postgresql/src/backend/executor/execScan.c
Neil Conway d0b4399d81 Reimplement the linked list data structure used throughout the backend.
In the past, we used a 'Lispy' linked list implementation: a "list" was
merely a pointer to the head node of the list. The problem with that
design is that it makes lappend() and length() linear time. This patch
fixes that problem (and others) by maintaining a count of the list
length and a pointer to the tail node along with each head node pointer.
A "list" is now a pointer to a structure containing some meta-data
about the list; the head and tail pointers in that structure refer
to ListCell structures that maintain the actual linked list of nodes.

The function names of the list API have also been changed to, I hope,
be more logically consistent. By default, the old function names are
still available; they will be disabled-by-default once the rest of
the tree has been updated to use the new API names.
2004-05-26 04:41:50 +00:00

236 lines
6.4 KiB
C

/*-------------------------------------------------------------------------
*
* execScan.c
* This code provides support for generalized relation scans. ExecScan
* is passed a node and a pointer to a function to "do the right thing"
* and return a tuple from the relation. ExecScan then does the tedious
* stuff - checking the qualification and projecting the tuple
* appropriately.
*
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/executor/execScan.c,v 1.31 2004/05/26 04:41:15 neilc Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "executor/executor.h"
#include "miscadmin.h"
#include "utils/memutils.h"
static bool tlist_matches_tupdesc(PlanState *ps, List *tlist, Index varno, TupleDesc tupdesc);
/* ----------------------------------------------------------------
* ExecScan
*
* Scans the relation using the 'access method' indicated and
* returns the next qualifying tuple in the direction specified
* in the global variable ExecDirection.
* The access method returns the next tuple and execScan() is
* responsible for checking the tuple returned against the qual-clause.
*
* Conditions:
* -- the "cursor" maintained by the AMI is positioned at the tuple
* returned previously.
*
* Initial States:
* -- the relation indicated is opened for scanning so that the
* "cursor" is positioned before the first qualifying tuple.
* ----------------------------------------------------------------
*/
TupleTableSlot *
ExecScan(ScanState *node,
ExecScanAccessMtd accessMtd) /* function returning a tuple */
{
EState *estate;
ExprContext *econtext;
List *qual;
ProjectionInfo *projInfo;
ExprDoneCond isDone;
TupleTableSlot *resultSlot;
/*
* Fetch data from node
*/
estate = node->ps.state;
econtext = node->ps.ps_ExprContext;
qual = node->ps.qual;
projInfo = node->ps.ps_ProjInfo;
/*
* Check to see if we're still projecting out tuples from a previous
* scan tuple (because there is a function-returning-set in the
* projection expressions). If so, try to project another one.
*/
if (node->ps.ps_TupFromTlist)
{
Assert(projInfo); /* can't get here if not projecting */
resultSlot = ExecProject(projInfo, &isDone);
if (isDone == ExprMultipleResult)
return resultSlot;
/* Done with that source tuple... */
node->ps.ps_TupFromTlist = false;
}
/*
* Reset per-tuple memory context to free any expression evaluation
* storage allocated in the previous tuple cycle. Note this can't
* happen until we're done projecting out tuples from a scan tuple.
*/
ResetExprContext(econtext);
/*
* get a tuple from the access method loop until we obtain a tuple
* which passes the qualification.
*/
for (;;)
{
TupleTableSlot *slot;
CHECK_FOR_INTERRUPTS();
slot = (*accessMtd) (node);
/*
* if the slot returned by the accessMtd contains NULL, then it
* means there is nothing more to scan so we just return an empty
* slot, being careful to use the projection result slot so it has
* correct tupleDesc.
*/
if (TupIsNull(slot))
{
if (projInfo)
return ExecStoreTuple(NULL,
projInfo->pi_slot,
InvalidBuffer,
true);
else
return slot;
}
/*
* place the current tuple into the expr context
*/
econtext->ecxt_scantuple = slot;
/*
* check that the current tuple satisfies the qual-clause
*
* check for non-nil qual here to avoid a function call to ExecQual()
* when the qual is nil ... saves only a few cycles, but they add
* up ...
*/
if (!qual || ExecQual(qual, econtext, false))
{
/*
* Found a satisfactory scan tuple.
*/
if (projInfo)
{
/*
* Form a projection tuple, store it in the result tuple
* slot and return it --- unless we find we can project no
* tuples from this scan tuple, in which case continue
* scan.
*/
resultSlot = ExecProject(projInfo, &isDone);
if (isDone != ExprEndResult)
{
node->ps.ps_TupFromTlist = (isDone == ExprMultipleResult);
return resultSlot;
}
}
else
{
/*
* Here, we aren't projecting, so just return scan tuple.
*/
return slot;
}
}
/*
* Tuple fails qual, so free per-tuple memory and try again.
*/
ResetExprContext(econtext);
}
}
/*
* ExecAssignScanProjectionInfo
* Set up projection info for a scan node, if necessary.
*
* We can avoid a projection step if the requested tlist exactly matches
* the underlying tuple type. If so, we just set ps_ProjInfo to NULL.
* Note that this case occurs not only for simple "SELECT * FROM ...", but
* also in most cases where there are joins or other processing nodes above
* the scan node, because the planner will preferentially generate a matching
* tlist.
*
* ExecAssignScanType must have been called already.
*/
void
ExecAssignScanProjectionInfo(ScanState *node)
{
Scan *scan = (Scan *) node->ps.plan;
if (tlist_matches_tupdesc(&node->ps,
scan->plan.targetlist,
scan->scanrelid,
node->ss_ScanTupleSlot->ttc_tupleDescriptor))
node->ps.ps_ProjInfo = NULL;
else
ExecAssignProjectionInfo(&node->ps);
}
static bool
tlist_matches_tupdesc(PlanState *ps, List *tlist, Index varno, TupleDesc tupdesc)
{
int numattrs = tupdesc->natts;
int attrno;
bool hasoid;
ListCell *tlist_item = list_head(tlist);
/* Check the tlist attributes */
for (attrno = 1; attrno <= numattrs; attrno++)
{
Form_pg_attribute att_tup = tupdesc->attrs[attrno - 1];
Var *var;
if (tlist_item == NULL)
return false; /* tlist too short */
var = (Var *) ((TargetEntry *) lfirst(tlist_item))->expr;
if (!var || !IsA(var, Var))
return false; /* tlist item not a Var */
Assert(var->varno == varno);
Assert(var->varlevelsup == 0);
if (var->varattno != attrno)
return false; /* out of order */
if (att_tup->attisdropped)
return false; /* table contains dropped columns */
Assert(var->vartype == att_tup->atttypid);
Assert(var->vartypmod == att_tup->atttypmod);
tlist_item = lnext(tlist_item);
}
if (tlist_item)
return false; /* tlist too long */
/*
* If the plan context requires a particular hasoid setting, then
* that has to match, too.
*/
if (ExecContextForcesOids(ps, &hasoid) &&
hasoid != tupdesc->tdhasoid)
return false;
return true;
}