];
}
/* A partition was not found. */
if (result < 0)
{
char *val_desc;
val_desc = ExecBuildSlotPartitionKeyDescription(rel,
values, isnull, 64);
Assert(OidIsValid(RelationGetRelid(rel)));
ereport(ERROR,
(errcode(ERRCODE_CHECK_VIOLATION),
errmsg("no partition of relation \"%s\" found for row",
RelationGetRelationName(rel)),
val_desc ? errdetail("Partition key of the failing row contains %s.", val_desc) : 0));
}
ecxt->ecxt_scantuple = ecxt_scantuple_old;
return result;
}
/*
* Given OID of the partition leaf, return the index of the leaf in the
* partition hierarchy.
*
* XXX This is an O(N) operation and further optimization would be beneficial
*/
int
ExecFindPartitionByOid(PartitionTupleRouting *proute, Oid partoid)
{
int i;
for (i = 0; i < proute->num_partitions; i++)
{
if (proute->partition_oids[i] == partoid)
break;
}
if (i >= proute->num_partitions)
ereport(ERROR,
(errcode(ERRCODE_INTERNAL_ERROR),
errmsg("no partition found for OID %u", partoid)));
return i;
}
/*
* ExecInitPartitionInfo
* Initialize ResultRelInfo and other information for a partition if not
* already done
*
* Returns the ResultRelInfo
*/
ResultRelInfo *
ExecInitPartitionInfo(ModifyTableState *mtstate,
ResultRelInfo *resultRelInfo,
PartitionTupleRouting *proute,
EState *estate, int partidx)
{
ModifyTable *node = (ModifyTable *) mtstate->ps.plan;
Relation rootrel = resultRelInfo->ri_RelationDesc,
partrel;
ResultRelInfo *leaf_part_rri;
MemoryContext oldContext;
/*
* We locked all the partitions in ExecSetupPartitionTupleRouting
* including the leaf partitions.
*/
partrel = heap_open(proute->partition_oids[partidx], NoLock);
/*
* Keep ResultRelInfo and other information for this partition in the
* per-query memory context so they'll survive throughout the query.
*/
oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
leaf_part_rri = makeNode(ResultRelInfo);
InitResultRelInfo(leaf_part_rri,
partrel,
node ? node->nominalRelation : 1,
rootrel,
estate->es_instrument);
leaf_part_rri->ri_PartitionLeafIndex = partidx;
/*
* Since we've just initialized this ResultRelInfo, it's not in any list
* attached to the estate as yet. Add it, so that it can be found later.
*
* Note that the entries in this list appear in no predetermined order,
* because partition result rels are initialized as and when they're
* needed.
*/
estate->es_tuple_routing_result_relations =
lappend(estate->es_tuple_routing_result_relations,
leaf_part_rri);
/* Set up information needed for routing tuples to this partition. */
ExecInitRoutingInfo(mtstate, estate, proute, leaf_part_rri, partidx);
/*
* Open partition indices. The user may have asked to check for conflicts
* within this leaf partition and do "nothing" instead of throwing an
* error. Be prepared in that case by initializing the index information
* needed by ExecInsert() to perform speculative insertions.
*/
if (partrel->rd_rel->relhasindex &&
leaf_part_rri->ri_IndexRelationDescs == NULL)
ExecOpenIndices(leaf_part_rri,
(node != NULL &&
node->onConflictAction != ONCONFLICT_NONE));
/*
* Build WITH CHECK OPTION constraints for the partition. Note that we
* didn't build the withCheckOptionList for partitions within the planner,
* but simple translation of varattnos will suffice. This only occurs for
* the INSERT case or in the case of UPDATE tuple routing where we didn't
* find a result rel to reuse in ExecSetupPartitionTupleRouting().
*/
if (node && node->withCheckOptionLists != NIL)
{
List *wcoList;
List *wcoExprs = NIL;
ListCell *ll;
int firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex;
Relation firstResultRel = mtstate->resultRelInfo[0].ri_RelationDesc;
/*
* In the case of INSERT on a partitioned table, there is only one
* plan. Likewise, there is only one WCO list, not one per partition.
* For UPDATE, there are as many WCO lists as there are plans.
*/
Assert((node->operation == CMD_INSERT &&
list_length(node->withCheckOptionLists) == 1 &&
list_length(node->plans) == 1) ||
(node->operation == CMD_UPDATE &&
list_length(node->withCheckOptionLists) ==
list_length(node->plans)));
/*
* Use the WCO list of the first plan as a reference to calculate
* attno's for the WCO list of this partition. In the INSERT case,
* that refers to the root partitioned table, whereas in the UPDATE
* tuple routing case, that refers to the first partition in the
* mtstate->resultRelInfo array. In any case, both that relation and
* this partition should have the same columns, so we should be able
* to map attributes successfully.
*/
wcoList = linitial(node->withCheckOptionLists);
/*
* Convert Vars in it to contain this partition's attribute numbers.
*/
wcoList = map_partition_varattnos(wcoList, firstVarno,
partrel, firstResultRel, NULL);
foreach(ll, wcoList)
{
WithCheckOption *wco = castNode(WithCheckOption, lfirst(ll));
ExprState *wcoExpr = ExecInitQual(castNode(List, wco->qual),
&mtstate->ps);
wcoExprs = lappend(wcoExprs, wcoExpr);
}
leaf_part_rri->ri_WithCheckOptions = wcoList;
leaf_part_rri->ri_WithCheckOptionExprs = wcoExprs;
}
/*
* Build the RETURNING projection for the partition. Note that we didn't
* build the returningList for partitions within the planner, but simple
* translation of varattnos will suffice. This only occurs for the INSERT
* case or in the case of UPDATE tuple routing where we didn't find a
* result rel to reuse in ExecSetupPartitionTupleRouting().
*/
if (node && node->returningLists != NIL)
{
TupleTableSlot *slot;
ExprContext *econtext;
List *returningList;
int firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex;
Relation firstResultRel = mtstate->resultRelInfo[0].ri_RelationDesc;
/* See the comment above for WCO lists. */
Assert((node->operation == CMD_INSERT &&
list_length(node->returningLists) == 1 &&
list_length(node->plans) == 1) ||
(node->operation == CMD_UPDATE &&
list_length(node->returningLists) ==
list_length(node->plans)));
/*
* Use the RETURNING list of the first plan as a reference to
* calculate attno's for the RETURNING list of this partition. See
* the comment above for WCO lists for more details on why this is
* okay.
*/
returningList = linitial(node->returningLists);
/*
* Convert Vars in it to contain this partition's attribute numbers.
*/
returningList = map_partition_varattnos(returningList, firstVarno,
partrel, firstResultRel,
NULL);
leaf_part_rri->ri_returningList = returningList;
/*
* Initialize the projection itself.
*
* Use the slot and the expression context that would have been set up
* in ExecInitModifyTable() for projection's output.
*/
Assert(mtstate->ps.ps_ResultTupleSlot != NULL);
slot = mtstate->ps.ps_ResultTupleSlot;
Assert(mtstate->ps.ps_ExprContext != NULL);
econtext = mtstate->ps.ps_ExprContext;
leaf_part_rri->ri_projectReturning =
ExecBuildProjectionInfo(returningList, econtext, slot,
&mtstate->ps, RelationGetDescr(partrel));
}
/*
* If there is an ON CONFLICT clause, initialize state for it.
*/
if (node && node->onConflictAction != ONCONFLICT_NONE)
{
TupleConversionMap *map = proute->parent_child_tupconv_maps[partidx];
int firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex;
Relation firstResultRel = mtstate->resultRelInfo[0].ri_RelationDesc;
TupleDesc partrelDesc = RelationGetDescr(partrel);
ExprContext *econtext = mtstate->ps.ps_ExprContext;
ListCell *lc;
List *arbiterIndexes = NIL;
/*
* If there is a list of arbiter indexes, map it to a list of indexes
* in the partition. We do that by scanning the partition's index
* list and searching for ancestry relationships to each index in the
* ancestor table.
*/
if (list_length(resultRelInfo->ri_onConflictArbiterIndexes) > 0)
{
List *childIdxs;
childIdxs = RelationGetIndexList(leaf_part_rri->ri_RelationDesc);
foreach(lc, childIdxs)
{
Oid childIdx = lfirst_oid(lc);
List *ancestors;
ListCell *lc2;
ancestors = get_partition_ancestors(childIdx);
foreach(lc2, resultRelInfo->ri_onConflictArbiterIndexes)
{
if (list_member_oid(ancestors, lfirst_oid(lc2)))
arbiterIndexes = lappend_oid(arbiterIndexes, childIdx);
}
list_free(ancestors);
}
}
/*
* If the resulting lists are of inequal length, something is wrong.
* (This shouldn't happen, since arbiter index selection should not
* pick up an invalid index.)
*/
if (list_length(resultRelInfo->ri_onConflictArbiterIndexes) !=
list_length(arbiterIndexes))
elog(ERROR, "invalid arbiter index list");
leaf_part_rri->ri_onConflictArbiterIndexes = arbiterIndexes;
/*
* In the DO UPDATE case, we have some more state to initialize.
*/
if (node->onConflictAction == ONCONFLICT_UPDATE)
{
Assert(node->onConflictSet != NIL);
Assert(resultRelInfo->ri_onConflict != NULL);
/*
* If the partition's tuple descriptor matches exactly the root
* parent (the common case), we can simply re-use the parent's ON
* CONFLICT SET state, skipping a bunch of work. Otherwise, we
* need to create state specific to this partition.
*/
if (map == NULL)
leaf_part_rri->ri_onConflict = resultRelInfo->ri_onConflict;
else
{
List *onconflset;
TupleDesc tupDesc;
bool found_whole_row;
leaf_part_rri->ri_onConflict = makeNode(OnConflictSetState);
/*
* Translate expressions in onConflictSet to account for
* different attribute numbers. For that, map partition
* varattnos twice: first to catch the EXCLUDED
* pseudo-relation (INNER_VAR), and second to handle the main
* target relation (firstVarno).
*/
onconflset = (List *) copyObject((Node *) node->onConflictSet);
onconflset =
map_partition_varattnos(onconflset, INNER_VAR, partrel,
firstResultRel, &found_whole_row);
Assert(!found_whole_row);
onconflset =
map_partition_varattnos(onconflset, firstVarno, partrel,
firstResultRel, &found_whole_row);
Assert(!found_whole_row);
/* Finally, adjust this tlist to match the partition. */
onconflset = adjust_partition_tlist(onconflset, map);
/*
* Build UPDATE SET's projection info. The user of this
* projection is responsible for setting the slot's tupdesc!
* We set aside a tupdesc that's good for the common case of a
* partition that's tupdesc-equal to the partitioned table;
* partitions of different tupdescs must generate their own.
*/
tupDesc = ExecTypeFromTL(onconflset, partrelDesc->tdhasoid);
ExecSetSlotDescriptor(mtstate->mt_conflproj, tupDesc);
leaf_part_rri->ri_onConflict->oc_ProjInfo =
ExecBuildProjectionInfo(onconflset, econtext,
mtstate->mt_conflproj,
&mtstate->ps, partrelDesc);
leaf_part_rri->ri_onConflict->oc_ProjTupdesc = tupDesc;
/*
* If there is a WHERE clause, initialize state where it will
* be evaluated, mapping the attribute numbers appropriately.
* As with onConflictSet, we need to map partition varattnos
* to the partition's tupdesc.
*/
if (node->onConflictWhere)
{
List *clause;
clause = copyObject((List *) node->onConflictWhere);
clause = map_partition_varattnos(clause, INNER_VAR,
partrel, firstResultRel,
&found_whole_row);
Assert(!found_whole_row);
clause = map_partition_varattnos(clause, firstVarno,
partrel, firstResultRel,
&found_whole_row);
Assert(!found_whole_row);
leaf_part_rri->ri_onConflict->oc_WhereClause =
ExecInitQual((List *) clause, &mtstate->ps);
}
}
}
}
Assert(proute->partitions[partidx] == NULL);
proute->partitions[partidx] = leaf_part_rri;
/*
* Initialize information about this partition that's needed to handle
* MERGE.
*/
if (node && node->operation == CMD_MERGE)
{
TupleDesc partrelDesc = RelationGetDescr(partrel);
TupleConversionMap *map = proute->parent_child_tupconv_maps[partidx];
int firstVarno = mtstate->resultRelInfo[0].ri_RangeTableIndex;
Relation firstResultRel = mtstate->resultRelInfo[0].ri_RelationDesc;
/*
* If the root parent and partition have the same tuple
* descriptor, just reuse the original MERGE state for partition.
*/
if (map == NULL)
{
leaf_part_rri->ri_mergeState = resultRelInfo->ri_mergeState;
}
else
{
/* Convert expressions contain partition's attnos. */
List *conv_tl, *conv_qual;
ListCell *l;
List *matchedActionStates = NIL;
List *notMatchedActionStates = NIL;
foreach (l, node->mergeActionList)
{
MergeAction *action = lfirst_node(MergeAction, l);
MergeActionState *action_state = makeNode(MergeActionState);
TupleDesc tupDesc;
ExprContext *econtext;
action_state->matched = action->matched;
action_state->commandType = action->commandType;
conv_qual = (List *) action->qual;
conv_qual = map_partition_varattnos(conv_qual,
firstVarno, partrel,
firstResultRel, NULL);
action_state->whenqual = ExecInitQual(conv_qual, &mtstate->ps);
conv_tl = (List *) action->targetList;
conv_tl = map_partition_varattnos(conv_tl,
firstVarno, partrel,
firstResultRel, NULL);
conv_tl = adjust_partition_tlist( conv_tl, map);
tupDesc = ExecTypeFromTL(conv_tl, partrelDesc->tdhasoid);
action_state->tupDesc = tupDesc;
/* build action projection state */
econtext = mtstate->ps.ps_ExprContext;
action_state->proj =
ExecBuildProjectionInfo(conv_tl, econtext,
mtstate->mt_mergeproj,
&mtstate->ps,
partrelDesc);
if (action_state->matched)
matchedActionStates =
lappend(matchedActionStates, action_state);
else
notMatchedActionStates =
lappend(notMatchedActionStates, action_state);
}
leaf_part_rri->ri_mergeState->matchedActionStates =
matchedActionStates;
leaf_part_rri->ri_mergeState->notMatchedActionStates =
notMatchedActionStates;
}
/*
* get_partition_dispatch_recurse() and expand_partitioned_rtentry()
* fetch the leaf OIDs in the same order. So we can safely derive the
* index of the merge target relation corresponding to this partition
* by simply adding partidx + 1 to the root's merge target relation.
*/
leaf_part_rri->ri_mergeTargetRTI = node->mergeTargetRelation +
partidx + 1;
}
MemoryContextSwitchTo(oldContext);
return leaf_part_rri;
}
/*
* ExecInitRoutingInfo
* Set up information needed for routing tuples to a leaf partition if
* routable; else abort the operation
*/
void
ExecInitRoutingInfo(ModifyTableState *mtstate,
EState *estate,
PartitionTupleRouting *proute,
ResultRelInfo *partRelInfo,
int partidx)
{
MemoryContext oldContext;
/* Verify the partition is a valid target for INSERT */
CheckValidResultRel(partRelInfo, CMD_INSERT);
/*
* Switch into per-query memory context.
*/
oldContext = MemoryContextSwitchTo(estate->es_query_cxt);
/*
* Set up a tuple conversion map to convert a tuple routed to the
* partition from the parent's type to the partition's.
*/
proute->parent_child_tupconv_maps[partidx] =
convert_tuples_by_name(RelationGetDescr(partRelInfo->ri_PartitionRoot),
RelationGetDescr(partRelInfo->ri_RelationDesc),
gettext_noop("could not convert row type"));
/*
* If the partition is a foreign table, let the FDW init itself for
* routing tuples to the partition.
*/
if (partRelInfo->ri_FdwRoutine != NULL &&
partRelInfo->ri_FdwRoutine->BeginForeignInsert != NULL)
partRelInfo->ri_FdwRoutine->BeginForeignInsert(mtstate, partRelInfo);
MemoryContextSwitchTo(oldContext);
partRelInfo->ri_PartitionReadyForRouting = true;
}
/*
* ExecSetupChildParentMapForLeaf -- Initialize the per-leaf-partition
* child-to-root tuple conversion map array.
*
* This map is required for capturing transition tuples when the target table
* is a partitioned table. For a tuple that is routed by an INSERT or UPDATE,
* we need to convert it from the leaf partition to the target table
* descriptor.
*/
void
ExecSetupChildParentMapForLeaf(PartitionTupleRouting *proute)
{
Assert(proute != NULL);
/*
* These array elements get filled up with maps on an on-demand basis.
* Initially just set all of them to NULL.
*/
proute->child_parent_tupconv_maps =
(TupleConversionMap **) palloc0(sizeof(TupleConversionMap *) *
proute->num_partitions);
/* Same is the case for this array. All the values are set to false */
proute->child_parent_map_not_required =
(bool *) palloc0(sizeof(bool) * proute->num_partitions);
}
/*
* TupConvMapForLeaf -- Get the tuple conversion map for a given leaf partition
* index.
*/
TupleConversionMap *
TupConvMapForLeaf(PartitionTupleRouting *proute,
ResultRelInfo *rootRelInfo, int leaf_index)
{
ResultRelInfo **resultRelInfos = proute->partitions;
TupleConversionMap **map;
TupleDesc tupdesc;
/* Don't call this if we're not supposed to be using this type of map. */
Assert(proute->child_parent_tupconv_maps != NULL);
/* If it's already known that we don't need a map, return NULL. */
if (proute->child_parent_map_not_required[leaf_index])
return NULL;
/* If we've already got a map, return it. */
map = &proute->child_parent_tupconv_maps[leaf_index];
if (*map != NULL)
return *map;
/* No map yet; try to create one. */
tupdesc = RelationGetDescr(resultRelInfos[leaf_index]->ri_RelationDesc);
*map =
convert_tuples_by_name(tupdesc,
RelationGetDescr(rootRelInfo->ri_RelationDesc),
gettext_noop("could not convert row type"));
/* If it turns out no map is needed, remember for next time. */
proute->child_parent_map_not_required[leaf_index] = (*map == NULL);
return *map;
}
/*
* ConvertPartitionTupleSlot -- convenience function for tuple conversion.
* The tuple, if converted, is stored in new_slot, and *p_my_slot is
* updated to point to it. new_slot typically should be one of the
* dedicated partition tuple slots. If map is NULL, *p_my_slot is not changed.
*
* Returns the converted tuple, unless map is NULL, in which case original
* tuple is returned unmodified.
*/
HeapTuple
ConvertPartitionTupleSlot(TupleConversionMap *map,
HeapTuple tuple,
TupleTableSlot *new_slot,
TupleTableSlot **p_my_slot)
{
if (!map)
return tuple;
tuple = do_convert_tuple(tuple, map);
/*
* Change the partition tuple slot descriptor, as per converted tuple.
*/
*p_my_slot = new_slot;
Assert(new_slot != NULL);
ExecSetSlotDescriptor(new_slot, map->outdesc);
ExecStoreTuple(tuple, new_slot, InvalidBuffer, true);
return tuple;
}
/*
* ExecCleanupTupleRouting -- Clean up objects allocated for partition tuple
* routing.
*
* Close all the partitioned tables, leaf partitions, and their indices.
*/
void
ExecCleanupTupleRouting(ModifyTableState *mtstate,
PartitionTupleRouting *proute)
{
int i;
int subplan_index = 0;
/*
* Remember, proute->partition_dispatch_info[0] corresponds to the root
* partitioned table, which we must not try to close, because it is the
* main target table of the query that will be closed by callers such as
* ExecEndPlan() or DoCopy(). Also, tupslot is NULL for the root
* partitioned table.
*/
for (i = 1; i < proute->num_dispatch; i++)
{
PartitionDispatch pd = proute->partition_dispatch_info[i];
heap_close(pd->reldesc, NoLock);
ExecDropSingleTupleTableSlot(pd->tupslot);
}
for (i = 0; i < proute->num_partitions; i++)
{
ResultRelInfo *resultRelInfo = proute->partitions[i];
/* skip further processsing for uninitialized partitions */
if (resultRelInfo == NULL)
continue;
/* Allow any FDWs to shut down if they've been exercised */
if (resultRelInfo->ri_PartitionReadyForRouting &&
resultRelInfo->ri_FdwRoutine != NULL &&
resultRelInfo->ri_FdwRoutine->EndForeignInsert != NULL)
resultRelInfo->ri_FdwRoutine->EndForeignInsert(mtstate->ps.state,
resultRelInfo);
/*
* If this result rel is one of the UPDATE subplan result rels, let
* ExecEndPlan() close it. For INSERT or COPY,
* proute->subplan_partition_offsets will always be NULL. Note that
* the subplan_partition_offsets array and the partitions array have
* the partitions in the same order. So, while we iterate over
* partitions array, we also iterate over the
* subplan_partition_offsets array in order to figure out which of the
* result rels are present in the UPDATE subplans.
*/
if (proute->subplan_partition_offsets &&
subplan_index < proute->num_subplan_partition_offsets &&
proute->subplan_partition_offsets[subplan_index] == i)
{
subplan_index++;
continue;
}
ExecCloseIndices(resultRelInfo);
heap_close(resultRelInfo->ri_RelationDesc, NoLock);
}
/* Release the standalone partition tuple descriptors, if any */
if (proute->root_tuple_slot)
ExecDropSingleTupleTableSlot(proute->root_tuple_slot);
if (proute->partition_tuple_slot)
ExecDropSingleTupleTableSlot(proute->partition_tuple_slot);
}
/*
* RelationGetPartitionDispatchInfo
* Returns information necessary to route tuples down a partition tree
*
* The number of elements in the returned array (that is, the number of
* PartitionDispatch objects for the partitioned tables in the partition tree)
* is returned in *num_parted and a list of the OIDs of all the leaf
* partitions of rel is returned in *leaf_part_oids.
*
* All the relations in the partition tree (including 'rel') must have been
* locked (using at least the AccessShareLock) by the caller.
*/
static PartitionDispatch *
RelationGetPartitionDispatchInfo(Relation rel,
int *num_parted, List **leaf_part_oids)
{
List *pdlist = NIL;
PartitionDispatchData **pd;
ListCell *lc;
int i;
Assert(rel->rd_rel->relkind == RELKIND_PARTITIONED_TABLE);
*num_parted = 0;
*leaf_part_oids = NIL;
get_partition_dispatch_recurse(rel, NULL, &pdlist, leaf_part_oids);
*num_parted = list_length(pdlist);
pd = (PartitionDispatchData **) palloc(*num_parted *
sizeof(PartitionDispatchData *));
i = 0;
foreach(lc, pdlist)
{
pd[i++] = lfirst(lc);
}
return pd;
}
/*
* get_partition_dispatch_recurse
* Recursively expand partition tree rooted at rel
*
* As the partition tree is expanded in a depth-first manner, we maintain two
* global lists: of PartitionDispatch objects corresponding to partitioned
* tables in *pds and of the leaf partition OIDs in *leaf_part_oids.
*
* Note that the order of OIDs of leaf partitions in leaf_part_oids matches
* the order in which the planner's expand_partitioned_rtentry() processes
* them. It's not necessarily the case that the offsets match up exactly,
* because constraint exclusion might prune away some partitions on the
* planner side, whereas we'll always have the complete list; but unpruned
* partitions will appear in the same order in the plan as they are returned
* here.
*/
static void
get_partition_dispatch_recurse(Relation rel, Relation parent,
List **pds, List **leaf_part_oids)
{
TupleDesc tupdesc = RelationGetDescr(rel);
PartitionDesc partdesc = RelationGetPartitionDesc(rel);
PartitionKey partkey = RelationGetPartitionKey(rel);
PartitionDispatch pd;
int i;
check_stack_depth();
/* Build a PartitionDispatch for this table and add it to *pds. */
pd = (PartitionDispatch) palloc(sizeof(PartitionDispatchData));
*pds = lappend(*pds, pd);
pd->reldesc = rel;
pd->key = partkey;
pd->keystate = NIL;
pd->partdesc = partdesc;
if (parent != NULL)
{
/*
* For every partitioned table other than the root, we must store a
* tuple table slot initialized with its tuple descriptor and a tuple
* conversion map to convert a tuple from its parent's rowtype to its
* own. That is to make sure that we are looking at the correct row
* using the correct tuple descriptor when computing its partition key
* for tuple routing.
*/
pd->tupslot = MakeSingleTupleTableSlot(tupdesc);
pd->tupmap = convert_tuples_by_name(RelationGetDescr(parent),
tupdesc,
gettext_noop("could not convert row type"));
}
else
{
/* Not required for the root partitioned table */
pd->tupslot = NULL;
pd->tupmap = NULL;
}
/*
* Go look at each partition of this table. If it's a leaf partition,
* simply add its OID to *leaf_part_oids. If it's a partitioned table,
* recursively call get_partition_dispatch_recurse(), so that its
* partitions are processed as well and a corresponding PartitionDispatch
* object gets added to *pds.
*
* About the values in pd->indexes: for a leaf partition, it contains the
* leaf partition's position in the global list *leaf_part_oids minus 1,
* whereas for a partitioned table partition, it contains the partition's
* position in the global list *pds multiplied by -1. The latter is
* multiplied by -1 to distinguish partitioned tables from leaf partitions
* when going through the values in pd->indexes. So, for example, when
* using it during tuple-routing, encountering a value >= 0 means we found
* a leaf partition. It is immediately returned as the index in the array
* of ResultRelInfos of all the leaf partitions, using which we insert the
* tuple into that leaf partition. A negative value means we found a
* partitioned table. The value multiplied by -1 is returned as the index
* in the array of PartitionDispatch objects of all partitioned tables in
* the tree. This value is used to continue the search in the next level
* of the partition tree.
*/
pd->indexes = (int *) palloc(partdesc->nparts * sizeof(int));
for (i = 0; i < partdesc->nparts; i++)
{
Oid partrelid = partdesc->oids[i];
if (get_rel_relkind(partrelid) != RELKIND_PARTITIONED_TABLE)
{
*leaf_part_oids = lappend_oid(*leaf_part_oids, partrelid);
pd->indexes[i] = list_length(*leaf_part_oids) - 1;
}
else
{
/*
* We assume all tables in the partition tree were already locked
* by the caller.
*/
Relation partrel = heap_open(partrelid, NoLock);
pd->indexes[i] = -list_length(*pds);
get_partition_dispatch_recurse(partrel, rel, pds, leaf_part_oids);
}
}
}
/* ----------------
* FormPartitionKeyDatum
* Construct values[] and isnull[] arrays for the partition key
* of a tuple.
*
* pd Partition dispatch object of the partitioned table
* slot Heap tuple from which to extract partition key
* estate executor state for evaluating any partition key
* expressions (must be non-NULL)
* values Array of partition key Datums (output area)
* isnull Array of is-null indicators (output area)
*
* the ecxt_scantuple slot of estate's per-tuple expr context must point to
* the heap tuple passed in.
* ----------------
*/
static void
FormPartitionKeyDatum(PartitionDispatch pd,
TupleTableSlot *slot,
EState *estate,
Datum *values,
bool *isnull)
{
ListCell *partexpr_item;
int i;
if (pd->key->partexprs != NIL && pd->keystate == NIL)
{
/* Check caller has set up context correctly */
Assert(estate != NULL &&
GetPerTupleExprContext(estate)->ecxt_scantuple == slot);
/* First time through, set up expression evaluation state */
pd->keystate = ExecPrepareExprList(pd->key->partexprs, estate);
}
partexpr_item = list_head(pd->keystate);
for (i = 0; i < pd->key->partnatts; i++)
{
AttrNumber keycol = pd->key->partattrs[i];
Datum datum;
bool isNull;
if (keycol != 0)
{
/* Plain column; get the value directly from the heap tuple */
datum = slot_getattr(slot, keycol, &isNull);
}
else
{
/* Expression; need to evaluate it */
if (partexpr_item == NULL)
elog(ERROR, "wrong number of partition key expressions");
datum = ExecEvalExprSwitchContext((ExprState *) lfirst(partexpr_item),
GetPerTupleExprContext(estate),
&isNull);
partexpr_item = lnext(partexpr_item);
}
values[i] = datum;
isnull[i] = isNull;
}
if (partexpr_item != NULL)
elog(ERROR, "wrong number of partition key expressions");
}
/*
* ExecBuildSlotPartitionKeyDescription
*
* This works very much like BuildIndexValueDescription() and is currently
* used for building error messages when ExecFindPartition() fails to find
* partition for a row.
*/
static char *
ExecBuildSlotPartitionKeyDescription(Relation rel,
Datum *values,
bool *isnull,
int maxfieldlen)
{
StringInfoData buf;
PartitionKey key = RelationGetPartitionKey(rel);
int partnatts = get_partition_natts(key);
int i;
Oid relid = RelationGetRelid(rel);
AclResult aclresult;
if (check_enable_rls(relid, InvalidOid, true) == RLS_ENABLED)
return NULL;
/* If the user has table-level access, just go build the description. */
aclresult = pg_class_aclcheck(relid, GetUserId(), ACL_SELECT);
if (aclresult != ACLCHECK_OK)
{
/*
* Step through the columns of the partition key and make sure the
* user has SELECT rights on all of them.
*/
for (i = 0; i < partnatts; i++)
{
AttrNumber attnum = get_partition_col_attnum(key, i);
/*
* If this partition key column is an expression, we return no
* detail rather than try to figure out what column(s) the
* expression includes and if the user has SELECT rights on them.
*/
if (attnum == InvalidAttrNumber ||
pg_attribute_aclcheck(relid, attnum, GetUserId(),
ACL_SELECT) != ACLCHECK_OK)
return NULL;
}
}
initStringInfo(&buf);
appendStringInfo(&buf, "(%s) = (",
pg_get_partkeydef_columns(relid, true));
for (i = 0; i < partnatts; i++)
{
char *val;
int vallen;
if (isnull[i])
val = "null";
else
{
Oid foutoid;
bool typisvarlena;
getTypeOutputInfo(get_partition_col_typid(key, i),
&foutoid, &typisvarlena);
val = OidOutputFunctionCall(foutoid, values[i]);
}
if (i > 0)
appendStringInfoString(&buf, ", ");
/* truncate if needed */
vallen = strlen(val);
if (vallen <= maxfieldlen)
appendStringInfoString(&buf, val);
else
{
vallen = pg_mbcliplen(val, vallen, maxfieldlen);
appendBinaryStringInfo(&buf, val, vallen);
appendStringInfoString(&buf, "...");
}
}
appendStringInfoChar(&buf, ')');
return buf.data;
}
/*
* adjust_partition_tlist
* Adjust the targetlist entries for a given partition to account for
* attribute differences between parent and the partition
*
* The expressions have already been fixed, but here we fix the list to make
* target resnos match the partition's attribute numbers. This results in a
* copy of the original target list in which the entries appear in resno
* order, including both the existing entries (that may have their resno
* changed in-place) and the newly added entries for columns that don't exist
* in the parent.
*
* Scribbles on the input tlist, so callers must make sure to make a copy
* before passing it to us.
*/
static List *
adjust_partition_tlist(List *tlist, TupleConversionMap *map)
{
List *new_tlist = NIL;
TupleDesc tupdesc = map->outdesc;
AttrNumber *attrMap = map->attrMap;
AttrNumber attrno;
for (attrno = 1; attrno <= tupdesc->natts; attrno++)
{
Form_pg_attribute att_tup = TupleDescAttr(tupdesc, attrno - 1);
TargetEntry *tle;
if (attrMap[attrno - 1] != InvalidAttrNumber)
{
Assert(!att_tup->attisdropped);
/*
* Use the corresponding entry from the parent's tlist, adjusting
* the resno the match the partition's attno.
*/
tle = (TargetEntry *) list_nth(tlist, attrMap[attrno - 1] - 1);
tle->resno = attrno;
}
else
{
Const *expr;
/*
* For a dropped attribute in the partition, generate a dummy
* entry with resno matching the partition's attno.
*/
Assert(att_tup->attisdropped);
expr = makeConst(INT4OID,
-1,
InvalidOid,
sizeof(int32),
(Datum) 0,
true, /* isnull */
true /* byval */ );
tle = makeTargetEntry((Expr *) expr,
attrno,
pstrdup(NameStr(att_tup->attname)),
false);
}
new_tlist = lappend(new_tlist, tle);
}
return new_tlist;
}
/*-------------------------------------------------------------------------
* Run-Time Partition Pruning Support.
*
* The following series of functions exist to support the removal of unneeded
* subnodes for queries against partitioned tables. The supporting functions
* here are designed to work with any node type which supports an arbitrary
* number of subnodes, e.g. Append, MergeAppend.
*
* Normally this pruning work is performed by the query planner's partition
* pruning code, however, the planner is limited to only being able to prune
* away unneeded partitions using quals which compare the partition key to a
* value which is known to be Const during planning. To allow the same
* pruning to be performed for values which are only determined during
* execution, we must make an additional pruning attempt during execution.
*
* Here we support pruning using both external and exec Params. The main
* difference between these that we need to concern ourselves with is the
* time when the values of the Params are known. External Param values are
* known at any time of execution, including executor startup, but exec Param
* values are only known when the executor is running.
*
* For external Params we may be able to prune away unneeded partitions
* during executor startup. This has the added benefit of not having to
* initialize the unneeded subnodes at all. This is useful as it can save
* quite a bit of effort during executor startup.
*
* For exec Params, we must delay pruning until the executor is running.
*
* Functions:
*
* ExecSetupPartitionPruneState:
* This must be called by nodes before any partition pruning is
* attempted. Normally executor startup is a good time. This function
* creates the PartitionPruneState details which are required by each
* of the two pruning functions, details include information about
* how to map the partition index details which are returned by the
* planner's partition prune function into subnode indexes.
*
* ExecFindInitialMatchingSubPlans:
* Returns indexes of matching subnodes utilizing only external Params
* to eliminate subnodes. The function must only be called during
* executor startup for the given node before the subnodes themselves
* are initialized. Subnodes which are found not to match by this
* function must not be included in the node's list of subnodes as this
* function performs a remap of the partition index to subplan index map
* and the newly created map provides indexes only for subnodes which
* remain after calling this function.
*
* ExecFindMatchingSubPlans:
* Returns indexes of matching subnodes utilizing all Params to eliminate
* subnodes which can't possibly contain matching tuples. This function
* can only be called while the executor is running.
*-------------------------------------------------------------------------
*/
/*
* ExecSetupPartitionPruneState
* Setup the required data structure which is required for calling
* ExecFindInitialMatchingSubPlans and ExecFindMatchingSubPlans.
*
* 'partitionpruneinfo' is a List of PartitionPruneInfos as generated by
* make_partition_pruneinfo. Here we build a PartitionPruneContext for each
* item in the List. These contexts can be re-used each time we re-evaulate
* which partitions match the pruning steps provided in each
* PartitionPruneInfo.
*/
PartitionPruneState *
ExecSetupPartitionPruneState(PlanState *planstate, List *partitionpruneinfo)
{
PartitionPruningData *prunedata;
PartitionPruneState *prunestate;
ListCell *lc;
int i;
Assert(partitionpruneinfo != NIL);
prunestate = (PartitionPruneState *) palloc(sizeof(PartitionPruneState));
prunedata = (PartitionPruningData *)
palloc(sizeof(PartitionPruningData) * list_length(partitionpruneinfo));
/*
* The first item in the array contains the details for the query's target
* partition, so record that as the root of the partition hierarchy.
*/
prunestate->partprunedata = prunedata;
prunestate->num_partprunedata = list_length(partitionpruneinfo);
prunestate->extparams = NULL;
prunestate->execparams = NULL;
/*
* Create a sub memory context which we'll use when making calls to the
* query planner's function to determine which partitions will match. The
* planner is not too careful about freeing memory, so we'll ensure we
* call the function in this context to avoid any memory leaking in the
* executor's memory context.
*/
prunestate->prune_context =
AllocSetContextCreate(CurrentMemoryContext,
"Partition Prune",
ALLOCSET_DEFAULT_SIZES);
i = 0;
foreach(lc, partitionpruneinfo)
{
PartitionPruneInfo *pinfo = (PartitionPruneInfo *) lfirst(lc);
PartitionPruningData *pprune = &prunedata[i];
PartitionPruneContext *context = &pprune->context;
PartitionDesc partdesc;
Relation rel;
PartitionKey partkey;
int partnatts;
pprune->present_parts = bms_copy(pinfo->present_parts);
pprune->subnode_map = palloc(sizeof(int) * pinfo->nparts);
/*
* We must make a copy of this rather than pointing directly to the
* plan's version as we may end up making modifications to it later.
*/
memcpy(pprune->subnode_map, pinfo->subnode_map,
sizeof(int) * pinfo->nparts);
/* We can use the subpart_map verbatim, since we never modify it */
pprune->subpart_map = pinfo->subpart_map;
/*
* Grab some info from the table's relcache; lock was already obtained
* by ExecLockNonLeafAppendTables.
*/
rel = relation_open(pinfo->reloid, NoLock);
partkey = RelationGetPartitionKey(rel);
partdesc = RelationGetPartitionDesc(rel);
context->strategy = partkey->strategy;
context->partnatts = partnatts = partkey->partnatts;
context->partopfamily = partkey->partopfamily;
context->partopcintype = partkey->partopcintype;
context->partcollation = partkey->partcollation;
context->partsupfunc = partkey->partsupfunc;
context->nparts = pinfo->nparts;
context->boundinfo = partition_bounds_copy(partdesc->boundinfo, partkey);
context->planstate = planstate;
context->safeparams = NULL; /* empty for now */
pprune->pruning_steps = pinfo->pruning_steps;
pprune->extparams = bms_copy(pinfo->extparams);
pprune->allparams = bms_union(pinfo->extparams, pinfo->execparams);
/*
* Accumulate the paramids which match the partitioned keys of all
* partitioned tables.
*/
prunestate->extparams = bms_add_members(prunestate->extparams,
pinfo->extparams);
prunestate->execparams = bms_add_members(prunestate->execparams,
pinfo->execparams);
relation_close(rel, NoLock);
i++;
}
/*
* Cache the union of the paramids of both types. This saves having to
* recalculate it everytime we need to know what they are.
*/
prunestate->allparams = bms_union(prunestate->extparams,
prunestate->execparams);
return prunestate;
}
/*
* ExecFindInitialMatchingSubPlans
* Determine which subset of subplan nodes we need to initialize based
* on the details stored in 'prunestate'. Here we only determine the
* matching partitions using values known during plan startup, which is
* only external Params. Exec Params will be unknown at this time. We
* must delay pruning using exec Params until the actual executor run.
*
* It is expected that callers of this function do so only once during their
* init plan. The caller must only initialize the subnodes which are returned
* by this function. The remaining subnodes should be discarded. Once this
* function has been called, future calls to ExecFindMatchingSubPlans will
* return its matching subnode indexes assuming that the caller discarded
* the original non-matching subnodes.
*
* This function must only be called if 'prunestate' has any extparams.
*
* 'nsubnodes' must be passed as the total number of unpruned subnodes.
*/
Bitmapset *
ExecFindInitialMatchingSubPlans(PartitionPruneState *prunestate, int nsubnodes)
{
PartitionPruningData *pprune;
MemoryContext oldcontext;
Bitmapset *result = NULL;
/*
* Ensure there's actually external params, or we've not been called
* already.
*/
Assert(!bms_is_empty(prunestate->extparams));
pprune = prunestate->partprunedata;
/*
* Switch to a temp context to avoid leaking memory in the executor's
* memory context.
*/
oldcontext = MemoryContextSwitchTo(prunestate->prune_context);
/* Determine which subnodes match the external params */
find_subplans_for_params_recurse(prunestate, pprune, false, &result);
MemoryContextSwitchTo(oldcontext);
/* Move to the correct memory context */
result = bms_copy(result);
MemoryContextReset(prunestate->prune_context);
/*
* Record that partition pruning has been performed for external params.
* These are not required again afterwards, and nullifying them helps
* ensure nothing accidentally calls this function twice on the same
* PartitionPruneState.
*
* (Note we keep prunestate->allparams, because we do use that one
* repeatedly in ExecFindMatchingSubPlans).
*/
bms_free(prunestate->extparams);
prunestate->extparams = NULL;
/*
* If any subnodes were pruned, we must re-sequence the subnode indexes so
* that ExecFindMatchingSubPlans properly returns the indexes from the
* subnodes which will remain after execution of this function.
*/
if (bms_num_members(result) < nsubnodes)
{
int *new_subnode_indexes;
int i;
int newidx;
/*
* First we must build an array which we can use to adjust the
* existing subnode_map so that it contains the new subnode indexes.
*/
new_subnode_indexes = (int *) palloc(sizeof(int) * nsubnodes);
newidx = 0;
for (i = 0; i < nsubnodes; i++)
{
if (bms_is_member(i, result))
new_subnode_indexes[i] = newidx++;
else
new_subnode_indexes[i] = -1; /* Newly pruned */
}
/*
* Now we can re-sequence each PartitionPruneInfo's subnode_map so
* that they point to the new index of the subnode.
*/
for (i = 0; i < prunestate->num_partprunedata; i++)
{
int nparts;
int j;
pprune = &prunestate->partprunedata[i];
nparts = pprune->context.nparts;
/*
* We also need to reset the present_parts field so that it only
* contains partition indexes that we actually still have subnodes
* for. It seems easier to build a fresh one, rather than trying
* to update the existing one.
*/
bms_free(pprune->present_parts);
pprune->present_parts = NULL;
for (j = 0; j < nparts; j++)
{
int oldidx = pprune->subnode_map[j];
/*
* If this partition existed as a subnode then change the old
* subnode index to the new subnode index. The new index may
* become -1 if the partition was pruned above, or it may just
* come earlier in the subnode list due to some subnodes being
* removed earlier in the list.
*/
if (oldidx >= 0)
{
pprune->subnode_map[j] = new_subnode_indexes[oldidx];
if (new_subnode_indexes[oldidx] >= 0)
pprune->present_parts =
bms_add_member(pprune->present_parts, j);
}
}
}
pfree(new_subnode_indexes);
}
return result;
}
/*
* ExecFindMatchingSubPlans
* Determine which subplans match the pruning steps detailed in
* 'pprune' for the current Param values.
*
* Here we utilize both external and exec Params for pruning.
*/
Bitmapset *
ExecFindMatchingSubPlans(PartitionPruneState *prunestate)
{
PartitionPruningData *pprune;
MemoryContext oldcontext;
Bitmapset *result = NULL;
pprune = prunestate->partprunedata;
/*
* Switch to a temp context to avoid leaking memory in the executor's
* memory context.
*/
oldcontext = MemoryContextSwitchTo(prunestate->prune_context);
find_subplans_for_params_recurse(prunestate, pprune, true, &result);
MemoryContextSwitchTo(oldcontext);
/* Move to the correct memory context */
result = bms_copy(result);
MemoryContextReset(prunestate->prune_context);
return result;
}
/*
* find_subplans_for_params_recurse
* Recursive worker function for ExecFindMatchingSubPlans and
* ExecFindInitialMatchingSubPlans
*/
static void
find_subplans_for_params_recurse(PartitionPruneState *prunestate,
PartitionPruningData *pprune,
bool allparams,
Bitmapset **validsubplans)
{
PartitionPruneContext *context = &pprune->context;
Bitmapset *partset;
Bitmapset *pruneparams;
int i;
/* Guard against stack overflow due to overly deep partition hierarchy. */
check_stack_depth();
/*
* Use only external params unless we've been asked to also use exec
* params too.
*/
if (allparams)
pruneparams = pprune->allparams;
else
pruneparams = pprune->extparams;
/*
* We only need to determine the matching partitions if there are any
* params matching the partition key at this level. If there are no
* matching params, then we can simply return all subnodes which belong to
* this parent partition. The planner should have already determined
* these to be the minimum possible set. We must still recursively visit
* any subpartitioned tables as we may find their partition keys match
* some Params at their level.
*/
if (!bms_is_empty(pruneparams))
{
context->safeparams = pruneparams;
partset = get_matching_partitions(context,
pprune->pruning_steps);
}
else
partset = pprune->present_parts;
/* Translate partset into subnode indexes */
i = -1;
while ((i = bms_next_member(partset, i)) >= 0)
{
if (pprune->subnode_map[i] >= 0)
*validsubplans = bms_add_member(*validsubplans,
pprune->subnode_map[i]);
else
{
int partidx = pprune->subpart_map[i];
if (partidx != -1)
find_subplans_for_params_recurse(prunestate,
&prunestate->partprunedata[partidx],
allparams, validsubplans);
else
{
/*
* This could only happen if clauses used in planning where
* more restrictive than those used here, or if the maps are
* somehow corrupt.
*/
elog(ERROR, "partition missing from subplans");
}
}
}
}