postgresql/src/backend/optimizer/path/joinrels.c

1034 lines
32 KiB
C

/*-------------------------------------------------------------------------
*
* joinrels.c
* Routines to determine which relations should be joined
*
* Portions Copyright (c) 1996-2011, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/path/joinrels.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "optimizer/joininfo.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "utils/memutils.h"
static void make_rels_by_clause_joins(PlannerInfo *root,
RelOptInfo *old_rel,
ListCell *other_rels);
static void make_rels_by_clauseless_joins(PlannerInfo *root,
RelOptInfo *old_rel,
ListCell *other_rels);
static bool has_join_restriction(PlannerInfo *root, RelOptInfo *rel);
static bool has_legal_joinclause(PlannerInfo *root, RelOptInfo *rel);
static bool is_dummy_rel(RelOptInfo *rel);
static void mark_dummy_rel(RelOptInfo *rel);
static bool restriction_is_constant_false(List *restrictlist,
bool only_pushed_down);
/*
* join_search_one_level
* Consider ways to produce join relations containing exactly 'level'
* jointree items. (This is one step of the dynamic-programming method
* embodied in standard_join_search.) Join rel nodes for each feasible
* combination of lower-level rels are created and returned in a list.
* Implementation paths are created for each such joinrel, too.
*
* level: level of rels we want to make this time
* root->join_rel_level[j], 1 <= j < level, is a list of rels containing j items
*
* The result is returned in root->join_rel_level[level].
*/
void
join_search_one_level(PlannerInfo *root, int level)
{
List **joinrels = root->join_rel_level;
ListCell *r;
int k;
Assert(joinrels[level] == NIL);
/* Set join_cur_level so that new joinrels are added to proper list */
root->join_cur_level = level;
/*
* First, consider left-sided and right-sided plans, in which rels of
* exactly level-1 member relations are joined against initial relations.
* We prefer to join using join clauses, but if we find a rel of level-1
* members that has no join clauses, we will generate Cartesian-product
* joins against all initial rels not already contained in it.
*
* In the first pass (level == 2), we try to join each initial rel to each
* initial rel that appears later in joinrels[1]. (The mirror-image joins
* are handled automatically by make_join_rel.) In later passes, we try
* to join rels of size level-1 from joinrels[level-1] to each initial rel
* in joinrels[1].
*/
foreach(r, joinrels[level - 1])
{
RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
ListCell *other_rels;
if (level == 2)
other_rels = lnext(r); /* only consider remaining initial
* rels */
else
other_rels = list_head(joinrels[1]); /* consider all initial
* rels */
if (old_rel->joininfo != NIL || old_rel->has_eclass_joins ||
has_join_restriction(root, old_rel))
{
/*
* Note that if all available join clauses for this rel require
* more than one other rel, we will fail to make any joins against
* it here. In most cases that's OK; it'll be considered by
* "bushy plan" join code in a higher-level pass where we have
* those other rels collected into a join rel.
*
* See also the last-ditch case below.
*/
make_rels_by_clause_joins(root,
old_rel,
other_rels);
}
else
{
/*
* Oops, we have a relation that is not joined to any other
* relation, either directly or by join-order restrictions.
* Cartesian product time.
*/
make_rels_by_clauseless_joins(root,
old_rel,
other_rels);
}
}
/*
* Now, consider "bushy plans" in which relations of k initial rels are
* joined to relations of level-k initial rels, for 2 <= k <= level-2.
*
* We only consider bushy-plan joins for pairs of rels where there is a
* suitable join clause (or join order restriction), in order to avoid
* unreasonable growth of planning time.
*/
for (k = 2;; k++)
{
int other_level = level - k;
/*
* Since make_join_rel(x, y) handles both x,y and y,x cases, we only
* need to go as far as the halfway point.
*/
if (k > other_level)
break;
foreach(r, joinrels[k])
{
RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
ListCell *other_rels;
ListCell *r2;
/*
* We can ignore clauseless joins here, *except* when they
* participate in join-order restrictions --- then we might have
* to force a bushy join plan.
*/
if (old_rel->joininfo == NIL && !old_rel->has_eclass_joins &&
!has_join_restriction(root, old_rel))
continue;
if (k == other_level)
other_rels = lnext(r); /* only consider remaining rels */
else
other_rels = list_head(joinrels[other_level]);
for_each_cell(r2, other_rels)
{
RelOptInfo *new_rel = (RelOptInfo *) lfirst(r2);
if (!bms_overlap(old_rel->relids, new_rel->relids))
{
/*
* OK, we can build a rel of the right level from this
* pair of rels. Do so if there is at least one usable
* join clause or a relevant join restriction.
*/
if (have_relevant_joinclause(root, old_rel, new_rel) ||
have_join_order_restriction(root, old_rel, new_rel))
{
(void) make_join_rel(root, old_rel, new_rel);
}
}
}
}
}
/*
* Last-ditch effort: if we failed to find any usable joins so far, force
* a set of cartesian-product joins to be generated. This handles the
* special case where all the available rels have join clauses but we
* cannot use any of those clauses yet. An example is
*
* SELECT * FROM a,b,c WHERE (a.f1 + b.f2 + c.f3) = 0;
*
* The join clause will be usable at level 3, but at level 2 we have no
* choice but to make cartesian joins. We consider only left-sided and
* right-sided cartesian joins in this case (no bushy).
*/
if (joinrels[level] == NIL)
{
/*
* This loop is just like the first one, except we always call
* make_rels_by_clauseless_joins().
*/
foreach(r, joinrels[level - 1])
{
RelOptInfo *old_rel = (RelOptInfo *) lfirst(r);
ListCell *other_rels;
if (level == 2)
other_rels = lnext(r); /* only consider remaining initial
* rels */
else
other_rels = list_head(joinrels[1]); /* consider all initial
* rels */
make_rels_by_clauseless_joins(root,
old_rel,
other_rels);
}
/*----------
* When special joins are involved, there may be no legal way
* to make an N-way join for some values of N. For example consider
*
* SELECT ... FROM t1 WHERE
* x IN (SELECT ... FROM t2,t3 WHERE ...) AND
* y IN (SELECT ... FROM t4,t5 WHERE ...)
*
* We will flatten this query to a 5-way join problem, but there are
* no 4-way joins that join_is_legal() will consider legal. We have
* to accept failure at level 4 and go on to discover a workable
* bushy plan at level 5.
*
* However, if there are no special joins then join_is_legal() should
* never fail, and so the following sanity check is useful.
*----------
*/
if (joinrels[level] == NIL && root->join_info_list == NIL)
elog(ERROR, "failed to build any %d-way joins", level);
}
}
/*
* make_rels_by_clause_joins
* Build joins between the given relation 'old_rel' and other relations
* that participate in join clauses that 'old_rel' also participates in
* (or participate in join-order restrictions with it).
* The join rels are returned in root->join_rel_level[join_cur_level].
*
* Note: at levels above 2 we will generate the same joined relation in
* multiple ways --- for example (a join b) join c is the same RelOptInfo as
* (b join c) join a, though the second case will add a different set of Paths
* to it. This is the reason for using the join_rel_level mechanism, which
* automatically ensures that each new joinrel is only added to the list once.
*
* 'old_rel' is the relation entry for the relation to be joined
* 'other_rels': the first cell in a linked list containing the other
* rels to be considered for joining
*
* Currently, this is only used with initial rels in other_rels, but it
* will work for joining to joinrels too.
*/
static void
make_rels_by_clause_joins(PlannerInfo *root,
RelOptInfo *old_rel,
ListCell *other_rels)
{
ListCell *l;
for_each_cell(l, other_rels)
{
RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
if (!bms_overlap(old_rel->relids, other_rel->relids) &&
(have_relevant_joinclause(root, old_rel, other_rel) ||
have_join_order_restriction(root, old_rel, other_rel)))
{
(void) make_join_rel(root, old_rel, other_rel);
}
}
}
/*
* make_rels_by_clauseless_joins
* Given a relation 'old_rel' and a list of other relations
* 'other_rels', create a join relation between 'old_rel' and each
* member of 'other_rels' that isn't already included in 'old_rel'.
* The join rels are returned in root->join_rel_level[join_cur_level].
*
* 'old_rel' is the relation entry for the relation to be joined
* 'other_rels': the first cell of a linked list containing the
* other rels to be considered for joining
*
* Currently, this is only used with initial rels in other_rels, but it would
* work for joining to joinrels too.
*/
static void
make_rels_by_clauseless_joins(PlannerInfo *root,
RelOptInfo *old_rel,
ListCell *other_rels)
{
ListCell *l;
for_each_cell(l, other_rels)
{
RelOptInfo *other_rel = (RelOptInfo *) lfirst(l);
if (!bms_overlap(other_rel->relids, old_rel->relids))
{
(void) make_join_rel(root, old_rel, other_rel);
}
}
}
/*
* join_is_legal
* Determine whether a proposed join is legal given the query's
* join order constraints; and if it is, determine the join type.
*
* Caller must supply not only the two rels, but the union of their relids.
* (We could simplify the API by computing joinrelids locally, but this
* would be redundant work in the normal path through make_join_rel.)
*
* On success, *sjinfo_p is set to NULL if this is to be a plain inner join,
* else it's set to point to the associated SpecialJoinInfo node. Also,
* *reversed_p is set TRUE if the given relations need to be swapped to
* match the SpecialJoinInfo node.
*/
static bool
join_is_legal(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2,
Relids joinrelids,
SpecialJoinInfo **sjinfo_p, bool *reversed_p)
{
SpecialJoinInfo *match_sjinfo;
bool reversed;
bool unique_ified;
bool is_valid_inner;
ListCell *l;
/*
* Ensure output params are set on failure return. This is just to
* suppress uninitialized-variable warnings from overly anal compilers.
*/
*sjinfo_p = NULL;
*reversed_p = false;
/*
* If we have any special joins, the proposed join might be illegal; and
* in any case we have to determine its join type. Scan the join info
* list for conflicts.
*/
match_sjinfo = NULL;
reversed = false;
unique_ified = false;
is_valid_inner = true;
foreach(l, root->join_info_list)
{
SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
/*
* This special join is not relevant unless its RHS overlaps the
* proposed join. (Check this first as a fast path for dismissing
* most irrelevant SJs quickly.)
*/
if (!bms_overlap(sjinfo->min_righthand, joinrelids))
continue;
/*
* Also, not relevant if proposed join is fully contained within RHS
* (ie, we're still building up the RHS).
*/
if (bms_is_subset(joinrelids, sjinfo->min_righthand))
continue;
/*
* Also, not relevant if SJ is already done within either input.
*/
if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
bms_is_subset(sjinfo->min_righthand, rel1->relids))
continue;
if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
bms_is_subset(sjinfo->min_righthand, rel2->relids))
continue;
/*
* If it's a semijoin and we already joined the RHS to any other rels
* within either input, then we must have unique-ified the RHS at that
* point (see below). Therefore the semijoin is no longer relevant in
* this join path.
*/
if (sjinfo->jointype == JOIN_SEMI)
{
if (bms_is_subset(sjinfo->syn_righthand, rel1->relids) &&
!bms_equal(sjinfo->syn_righthand, rel1->relids))
continue;
if (bms_is_subset(sjinfo->syn_righthand, rel2->relids) &&
!bms_equal(sjinfo->syn_righthand, rel2->relids))
continue;
}
/*
* If one input contains min_lefthand and the other contains
* min_righthand, then we can perform the SJ at this join.
*
* Barf if we get matches to more than one SJ (is that possible?)
*/
if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
bms_is_subset(sjinfo->min_righthand, rel2->relids))
{
if (match_sjinfo)
return false; /* invalid join path */
match_sjinfo = sjinfo;
reversed = false;
}
else if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
bms_is_subset(sjinfo->min_righthand, rel1->relids))
{
if (match_sjinfo)
return false; /* invalid join path */
match_sjinfo = sjinfo;
reversed = true;
}
else if (sjinfo->jointype == JOIN_SEMI &&
bms_equal(sjinfo->syn_righthand, rel2->relids) &&
create_unique_path(root, rel2, rel2->cheapest_total_path,
sjinfo) != NULL)
{
/*----------
* For a semijoin, we can join the RHS to anything else by
* unique-ifying the RHS (if the RHS can be unique-ified).
* We will only get here if we have the full RHS but less
* than min_lefthand on the LHS.
*
* The reason to consider such a join path is exemplified by
* SELECT ... FROM a,b WHERE (a.x,b.y) IN (SELECT c1,c2 FROM c)
* If we insist on doing this as a semijoin we will first have
* to form the cartesian product of A*B. But if we unique-ify
* C then the semijoin becomes a plain innerjoin and we can join
* in any order, eg C to A and then to B. When C is much smaller
* than A and B this can be a huge win. So we allow C to be
* joined to just A or just B here, and then make_join_rel has
* to handle the case properly.
*
* Note that actually we'll allow unique-ified C to be joined to
* some other relation D here, too. That is legal, if usually not
* very sane, and this routine is only concerned with legality not
* with whether the join is good strategy.
*----------
*/
if (match_sjinfo)
return false; /* invalid join path */
match_sjinfo = sjinfo;
reversed = false;
unique_ified = true;
}
else if (sjinfo->jointype == JOIN_SEMI &&
bms_equal(sjinfo->syn_righthand, rel1->relids) &&
create_unique_path(root, rel1, rel1->cheapest_total_path,
sjinfo) != NULL)
{
/* Reversed semijoin case */
if (match_sjinfo)
return false; /* invalid join path */
match_sjinfo = sjinfo;
reversed = true;
unique_ified = true;
}
else
{
/*----------
* Otherwise, the proposed join overlaps the RHS but isn't
* a valid implementation of this SJ. It might still be
* a legal join, however. If both inputs overlap the RHS,
* assume that it's OK. Since the inputs presumably got past
* this function's checks previously, they can't overlap the
* LHS and their violations of the RHS boundary must represent
* SJs that have been determined to commute with this one.
* We have to allow this to work correctly in cases like
* (a LEFT JOIN (b JOIN (c LEFT JOIN d)))
* when the c/d join has been determined to commute with the join
* to a, and hence d is not part of min_righthand for the upper
* join. It should be legal to join b to c/d but this will appear
* as a violation of the upper join's RHS.
* Furthermore, if one input overlaps the RHS and the other does
* not, we should still allow the join if it is a valid
* implementation of some other SJ. We have to allow this to
* support the associative identity
* (a LJ b on Pab) LJ c ON Pbc = a LJ (b LJ c ON Pbc) on Pab
* since joining B directly to C violates the lower SJ's RHS.
* We assume that make_outerjoininfo() set things up correctly
* so that we'll only match to some SJ if the join is valid.
* Set flag here to check at bottom of loop.
*----------
*/
if (sjinfo->jointype != JOIN_SEMI &&
bms_overlap(rel1->relids, sjinfo->min_righthand) &&
bms_overlap(rel2->relids, sjinfo->min_righthand))
{
/* seems OK */
Assert(!bms_overlap(joinrelids, sjinfo->min_lefthand));
}
else
is_valid_inner = false;
}
}
/*
* Fail if violated some SJ's RHS and didn't match to another SJ. However,
* "matching" to a semijoin we are implementing by unique-ification
* doesn't count (think: it's really an inner join).
*/
if (!is_valid_inner &&
(match_sjinfo == NULL || unique_ified))
return false; /* invalid join path */
/* Otherwise, it's a valid join */
*sjinfo_p = match_sjinfo;
*reversed_p = reversed;
return true;
}
/*
* make_join_rel
* Find or create a join RelOptInfo that represents the join of
* the two given rels, and add to it path information for paths
* created with the two rels as outer and inner rel.
* (The join rel may already contain paths generated from other
* pairs of rels that add up to the same set of base rels.)
*
* NB: will return NULL if attempted join is not valid. This can happen
* when working with outer joins, or with IN or EXISTS clauses that have been
* turned into joins.
*/
RelOptInfo *
make_join_rel(PlannerInfo *root, RelOptInfo *rel1, RelOptInfo *rel2)
{
Relids joinrelids;
SpecialJoinInfo *sjinfo;
bool reversed;
SpecialJoinInfo sjinfo_data;
RelOptInfo *joinrel;
List *restrictlist;
/* We should never try to join two overlapping sets of rels. */
Assert(!bms_overlap(rel1->relids, rel2->relids));
/* Construct Relids set that identifies the joinrel. */
joinrelids = bms_union(rel1->relids, rel2->relids);
/* Check validity and determine join type. */
if (!join_is_legal(root, rel1, rel2, joinrelids,
&sjinfo, &reversed))
{
/* invalid join path */
bms_free(joinrelids);
return NULL;
}
/* Swap rels if needed to match the join info. */
if (reversed)
{
RelOptInfo *trel = rel1;
rel1 = rel2;
rel2 = trel;
}
/*
* If it's a plain inner join, then we won't have found anything in
* join_info_list. Make up a SpecialJoinInfo so that selectivity
* estimation functions will know what's being joined.
*/
if (sjinfo == NULL)
{
sjinfo = &sjinfo_data;
sjinfo->type = T_SpecialJoinInfo;
sjinfo->min_lefthand = rel1->relids;
sjinfo->min_righthand = rel2->relids;
sjinfo->syn_lefthand = rel1->relids;
sjinfo->syn_righthand = rel2->relids;
sjinfo->jointype = JOIN_INNER;
/* we don't bother trying to make the remaining fields valid */
sjinfo->lhs_strict = false;
sjinfo->delay_upper_joins = false;
sjinfo->join_quals = NIL;
}
/*
* Find or build the join RelOptInfo, and compute the restrictlist that
* goes with this particular joining.
*/
joinrel = build_join_rel(root, joinrelids, rel1, rel2, sjinfo,
&restrictlist);
/*
* If we've already proven this join is empty, we needn't consider any
* more paths for it.
*/
if (is_dummy_rel(joinrel))
{
bms_free(joinrelids);
return joinrel;
}
/*
* Consider paths using each rel as both outer and inner. Depending on
* the join type, a provably empty outer or inner rel might mean the join
* is provably empty too; in which case throw away any previously computed
* paths and mark the join as dummy. (We do it this way since it's
* conceivable that dummy-ness of a multi-element join might only be
* noticeable for certain construction paths.)
*
* Also, a provably constant-false join restriction typically means that
* we can skip evaluating one or both sides of the join. We do this by
* marking the appropriate rel as dummy. For outer joins, a
* constant-false restriction that is pushed down still means the whole
* join is dummy, while a non-pushed-down one means that no inner rows
* will join so we can treat the inner rel as dummy.
*
* We need only consider the jointypes that appear in join_info_list, plus
* JOIN_INNER.
*/
switch (sjinfo->jointype)
{
case JOIN_INNER:
if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
restriction_is_constant_false(restrictlist, false))
{
mark_dummy_rel(joinrel);
break;
}
add_paths_to_joinrel(root, joinrel, rel1, rel2,
JOIN_INNER, sjinfo,
restrictlist);
add_paths_to_joinrel(root, joinrel, rel2, rel1,
JOIN_INNER, sjinfo,
restrictlist);
break;
case JOIN_LEFT:
if (is_dummy_rel(rel1) ||
restriction_is_constant_false(restrictlist, true))
{
mark_dummy_rel(joinrel);
break;
}
if (restriction_is_constant_false(restrictlist, false) &&
bms_is_subset(rel2->relids, sjinfo->syn_righthand))
mark_dummy_rel(rel2);
add_paths_to_joinrel(root, joinrel, rel1, rel2,
JOIN_LEFT, sjinfo,
restrictlist);
add_paths_to_joinrel(root, joinrel, rel2, rel1,
JOIN_RIGHT, sjinfo,
restrictlist);
break;
case JOIN_FULL:
if ((is_dummy_rel(rel1) && is_dummy_rel(rel2)) ||
restriction_is_constant_false(restrictlist, true))
{
mark_dummy_rel(joinrel);
break;
}
add_paths_to_joinrel(root, joinrel, rel1, rel2,
JOIN_FULL, sjinfo,
restrictlist);
add_paths_to_joinrel(root, joinrel, rel2, rel1,
JOIN_FULL, sjinfo,
restrictlist);
/*
* If there are join quals that aren't mergeable or hashable, we
* may not be able to build any valid plan. Complain here so that
* we can give a somewhat-useful error message. (Since we have no
* flexibility of planning for a full join, there's no chance of
* succeeding later with another pair of input rels.)
*/
if (joinrel->pathlist == NIL)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("FULL JOIN is only supported with merge-joinable or hash-joinable join conditions")));
break;
case JOIN_SEMI:
/*
* We might have a normal semijoin, or a case where we don't have
* enough rels to do the semijoin but can unique-ify the RHS and
* then do an innerjoin (see comments in join_is_legal). In the
* latter case we can't apply JOIN_SEMI joining.
*/
if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
bms_is_subset(sjinfo->min_righthand, rel2->relids))
{
if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
restriction_is_constant_false(restrictlist, false))
{
mark_dummy_rel(joinrel);
break;
}
add_paths_to_joinrel(root, joinrel, rel1, rel2,
JOIN_SEMI, sjinfo,
restrictlist);
}
/*
* If we know how to unique-ify the RHS and one input rel is
* exactly the RHS (not a superset) we can consider unique-ifying
* it and then doing a regular join. (The create_unique_path
* check here is probably redundant with what join_is_legal did,
* but if so the check is cheap because it's cached. So test
* anyway to be sure.)
*/
if (bms_equal(sjinfo->syn_righthand, rel2->relids) &&
create_unique_path(root, rel2, rel2->cheapest_total_path,
sjinfo) != NULL)
{
if (is_dummy_rel(rel1) || is_dummy_rel(rel2) ||
restriction_is_constant_false(restrictlist, false))
{
mark_dummy_rel(joinrel);
break;
}
add_paths_to_joinrel(root, joinrel, rel1, rel2,
JOIN_UNIQUE_INNER, sjinfo,
restrictlist);
add_paths_to_joinrel(root, joinrel, rel2, rel1,
JOIN_UNIQUE_OUTER, sjinfo,
restrictlist);
}
break;
case JOIN_ANTI:
if (is_dummy_rel(rel1) ||
restriction_is_constant_false(restrictlist, true))
{
mark_dummy_rel(joinrel);
break;
}
if (restriction_is_constant_false(restrictlist, false) &&
bms_is_subset(rel2->relids, sjinfo->syn_righthand))
mark_dummy_rel(rel2);
add_paths_to_joinrel(root, joinrel, rel1, rel2,
JOIN_ANTI, sjinfo,
restrictlist);
break;
default:
/* other values not expected here */
elog(ERROR, "unrecognized join type: %d", (int) sjinfo->jointype);
break;
}
bms_free(joinrelids);
return joinrel;
}
/*
* have_join_order_restriction
* Detect whether the two relations should be joined to satisfy
* a join-order restriction arising from special joins.
*
* In practice this is always used with have_relevant_joinclause(), and so
* could be merged with that function, but it seems clearer to separate the
* two concerns. We need this test because there are degenerate cases where
* a clauseless join must be performed to satisfy join-order restrictions.
*
* Note: this is only a problem if one side of a degenerate outer join
* contains multiple rels, or a clauseless join is required within an
* IN/EXISTS RHS; else we will find a join path via the "last ditch" case in
* join_search_one_level(). We could dispense with this test if we were
* willing to try bushy plans in the "last ditch" case, but that seems much
* less efficient.
*/
bool
have_join_order_restriction(PlannerInfo *root,
RelOptInfo *rel1, RelOptInfo *rel2)
{
bool result = false;
ListCell *l;
/*
* It's possible that the rels correspond to the left and right sides of a
* degenerate outer join, that is, one with no joinclause mentioning the
* non-nullable side; in which case we should force the join to occur.
*
* Also, the two rels could represent a clauseless join that has to be
* completed to build up the LHS or RHS of an outer join.
*/
foreach(l, root->join_info_list)
{
SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
/* ignore full joins --- other mechanisms handle them */
if (sjinfo->jointype == JOIN_FULL)
continue;
/* Can we perform the SJ with these rels? */
if (bms_is_subset(sjinfo->min_lefthand, rel1->relids) &&
bms_is_subset(sjinfo->min_righthand, rel2->relids))
{
result = true;
break;
}
if (bms_is_subset(sjinfo->min_lefthand, rel2->relids) &&
bms_is_subset(sjinfo->min_righthand, rel1->relids))
{
result = true;
break;
}
/*
* Might we need to join these rels to complete the RHS? We have to
* use "overlap" tests since either rel might include a lower SJ that
* has been proven to commute with this one.
*/
if (bms_overlap(sjinfo->min_righthand, rel1->relids) &&
bms_overlap(sjinfo->min_righthand, rel2->relids))
{
result = true;
break;
}
/* Likewise for the LHS. */
if (bms_overlap(sjinfo->min_lefthand, rel1->relids) &&
bms_overlap(sjinfo->min_lefthand, rel2->relids))
{
result = true;
break;
}
}
/*
* We do not force the join to occur if either input rel can legally be
* joined to anything else using joinclauses. This essentially means that
* clauseless bushy joins are put off as long as possible. The reason is
* that when there is a join order restriction high up in the join tree
* (that is, with many rels inside the LHS or RHS), we would otherwise
* expend lots of effort considering very stupid join combinations within
* its LHS or RHS.
*/
if (result)
{
if (has_legal_joinclause(root, rel1) ||
has_legal_joinclause(root, rel2))
result = false;
}
return result;
}
/*
* has_join_restriction
* Detect whether the specified relation has join-order restrictions
* due to being inside an outer join or an IN (sub-SELECT).
*
* Essentially, this tests whether have_join_order_restriction() could
* succeed with this rel and some other one. It's OK if we sometimes
* say "true" incorrectly. (Therefore, we don't bother with the relatively
* expensive has_legal_joinclause test.)
*/
static bool
has_join_restriction(PlannerInfo *root, RelOptInfo *rel)
{
ListCell *l;
foreach(l, root->join_info_list)
{
SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(l);
/* ignore full joins --- other mechanisms preserve their ordering */
if (sjinfo->jointype == JOIN_FULL)
continue;
/* ignore if SJ is already contained in rel */
if (bms_is_subset(sjinfo->min_lefthand, rel->relids) &&
bms_is_subset(sjinfo->min_righthand, rel->relids))
continue;
/* restricted if it overlaps LHS or RHS, but doesn't contain SJ */
if (bms_overlap(sjinfo->min_lefthand, rel->relids) ||
bms_overlap(sjinfo->min_righthand, rel->relids))
return true;
}
return false;
}
/*
* has_legal_joinclause
* Detect whether the specified relation can legally be joined
* to any other rels using join clauses.
*
* We consider only joins to single other relations in the current
* initial_rels list. This is sufficient to get a "true" result in most real
* queries, and an occasional erroneous "false" will only cost a bit more
* planning time. The reason for this limitation is that considering joins to
* other joins would require proving that the other join rel can legally be
* formed, which seems like too much trouble for something that's only a
* heuristic to save planning time. (Note: we must look at initial_rels
* and not all of the query, since when we are planning a sub-joinlist we
* may be forced to make clauseless joins within initial_rels even though
* there are join clauses linking to other parts of the query.)
*/
static bool
has_legal_joinclause(PlannerInfo *root, RelOptInfo *rel)
{
ListCell *lc;
foreach(lc, root->initial_rels)
{
RelOptInfo *rel2 = (RelOptInfo *) lfirst(lc);
/* ignore rels that are already in "rel" */
if (bms_overlap(rel->relids, rel2->relids))
continue;
if (have_relevant_joinclause(root, rel, rel2))
{
Relids joinrelids;
SpecialJoinInfo *sjinfo;
bool reversed;
/* join_is_legal needs relids of the union */
joinrelids = bms_union(rel->relids, rel2->relids);
if (join_is_legal(root, rel, rel2, joinrelids,
&sjinfo, &reversed))
{
/* Yes, this will work */
bms_free(joinrelids);
return true;
}
bms_free(joinrelids);
}
}
return false;
}
/*
* is_dummy_rel --- has relation been proven empty?
*
* If so, it will have a single path that is dummy.
*/
static bool
is_dummy_rel(RelOptInfo *rel)
{
return (rel->cheapest_total_path != NULL &&
IS_DUMMY_PATH(rel->cheapest_total_path));
}
/*
* Mark a relation as proven empty.
*
* During GEQO planning, this can get invoked more than once on the same
* baserel struct, so it's worth checking to see if the rel is already marked
* dummy.
*
* Also, when called during GEQO join planning, we are in a short-lived
* memory context. We must make sure that the dummy path attached to a
* baserel survives the GEQO cycle, else the baserel is trashed for future
* GEQO cycles. On the other hand, when we are marking a joinrel during GEQO,
* we don't want the dummy path to clutter the main planning context. Upshot
* is that the best solution is to explicitly make the dummy path in the same
* context the given RelOptInfo is in.
*/
static void
mark_dummy_rel(RelOptInfo *rel)
{
MemoryContext oldcontext;
/* Already marked? */
if (is_dummy_rel(rel))
return;
/* No, so choose correct context to make the dummy path in */
oldcontext = MemoryContextSwitchTo(GetMemoryChunkContext(rel));
/* Set dummy size estimate */
rel->rows = 0;
/* Evict any previously chosen paths */
rel->pathlist = NIL;
/* Set up the dummy path */
add_path(rel, (Path *) create_append_path(rel, NIL));
/* Set or update cheapest_total_path */
set_cheapest(rel);
MemoryContextSwitchTo(oldcontext);
}
/*
* restriction_is_constant_false --- is a restrictlist just FALSE?
*
* In cases where a qual is provably constant FALSE, eval_const_expressions
* will generally have thrown away anything that's ANDed with it. In outer
* join situations this will leave us computing cartesian products only to
* decide there's no match for an outer row, which is pretty stupid. So,
* we need to detect the case.
*
* If only_pushed_down is TRUE, then consider only pushed-down quals.
*/
static bool
restriction_is_constant_false(List *restrictlist, bool only_pushed_down)
{
ListCell *lc;
/*
* Despite the above comment, the restriction list we see here might
* possibly have other members besides the FALSE constant, since other
* quals could get "pushed down" to the outer join level. So we check
* each member of the list.
*/
foreach(lc, restrictlist)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
Assert(IsA(rinfo, RestrictInfo));
if (only_pushed_down && !rinfo->is_pushed_down)
continue;
if (rinfo->clause && IsA(rinfo->clause, Const))
{
Const *con = (Const *) rinfo->clause;
/* constant NULL is as good as constant FALSE for our purposes */
if (con->constisnull)
return true;
if (!DatumGetBool(con->constvalue))
return true;
}
}
return false;
}