postgresql/src/backend/optimizer/path/allpaths.c

2678 lines
81 KiB
C

/*-------------------------------------------------------------------------
*
* allpaths.c
* Routines to find possible search paths for processing a query
*
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/path/allpaths.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <math.h>
#include "access/sysattr.h"
#include "access/tsmapi.h"
#include "catalog/pg_class.h"
#include "catalog/pg_operator.h"
#include "foreign/fdwapi.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
#endif
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/geqo.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "optimizer/restrictinfo.h"
#include "optimizer/var.h"
#include "parser/parse_clause.h"
#include "parser/parsetree.h"
#include "rewrite/rewriteManip.h"
#include "utils/lsyscache.h"
/* results of subquery_is_pushdown_safe */
typedef struct pushdown_safety_info
{
bool *unsafeColumns; /* which output columns are unsafe to use */
bool unsafeVolatile; /* don't push down volatile quals */
bool unsafeLeaky; /* don't push down leaky quals */
} pushdown_safety_info;
/* These parameters are set by GUC */
bool enable_geqo = false; /* just in case GUC doesn't set it */
int geqo_threshold;
/* Hook for plugins to get control in set_rel_pathlist() */
set_rel_pathlist_hook_type set_rel_pathlist_hook = NULL;
/* Hook for plugins to replace standard_join_search() */
join_search_hook_type join_search_hook = NULL;
static void set_base_rel_consider_startup(PlannerInfo *root);
static void set_base_rel_sizes(PlannerInfo *root);
static void set_base_rel_pathlists(PlannerInfo *root);
static void set_rel_size(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte);
static void set_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte);
static void set_plain_rel_size(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_plain_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_tablesample_rel_size(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_tablesample_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_foreign_size(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_foreign_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_append_rel_size(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte);
static void set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte);
static void generate_mergeappend_paths(PlannerInfo *root, RelOptInfo *rel,
List *live_childrels,
List *all_child_pathkeys);
static Path *get_cheapest_parameterized_child_path(PlannerInfo *root,
RelOptInfo *rel,
Relids required_outer);
static List *accumulate_append_subpath(List *subpaths, Path *path);
static void set_dummy_rel_pathlist(RelOptInfo *rel);
static void set_subquery_pathlist(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte);
static void set_function_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_values_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_cte_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static void set_worktable_pathlist(PlannerInfo *root, RelOptInfo *rel,
RangeTblEntry *rte);
static RelOptInfo *make_rel_from_joinlist(PlannerInfo *root, List *joinlist);
static bool subquery_is_pushdown_safe(Query *subquery, Query *topquery,
pushdown_safety_info *safetyInfo);
static bool recurse_pushdown_safe(Node *setOp, Query *topquery,
pushdown_safety_info *safetyInfo);
static void check_output_expressions(Query *subquery,
pushdown_safety_info *safetyInfo);
static void compare_tlist_datatypes(List *tlist, List *colTypes,
pushdown_safety_info *safetyInfo);
static bool targetIsInAllPartitionLists(TargetEntry *tle, Query *query);
static bool qual_is_pushdown_safe(Query *subquery, Index rti, Node *qual,
pushdown_safety_info *safetyInfo);
static void subquery_push_qual(Query *subquery,
RangeTblEntry *rte, Index rti, Node *qual);
static void recurse_push_qual(Node *setOp, Query *topquery,
RangeTblEntry *rte, Index rti, Node *qual);
static void remove_unused_subquery_outputs(Query *subquery, RelOptInfo *rel);
/*
* make_one_rel
* Finds all possible access paths for executing a query, returning a
* single rel that represents the join of all base rels in the query.
*/
RelOptInfo *
make_one_rel(PlannerInfo *root, List *joinlist)
{
RelOptInfo *rel;
Index rti;
/*
* Construct the all_baserels Relids set.
*/
root->all_baserels = NULL;
for (rti = 1; rti < root->simple_rel_array_size; rti++)
{
RelOptInfo *brel = root->simple_rel_array[rti];
/* there may be empty slots corresponding to non-baserel RTEs */
if (brel == NULL)
continue;
Assert(brel->relid == rti); /* sanity check on array */
/* ignore RTEs that are "other rels" */
if (brel->reloptkind != RELOPT_BASEREL)
continue;
root->all_baserels = bms_add_member(root->all_baserels, brel->relid);
}
/* Mark base rels as to whether we care about fast-start plans */
set_base_rel_consider_startup(root);
/*
* Generate access paths for the base rels.
*/
set_base_rel_sizes(root);
set_base_rel_pathlists(root);
/*
* Generate access paths for the entire join tree.
*/
rel = make_rel_from_joinlist(root, joinlist);
/*
* The result should join all and only the query's base rels.
*/
Assert(bms_equal(rel->relids, root->all_baserels));
return rel;
}
/*
* set_base_rel_consider_startup
* Set the consider_[param_]startup flags for each base-relation entry.
*
* For the moment, we only deal with consider_param_startup here; because the
* logic for consider_startup is pretty trivial and is the same for every base
* relation, we just let build_simple_rel() initialize that flag correctly to
* start with. If that logic ever gets more complicated it would probably
* be better to move it here.
*/
static void
set_base_rel_consider_startup(PlannerInfo *root)
{
/*
* Since parameterized paths can only be used on the inside of a nestloop
* join plan, there is usually little value in considering fast-start
* plans for them. However, for relations that are on the RHS of a SEMI
* or ANTI join, a fast-start plan can be useful because we're only going
* to care about fetching one tuple anyway.
*
* To minimize growth of planning time, we currently restrict this to
* cases where the RHS is a single base relation, not a join; there is no
* provision for consider_param_startup to get set at all on joinrels.
* Also we don't worry about appendrels. costsize.c's costing rules for
* nestloop semi/antijoins don't consider such cases either.
*/
ListCell *lc;
foreach(lc, root->join_info_list)
{
SpecialJoinInfo *sjinfo = (SpecialJoinInfo *) lfirst(lc);
int varno;
if ((sjinfo->jointype == JOIN_SEMI || sjinfo->jointype == JOIN_ANTI) &&
bms_get_singleton_member(sjinfo->syn_righthand, &varno))
{
RelOptInfo *rel = find_base_rel(root, varno);
rel->consider_param_startup = true;
}
}
}
/*
* set_base_rel_sizes
* Set the size estimates (rows and widths) for each base-relation entry.
*
* We do this in a separate pass over the base rels so that rowcount
* estimates are available for parameterized path generation.
*/
static void
set_base_rel_sizes(PlannerInfo *root)
{
Index rti;
for (rti = 1; rti < root->simple_rel_array_size; rti++)
{
RelOptInfo *rel = root->simple_rel_array[rti];
/* there may be empty slots corresponding to non-baserel RTEs */
if (rel == NULL)
continue;
Assert(rel->relid == rti); /* sanity check on array */
/* ignore RTEs that are "other rels" */
if (rel->reloptkind != RELOPT_BASEREL)
continue;
set_rel_size(root, rel, rti, root->simple_rte_array[rti]);
}
}
/*
* set_base_rel_pathlists
* Finds all paths available for scanning each base-relation entry.
* Sequential scan and any available indices are considered.
* Each useful path is attached to its relation's 'pathlist' field.
*/
static void
set_base_rel_pathlists(PlannerInfo *root)
{
Index rti;
for (rti = 1; rti < root->simple_rel_array_size; rti++)
{
RelOptInfo *rel = root->simple_rel_array[rti];
/* there may be empty slots corresponding to non-baserel RTEs */
if (rel == NULL)
continue;
Assert(rel->relid == rti); /* sanity check on array */
/* ignore RTEs that are "other rels" */
if (rel->reloptkind != RELOPT_BASEREL)
continue;
set_rel_pathlist(root, rel, rti, root->simple_rte_array[rti]);
}
}
/*
* set_rel_size
* Set size estimates for a base relation
*/
static void
set_rel_size(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte)
{
if (rel->reloptkind == RELOPT_BASEREL &&
relation_excluded_by_constraints(root, rel, rte))
{
/*
* We proved we don't need to scan the rel via constraint exclusion,
* so set up a single dummy path for it. Here we only check this for
* regular baserels; if it's an otherrel, CE was already checked in
* set_append_rel_size().
*
* In this case, we go ahead and set up the relation's path right away
* instead of leaving it for set_rel_pathlist to do. This is because
* we don't have a convention for marking a rel as dummy except by
* assigning a dummy path to it.
*/
set_dummy_rel_pathlist(rel);
}
else if (rte->inh)
{
/* It's an "append relation", process accordingly */
set_append_rel_size(root, rel, rti, rte);
}
else
{
switch (rel->rtekind)
{
case RTE_RELATION:
if (rte->relkind == RELKIND_FOREIGN_TABLE)
{
/* Foreign table */
set_foreign_size(root, rel, rte);
}
else if (rte->tablesample != NULL)
{
/* Sampled relation */
set_tablesample_rel_size(root, rel, rte);
}
else
{
/* Plain relation */
set_plain_rel_size(root, rel, rte);
}
break;
case RTE_SUBQUERY:
/*
* Subqueries don't support making a choice between
* parameterized and unparameterized paths, so just go ahead
* and build their paths immediately.
*/
set_subquery_pathlist(root, rel, rti, rte);
break;
case RTE_FUNCTION:
set_function_size_estimates(root, rel);
break;
case RTE_VALUES:
set_values_size_estimates(root, rel);
break;
case RTE_CTE:
/*
* CTEs don't support making a choice between parameterized
* and unparameterized paths, so just go ahead and build their
* paths immediately.
*/
if (rte->self_reference)
set_worktable_pathlist(root, rel, rte);
else
set_cte_pathlist(root, rel, rte);
break;
default:
elog(ERROR, "unexpected rtekind: %d", (int) rel->rtekind);
break;
}
}
}
/*
* set_rel_pathlist
* Build access paths for a base relation
*/
static void
set_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte)
{
if (IS_DUMMY_REL(rel))
{
/* We already proved the relation empty, so nothing more to do */
}
else if (rte->inh)
{
/* It's an "append relation", process accordingly */
set_append_rel_pathlist(root, rel, rti, rte);
}
else
{
switch (rel->rtekind)
{
case RTE_RELATION:
if (rte->relkind == RELKIND_FOREIGN_TABLE)
{
/* Foreign table */
set_foreign_pathlist(root, rel, rte);
}
else if (rte->tablesample != NULL)
{
/* Sampled relation */
set_tablesample_rel_pathlist(root, rel, rte);
}
else
{
/* Plain relation */
set_plain_rel_pathlist(root, rel, rte);
}
break;
case RTE_SUBQUERY:
/* Subquery --- fully handled during set_rel_size */
break;
case RTE_FUNCTION:
/* RangeFunction */
set_function_pathlist(root, rel, rte);
break;
case RTE_VALUES:
/* Values list */
set_values_pathlist(root, rel, rte);
break;
case RTE_CTE:
/* CTE reference --- fully handled during set_rel_size */
break;
default:
elog(ERROR, "unexpected rtekind: %d", (int) rel->rtekind);
break;
}
}
/*
* Allow a plugin to editorialize on the set of Paths for this base
* relation. It could add new paths (such as CustomPaths) by calling
* add_path(), or delete or modify paths added by the core code.
*/
if (set_rel_pathlist_hook)
(*set_rel_pathlist_hook) (root, rel, rti, rte);
/* Now find the cheapest of the paths for this rel */
set_cheapest(rel);
#ifdef OPTIMIZER_DEBUG
debug_print_rel(root, rel);
#endif
}
/*
* set_plain_rel_size
* Set size estimates for a plain relation (no subquery, no inheritance)
*/
static void
set_plain_rel_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
/*
* Test any partial indexes of rel for applicability. We must do this
* first since partial unique indexes can affect size estimates.
*/
check_partial_indexes(root, rel);
/* Mark rel with estimated output rows, width, etc */
set_baserel_size_estimates(root, rel);
}
/*
* set_plain_rel_pathlist
* Build access paths for a plain relation (no subquery, no inheritance)
*/
static void
set_plain_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Relids required_outer;
/*
* We don't support pushing join clauses into the quals of a seqscan, but
* it could still have required parameterization due to LATERAL refs in
* its tlist.
*/
required_outer = rel->lateral_relids;
/* Consider sequential scan */
add_path(rel, create_seqscan_path(root, rel, required_outer));
/* Consider index scans */
create_index_paths(root, rel);
/* Consider TID scans */
create_tidscan_paths(root, rel);
}
/*
* set_tablesample_rel_size
* Set size estimates for a sampled relation
*/
static void
set_tablesample_rel_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
TableSampleClause *tsc = rte->tablesample;
TsmRoutine *tsm;
BlockNumber pages;
double tuples;
/*
* Test any partial indexes of rel for applicability. We must do this
* first since partial unique indexes can affect size estimates.
*/
check_partial_indexes(root, rel);
/*
* Call the sampling method's estimation function to estimate the number
* of pages it will read and the number of tuples it will return. (Note:
* we assume the function returns sane values.)
*/
tsm = GetTsmRoutine(tsc->tsmhandler);
tsm->SampleScanGetSampleSize(root, rel, tsc->args,
&pages, &tuples);
/*
* For the moment, because we will only consider a SampleScan path for the
* rel, it's okay to just overwrite the pages and tuples estimates for the
* whole relation. If we ever consider multiple path types for sampled
* rels, we'll need more complication.
*/
rel->pages = pages;
rel->tuples = tuples;
/* Mark rel with estimated output rows, width, etc */
set_baserel_size_estimates(root, rel);
}
/*
* set_tablesample_rel_pathlist
* Build access paths for a sampled relation
*/
static void
set_tablesample_rel_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Relids required_outer;
Path *path;
/*
* We don't support pushing join clauses into the quals of a samplescan,
* but it could still have required parameterization due to LATERAL refs
* in its tlist or TABLESAMPLE arguments.
*/
required_outer = rel->lateral_relids;
/* Consider sampled scan */
path = create_samplescan_path(root, rel, required_outer);
/*
* If the sampling method does not support repeatable scans, we must avoid
* plans that would scan the rel multiple times. Ideally, we'd simply
* avoid putting the rel on the inside of a nestloop join; but adding such
* a consideration to the planner seems like a great deal of complication
* to support an uncommon usage of second-rate sampling methods. Instead,
* if there is a risk that the query might perform an unsafe join, just
* wrap the SampleScan in a Materialize node. We can check for joins by
* counting the membership of all_baserels (note that this correctly
* counts inheritance trees as single rels). If we're inside a subquery,
* we can't easily check whether a join might occur in the outer query, so
* just assume one is possible.
*
* GetTsmRoutine is relatively expensive compared to the other tests here,
* so check repeatable_across_scans last, even though that's a bit odd.
*/
if ((root->query_level > 1 ||
bms_membership(root->all_baserels) != BMS_SINGLETON) &&
!(GetTsmRoutine(rte->tablesample->tsmhandler)->repeatable_across_scans))
{
path = (Path *) create_material_path(rel, path);
}
add_path(rel, path);
/* For the moment, at least, there are no other paths to consider */
}
/*
* set_foreign_size
* Set size estimates for a foreign table RTE
*/
static void
set_foreign_size(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
/* Mark rel with estimated output rows, width, etc */
set_foreign_size_estimates(root, rel);
/* Let FDW adjust the size estimates, if it can */
rel->fdwroutine->GetForeignRelSize(root, rel, rte->relid);
}
/*
* set_foreign_pathlist
* Build access paths for a foreign table RTE
*/
static void
set_foreign_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
/* Call the FDW's GetForeignPaths function to generate path(s) */
rel->fdwroutine->GetForeignPaths(root, rel, rte->relid);
}
/*
* set_append_rel_size
* Set size estimates for an "append relation"
*
* The passed-in rel and RTE represent the entire append relation. The
* relation's contents are computed by appending together the output of
* the individual member relations. Note that in the inheritance case,
* the first member relation is actually the same table as is mentioned in
* the parent RTE ... but it has a different RTE and RelOptInfo. This is
* a good thing because their outputs are not the same size.
*/
static void
set_append_rel_size(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte)
{
int parentRTindex = rti;
double parent_rows;
double parent_size;
double *parent_attrsizes;
int nattrs;
ListCell *l;
/*
* Initialize to compute size estimates for whole append relation.
*
* We handle width estimates by weighting the widths of different child
* rels proportionally to their number of rows. This is sensible because
* the use of width estimates is mainly to compute the total relation
* "footprint" if we have to sort or hash it. To do this, we sum the
* total equivalent size (in "double" arithmetic) and then divide by the
* total rowcount estimate. This is done separately for the total rel
* width and each attribute.
*
* Note: if you consider changing this logic, beware that child rels could
* have zero rows and/or width, if they were excluded by constraints.
*/
parent_rows = 0;
parent_size = 0;
nattrs = rel->max_attr - rel->min_attr + 1;
parent_attrsizes = (double *) palloc0(nattrs * sizeof(double));
foreach(l, root->append_rel_list)
{
AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
int childRTindex;
RangeTblEntry *childRTE;
RelOptInfo *childrel;
List *childquals;
Node *childqual;
ListCell *parentvars;
ListCell *childvars;
/* append_rel_list contains all append rels; ignore others */
if (appinfo->parent_relid != parentRTindex)
continue;
childRTindex = appinfo->child_relid;
childRTE = root->simple_rte_array[childRTindex];
/*
* The child rel's RelOptInfo was already created during
* add_base_rels_to_query.
*/
childrel = find_base_rel(root, childRTindex);
Assert(childrel->reloptkind == RELOPT_OTHER_MEMBER_REL);
/*
* We have to copy the parent's targetlist and quals to the child,
* with appropriate substitution of variables. However, only the
* baserestrictinfo quals are needed before we can check for
* constraint exclusion; so do that first and then check to see if we
* can disregard this child.
*
* As of 8.4, the child rel's targetlist might contain non-Var
* expressions, which means that substitution into the quals could
* produce opportunities for const-simplification, and perhaps even
* pseudoconstant quals. To deal with this, we strip the RestrictInfo
* nodes, do the substitution, do const-simplification, and then
* reconstitute the RestrictInfo layer.
*/
childquals = get_all_actual_clauses(rel->baserestrictinfo);
childquals = (List *) adjust_appendrel_attrs(root,
(Node *) childquals,
appinfo);
childqual = eval_const_expressions(root, (Node *)
make_ands_explicit(childquals));
if (childqual && IsA(childqual, Const) &&
(((Const *) childqual)->constisnull ||
!DatumGetBool(((Const *) childqual)->constvalue)))
{
/*
* Restriction reduces to constant FALSE or constant NULL after
* substitution, so this child need not be scanned.
*/
set_dummy_rel_pathlist(childrel);
continue;
}
childquals = make_ands_implicit((Expr *) childqual);
childquals = make_restrictinfos_from_actual_clauses(root,
childquals);
childrel->baserestrictinfo = childquals;
if (relation_excluded_by_constraints(root, childrel, childRTE))
{
/*
* This child need not be scanned, so we can omit it from the
* appendrel.
*/
set_dummy_rel_pathlist(childrel);
continue;
}
/*
* CE failed, so finish copying/modifying targetlist and join quals.
*
* Note: the resulting childrel->reltargetlist may contain arbitrary
* expressions, which otherwise would not occur in a reltargetlist.
* Code that might be looking at an appendrel child must cope with
* such. (Normally, a reltargetlist would only include Vars and
* PlaceHolderVars.)
*/
childrel->joininfo = (List *)
adjust_appendrel_attrs(root,
(Node *) rel->joininfo,
appinfo);
childrel->reltargetlist = (List *)
adjust_appendrel_attrs(root,
(Node *) rel->reltargetlist,
appinfo);
/*
* We have to make child entries in the EquivalenceClass data
* structures as well. This is needed either if the parent
* participates in some eclass joins (because we will want to consider
* inner-indexscan joins on the individual children) or if the parent
* has useful pathkeys (because we should try to build MergeAppend
* paths that produce those sort orderings).
*/
if (rel->has_eclass_joins || has_useful_pathkeys(root, rel))
add_child_rel_equivalences(root, appinfo, rel, childrel);
childrel->has_eclass_joins = rel->has_eclass_joins;
/*
* Note: we could compute appropriate attr_needed data for the child's
* variables, by transforming the parent's attr_needed through the
* translated_vars mapping. However, currently there's no need
* because attr_needed is only examined for base relations not
* otherrels. So we just leave the child's attr_needed empty.
*/
/*
* Compute the child's size.
*/
set_rel_size(root, childrel, childRTindex, childRTE);
/*
* It is possible that constraint exclusion detected a contradiction
* within a child subquery, even though we didn't prove one above. If
* so, we can skip this child.
*/
if (IS_DUMMY_REL(childrel))
continue;
/*
* Accumulate size information from each live child.
*/
if (childrel->rows > 0)
{
parent_rows += childrel->rows;
parent_size += childrel->width * childrel->rows;
/*
* Accumulate per-column estimates too. We need not do anything
* for PlaceHolderVars in the parent list. If child expression
* isn't a Var, or we didn't record a width estimate for it, we
* have to fall back on a datatype-based estimate.
*
* By construction, child's reltargetlist is 1-to-1 with parent's.
*/
forboth(parentvars, rel->reltargetlist,
childvars, childrel->reltargetlist)
{
Var *parentvar = (Var *) lfirst(parentvars);
Node *childvar = (Node *) lfirst(childvars);
if (IsA(parentvar, Var))
{
int pndx = parentvar->varattno - rel->min_attr;
int32 child_width = 0;
if (IsA(childvar, Var) &&
((Var *) childvar)->varno == childrel->relid)
{
int cndx = ((Var *) childvar)->varattno - childrel->min_attr;
child_width = childrel->attr_widths[cndx];
}
if (child_width <= 0)
child_width = get_typavgwidth(exprType(childvar),
exprTypmod(childvar));
Assert(child_width > 0);
parent_attrsizes[pndx] += child_width * childrel->rows;
}
}
}
}
/*
* Save the finished size estimates.
*/
rel->rows = parent_rows;
if (parent_rows > 0)
{
int i;
rel->width = rint(parent_size / parent_rows);
for (i = 0; i < nattrs; i++)
rel->attr_widths[i] = rint(parent_attrsizes[i] / parent_rows);
}
else
rel->width = 0; /* attr_widths should be zero already */
/*
* Set "raw tuples" count equal to "rows" for the appendrel; needed
* because some places assume rel->tuples is valid for any baserel.
*/
rel->tuples = parent_rows;
pfree(parent_attrsizes);
}
/*
* set_append_rel_pathlist
* Build access paths for an "append relation"
*/
static void
set_append_rel_pathlist(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte)
{
int parentRTindex = rti;
List *live_childrels = NIL;
List *subpaths = NIL;
bool subpaths_valid = true;
List *all_child_pathkeys = NIL;
List *all_child_outers = NIL;
ListCell *l;
/*
* Generate access paths for each member relation, and remember the
* cheapest path for each one. Also, identify all pathkeys (orderings)
* and parameterizations (required_outer sets) available for the member
* relations.
*/
foreach(l, root->append_rel_list)
{
AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(l);
int childRTindex;
RangeTblEntry *childRTE;
RelOptInfo *childrel;
ListCell *lcp;
/* append_rel_list contains all append rels; ignore others */
if (appinfo->parent_relid != parentRTindex)
continue;
/* Re-locate the child RTE and RelOptInfo */
childRTindex = appinfo->child_relid;
childRTE = root->simple_rte_array[childRTindex];
childrel = root->simple_rel_array[childRTindex];
/*
* Compute the child's access paths.
*/
set_rel_pathlist(root, childrel, childRTindex, childRTE);
/*
* If child is dummy, ignore it.
*/
if (IS_DUMMY_REL(childrel))
continue;
/*
* Child is live, so add it to the live_childrels list for use below.
*/
live_childrels = lappend(live_childrels, childrel);
/*
* If child has an unparameterized cheapest-total path, add that to
* the unparameterized Append path we are constructing for the parent.
* If not, there's no workable unparameterized path.
*/
if (childrel->cheapest_total_path->param_info == NULL)
subpaths = accumulate_append_subpath(subpaths,
childrel->cheapest_total_path);
else
subpaths_valid = false;
/*
* Collect lists of all the available path orderings and
* parameterizations for all the children. We use these as a
* heuristic to indicate which sort orderings and parameterizations we
* should build Append and MergeAppend paths for.
*/
foreach(lcp, childrel->pathlist)
{
Path *childpath = (Path *) lfirst(lcp);
List *childkeys = childpath->pathkeys;
Relids childouter = PATH_REQ_OUTER(childpath);
/* Unsorted paths don't contribute to pathkey list */
if (childkeys != NIL)
{
ListCell *lpk;
bool found = false;
/* Have we already seen this ordering? */
foreach(lpk, all_child_pathkeys)
{
List *existing_pathkeys = (List *) lfirst(lpk);
if (compare_pathkeys(existing_pathkeys,
childkeys) == PATHKEYS_EQUAL)
{
found = true;
break;
}
}
if (!found)
{
/* No, so add it to all_child_pathkeys */
all_child_pathkeys = lappend(all_child_pathkeys,
childkeys);
}
}
/* Unparameterized paths don't contribute to param-set list */
if (childouter)
{
ListCell *lco;
bool found = false;
/* Have we already seen this param set? */
foreach(lco, all_child_outers)
{
Relids existing_outers = (Relids) lfirst(lco);
if (bms_equal(existing_outers, childouter))
{
found = true;
break;
}
}
if (!found)
{
/* No, so add it to all_child_outers */
all_child_outers = lappend(all_child_outers,
childouter);
}
}
}
}
/*
* If we found unparameterized paths for all children, build an unordered,
* unparameterized Append path for the rel. (Note: this is correct even
* if we have zero or one live subpath due to constraint exclusion.)
*/
if (subpaths_valid)
add_path(rel, (Path *) create_append_path(rel, subpaths, NULL));
/*
* Also build unparameterized MergeAppend paths based on the collected
* list of child pathkeys.
*/
if (subpaths_valid)
generate_mergeappend_paths(root, rel, live_childrels,
all_child_pathkeys);
/*
* Build Append paths for each parameterization seen among the child rels.
* (This may look pretty expensive, but in most cases of practical
* interest, the child rels will expose mostly the same parameterizations,
* so that not that many cases actually get considered here.)
*
* The Append node itself cannot enforce quals, so all qual checking must
* be done in the child paths. This means that to have a parameterized
* Append path, we must have the exact same parameterization for each
* child path; otherwise some children might be failing to check the
* moved-down quals. To make them match up, we can try to increase the
* parameterization of lesser-parameterized paths.
*/
foreach(l, all_child_outers)
{
Relids required_outer = (Relids) lfirst(l);
ListCell *lcr;
/* Select the child paths for an Append with this parameterization */
subpaths = NIL;
subpaths_valid = true;
foreach(lcr, live_childrels)
{
RelOptInfo *childrel = (RelOptInfo *) lfirst(lcr);
Path *subpath;
subpath = get_cheapest_parameterized_child_path(root,
childrel,
required_outer);
if (subpath == NULL)
{
/* failed to make a suitable path for this child */
subpaths_valid = false;
break;
}
subpaths = accumulate_append_subpath(subpaths, subpath);
}
if (subpaths_valid)
add_path(rel, (Path *)
create_append_path(rel, subpaths, required_outer));
}
}
/*
* generate_mergeappend_paths
* Generate MergeAppend paths for an append relation
*
* Generate a path for each ordering (pathkey list) appearing in
* all_child_pathkeys.
*
* We consider both cheapest-startup and cheapest-total cases, ie, for each
* interesting ordering, collect all the cheapest startup subpaths and all the
* cheapest total paths, and build a MergeAppend path for each case.
*
* We don't currently generate any parameterized MergeAppend paths. While
* it would not take much more code here to do so, it's very unclear that it
* is worth the planning cycles to investigate such paths: there's little
* use for an ordered path on the inside of a nestloop. In fact, it's likely
* that the current coding of add_path would reject such paths out of hand,
* because add_path gives no credit for sort ordering of parameterized paths,
* and a parameterized MergeAppend is going to be more expensive than the
* corresponding parameterized Append path. If we ever try harder to support
* parameterized mergejoin plans, it might be worth adding support for
* parameterized MergeAppends to feed such joins. (See notes in
* optimizer/README for why that might not ever happen, though.)
*/
static void
generate_mergeappend_paths(PlannerInfo *root, RelOptInfo *rel,
List *live_childrels,
List *all_child_pathkeys)
{
ListCell *lcp;
foreach(lcp, all_child_pathkeys)
{
List *pathkeys = (List *) lfirst(lcp);
List *startup_subpaths = NIL;
List *total_subpaths = NIL;
bool startup_neq_total = false;
ListCell *lcr;
/* Select the child paths for this ordering... */
foreach(lcr, live_childrels)
{
RelOptInfo *childrel = (RelOptInfo *) lfirst(lcr);
Path *cheapest_startup,
*cheapest_total;
/* Locate the right paths, if they are available. */
cheapest_startup =
get_cheapest_path_for_pathkeys(childrel->pathlist,
pathkeys,
NULL,
STARTUP_COST);
cheapest_total =
get_cheapest_path_for_pathkeys(childrel->pathlist,
pathkeys,
NULL,
TOTAL_COST);
/*
* If we can't find any paths with the right order just use the
* cheapest-total path; we'll have to sort it later.
*/
if (cheapest_startup == NULL || cheapest_total == NULL)
{
cheapest_startup = cheapest_total =
childrel->cheapest_total_path;
/* Assert we do have an unparameterized path for this child */
Assert(cheapest_total->param_info == NULL);
}
/*
* Notice whether we actually have different paths for the
* "cheapest" and "total" cases; frequently there will be no point
* in two create_merge_append_path() calls.
*/
if (cheapest_startup != cheapest_total)
startup_neq_total = true;
startup_subpaths =
accumulate_append_subpath(startup_subpaths, cheapest_startup);
total_subpaths =
accumulate_append_subpath(total_subpaths, cheapest_total);
}
/* ... and build the MergeAppend paths */
add_path(rel, (Path *) create_merge_append_path(root,
rel,
startup_subpaths,
pathkeys,
NULL));
if (startup_neq_total)
add_path(rel, (Path *) create_merge_append_path(root,
rel,
total_subpaths,
pathkeys,
NULL));
}
}
/*
* get_cheapest_parameterized_child_path
* Get cheapest path for this relation that has exactly the requested
* parameterization.
*
* Returns NULL if unable to create such a path.
*/
static Path *
get_cheapest_parameterized_child_path(PlannerInfo *root, RelOptInfo *rel,
Relids required_outer)
{
Path *cheapest;
ListCell *lc;
/*
* Look up the cheapest existing path with no more than the needed
* parameterization. If it has exactly the needed parameterization, we're
* done.
*/
cheapest = get_cheapest_path_for_pathkeys(rel->pathlist,
NIL,
required_outer,
TOTAL_COST);
Assert(cheapest != NULL);
if (bms_equal(PATH_REQ_OUTER(cheapest), required_outer))
return cheapest;
/*
* Otherwise, we can "reparameterize" an existing path to match the given
* parameterization, which effectively means pushing down additional
* joinquals to be checked within the path's scan. However, some existing
* paths might check the available joinquals already while others don't;
* therefore, it's not clear which existing path will be cheapest after
* reparameterization. We have to go through them all and find out.
*/
cheapest = NULL;
foreach(lc, rel->pathlist)
{
Path *path = (Path *) lfirst(lc);
/* Can't use it if it needs more than requested parameterization */
if (!bms_is_subset(PATH_REQ_OUTER(path), required_outer))
continue;
/*
* Reparameterization can only increase the path's cost, so if it's
* already more expensive than the current cheapest, forget it.
*/
if (cheapest != NULL &&
compare_path_costs(cheapest, path, TOTAL_COST) <= 0)
continue;
/* Reparameterize if needed, then recheck cost */
if (!bms_equal(PATH_REQ_OUTER(path), required_outer))
{
path = reparameterize_path(root, path, required_outer, 1.0);
if (path == NULL)
continue; /* failed to reparameterize this one */
Assert(bms_equal(PATH_REQ_OUTER(path), required_outer));
if (cheapest != NULL &&
compare_path_costs(cheapest, path, TOTAL_COST) <= 0)
continue;
}
/* We have a new best path */
cheapest = path;
}
/* Return the best path, or NULL if we found no suitable candidate */
return cheapest;
}
/*
* accumulate_append_subpath
* Add a subpath to the list being built for an Append or MergeAppend
*
* It's possible that the child is itself an Append or MergeAppend path, in
* which case we can "cut out the middleman" and just add its child paths to
* our own list. (We don't try to do this earlier because we need to apply
* both levels of transformation to the quals.)
*
* Note that if we omit a child MergeAppend in this way, we are effectively
* omitting a sort step, which seems fine: if the parent is to be an Append,
* its result would be unsorted anyway, while if the parent is to be a
* MergeAppend, there's no point in a separate sort on a child.
*/
static List *
accumulate_append_subpath(List *subpaths, Path *path)
{
if (IsA(path, AppendPath))
{
AppendPath *apath = (AppendPath *) path;
/* list_copy is important here to avoid sharing list substructure */
return list_concat(subpaths, list_copy(apath->subpaths));
}
else if (IsA(path, MergeAppendPath))
{
MergeAppendPath *mpath = (MergeAppendPath *) path;
/* list_copy is important here to avoid sharing list substructure */
return list_concat(subpaths, list_copy(mpath->subpaths));
}
else
return lappend(subpaths, path);
}
/*
* set_dummy_rel_pathlist
* Build a dummy path for a relation that's been excluded by constraints
*
* Rather than inventing a special "dummy" path type, we represent this as an
* AppendPath with no members (see also IS_DUMMY_PATH/IS_DUMMY_REL macros).
*/
static void
set_dummy_rel_pathlist(RelOptInfo *rel)
{
/* Set dummy size estimates --- we leave attr_widths[] as zeroes */
rel->rows = 0;
rel->width = 0;
/* Discard any pre-existing paths; no further need for them */
rel->pathlist = NIL;
add_path(rel, (Path *) create_append_path(rel, NIL, NULL));
/*
* We set the cheapest path immediately, to ensure that IS_DUMMY_REL()
* will recognize the relation as dummy if anyone asks. This is redundant
* when we're called from set_rel_size(), but not when called from
* elsewhere, and doing it twice is harmless anyway.
*/
set_cheapest(rel);
}
/* quick-and-dirty test to see if any joining is needed */
static bool
has_multiple_baserels(PlannerInfo *root)
{
int num_base_rels = 0;
Index rti;
for (rti = 1; rti < root->simple_rel_array_size; rti++)
{
RelOptInfo *brel = root->simple_rel_array[rti];
if (brel == NULL)
continue;
/* ignore RTEs that are "other rels" */
if (brel->reloptkind == RELOPT_BASEREL)
if (++num_base_rels > 1)
return true;
}
return false;
}
/*
* set_subquery_pathlist
* Build the (single) access path for a subquery RTE
*
* We don't currently support generating parameterized paths for subqueries
* by pushing join clauses down into them; it seems too expensive to re-plan
* the subquery multiple times to consider different alternatives. So the
* subquery will have exactly one path. (The path will be parameterized
* if the subquery contains LATERAL references, otherwise not.) Since there's
* no freedom of action here, there's no need for a separate set_subquery_size
* phase: we just make the path right away.
*/
static void
set_subquery_pathlist(PlannerInfo *root, RelOptInfo *rel,
Index rti, RangeTblEntry *rte)
{
Query *parse = root->parse;
Query *subquery = rte->subquery;
Relids required_outer;
pushdown_safety_info safetyInfo;
double tuple_fraction;
PlannerInfo *subroot;
List *pathkeys;
/*
* Must copy the Query so that planning doesn't mess up the RTE contents
* (really really need to fix the planner to not scribble on its input,
* someday ... but see remove_unused_subquery_outputs to start with).
*/
subquery = copyObject(subquery);
/*
* If it's a LATERAL subquery, it might contain some Vars of the current
* query level, requiring it to be treated as parameterized, even though
* we don't support pushing down join quals into subqueries.
*/
required_outer = rel->lateral_relids;
/*
* Zero out result area for subquery_is_pushdown_safe, so that it can set
* flags as needed while recursing. In particular, we need a workspace
* for keeping track of unsafe-to-reference columns. unsafeColumns[i]
* will be set TRUE if we find that output column i of the subquery is
* unsafe to use in a pushed-down qual.
*/
memset(&safetyInfo, 0, sizeof(safetyInfo));
safetyInfo.unsafeColumns = (bool *)
palloc0((list_length(subquery->targetList) + 1) * sizeof(bool));
/*
* If the subquery has the "security_barrier" flag, it means the subquery
* originated from a view that must enforce row level security. Then we
* must not push down quals that contain leaky functions. (Ideally this
* would be checked inside subquery_is_pushdown_safe, but since we don't
* currently pass the RTE to that function, we must do it here.)
*/
safetyInfo.unsafeLeaky = rte->security_barrier;
/*
* If there are any restriction clauses that have been attached to the
* subquery relation, consider pushing them down to become WHERE or HAVING
* quals of the subquery itself. This transformation is useful because it
* may allow us to generate a better plan for the subquery than evaluating
* all the subquery output rows and then filtering them.
*
* There are several cases where we cannot push down clauses. Restrictions
* involving the subquery are checked by subquery_is_pushdown_safe().
* Restrictions on individual clauses are checked by
* qual_is_pushdown_safe(). Also, we don't want to push down
* pseudoconstant clauses; better to have the gating node above the
* subquery.
*
* Non-pushed-down clauses will get evaluated as qpquals of the
* SubqueryScan node.
*
* XXX Are there any cases where we want to make a policy decision not to
* push down a pushable qual, because it'd result in a worse plan?
*/
if (rel->baserestrictinfo != NIL &&
subquery_is_pushdown_safe(subquery, subquery, &safetyInfo))
{
/* OK to consider pushing down individual quals */
List *upperrestrictlist = NIL;
ListCell *l;
foreach(l, rel->baserestrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
Node *clause = (Node *) rinfo->clause;
if (!rinfo->pseudoconstant &&
qual_is_pushdown_safe(subquery, rti, clause, &safetyInfo))
{
/* Push it down */
subquery_push_qual(subquery, rte, rti, clause);
}
else
{
/* Keep it in the upper query */
upperrestrictlist = lappend(upperrestrictlist, rinfo);
}
}
rel->baserestrictinfo = upperrestrictlist;
}
pfree(safetyInfo.unsafeColumns);
/*
* The upper query might not use all the subquery's output columns; if
* not, we can simplify.
*/
remove_unused_subquery_outputs(subquery, rel);
/*
* We can safely pass the outer tuple_fraction down to the subquery if the
* outer level has no joining, aggregation, or sorting to do. Otherwise
* we'd better tell the subquery to plan for full retrieval. (XXX This
* could probably be made more intelligent ...)
*/
if (parse->hasAggs ||
parse->groupClause ||
parse->groupingSets ||
parse->havingQual ||
parse->distinctClause ||
parse->sortClause ||
has_multiple_baserels(root))
tuple_fraction = 0.0; /* default case */
else
tuple_fraction = root->tuple_fraction;
/* plan_params should not be in use in current query level */
Assert(root->plan_params == NIL);
/* Generate the plan for the subquery */
rel->subplan = subquery_planner(root->glob, subquery,
root,
false, tuple_fraction,
&subroot);
rel->subroot = subroot;
/* Isolate the params needed by this specific subplan */
rel->subplan_params = root->plan_params;
root->plan_params = NIL;
/*
* It's possible that constraint exclusion proved the subquery empty. If
* so, it's convenient to turn it back into a dummy path so that we will
* recognize appropriate optimizations at this query level.
*/
if (is_dummy_plan(rel->subplan))
{
set_dummy_rel_pathlist(rel);
return;
}
/* Mark rel with estimated output rows, width, etc */
set_subquery_size_estimates(root, rel);
/* Convert subquery pathkeys to outer representation */
pathkeys = convert_subquery_pathkeys(root, rel, subroot->query_pathkeys);
/* Generate appropriate path */
add_path(rel, create_subqueryscan_path(root, rel, pathkeys, required_outer));
}
/*
* set_function_pathlist
* Build the (single) access path for a function RTE
*/
static void
set_function_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Relids required_outer;
List *pathkeys = NIL;
/*
* We don't support pushing join clauses into the quals of a function
* scan, but it could still have required parameterization due to LATERAL
* refs in the function expression.
*/
required_outer = rel->lateral_relids;
/*
* The result is considered unordered unless ORDINALITY was used, in which
* case it is ordered by the ordinal column (the last one). See if we
* care, by checking for uses of that Var in equivalence classes.
*/
if (rte->funcordinality)
{
AttrNumber ordattno = rel->max_attr;
Var *var = NULL;
ListCell *lc;
/*
* Is there a Var for it in reltargetlist? If not, the query did not
* reference the ordinality column, or at least not in any way that
* would be interesting for sorting.
*/
foreach(lc, rel->reltargetlist)
{
Var *node = (Var *) lfirst(lc);
/* checking varno/varlevelsup is just paranoia */
if (IsA(node, Var) &&
node->varattno == ordattno &&
node->varno == rel->relid &&
node->varlevelsup == 0)
{
var = node;
break;
}
}
/*
* Try to build pathkeys for this Var with int8 sorting. We tell
* build_expression_pathkey not to build any new equivalence class; if
* the Var isn't already mentioned in some EC, it means that nothing
* cares about the ordering.
*/
if (var)
pathkeys = build_expression_pathkey(root,
(Expr *) var,
NULL, /* below outer joins */
Int8LessOperator,
rel->relids,
false);
}
/* Generate appropriate path */
add_path(rel, create_functionscan_path(root, rel,
pathkeys, required_outer));
}
/*
* set_values_pathlist
* Build the (single) access path for a VALUES RTE
*/
static void
set_values_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Relids required_outer;
/*
* We don't support pushing join clauses into the quals of a values scan,
* but it could still have required parameterization due to LATERAL refs
* in the values expressions.
*/
required_outer = rel->lateral_relids;
/* Generate appropriate path */
add_path(rel, create_valuesscan_path(root, rel, required_outer));
}
/*
* set_cte_pathlist
* Build the (single) access path for a non-self-reference CTE RTE
*
* There's no need for a separate set_cte_size phase, since we don't
* support join-qual-parameterized paths for CTEs.
*/
static void
set_cte_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Plan *cteplan;
PlannerInfo *cteroot;
Index levelsup;
int ndx;
ListCell *lc;
int plan_id;
Relids required_outer;
/*
* Find the referenced CTE, and locate the plan previously made for it.
*/
levelsup = rte->ctelevelsup;
cteroot = root;
while (levelsup-- > 0)
{
cteroot = cteroot->parent_root;
if (!cteroot) /* shouldn't happen */
elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
}
/*
* Note: cte_plan_ids can be shorter than cteList, if we are still working
* on planning the CTEs (ie, this is a side-reference from another CTE).
* So we mustn't use forboth here.
*/
ndx = 0;
foreach(lc, cteroot->parse->cteList)
{
CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
if (strcmp(cte->ctename, rte->ctename) == 0)
break;
ndx++;
}
if (lc == NULL) /* shouldn't happen */
elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
if (ndx >= list_length(cteroot->cte_plan_ids))
elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
Assert(plan_id > 0);
cteplan = (Plan *) list_nth(root->glob->subplans, plan_id - 1);
/* Mark rel with estimated output rows, width, etc */
set_cte_size_estimates(root, rel, cteplan);
/*
* We don't support pushing join clauses into the quals of a CTE scan, but
* it could still have required parameterization due to LATERAL refs in
* its tlist.
*/
required_outer = rel->lateral_relids;
/* Generate appropriate path */
add_path(rel, create_ctescan_path(root, rel, required_outer));
}
/*
* set_worktable_pathlist
* Build the (single) access path for a self-reference CTE RTE
*
* There's no need for a separate set_worktable_size phase, since we don't
* support join-qual-parameterized paths for CTEs.
*/
static void
set_worktable_pathlist(PlannerInfo *root, RelOptInfo *rel, RangeTblEntry *rte)
{
Plan *cteplan;
PlannerInfo *cteroot;
Index levelsup;
Relids required_outer;
/*
* We need to find the non-recursive term's plan, which is in the plan
* level that's processing the recursive UNION, which is one level *below*
* where the CTE comes from.
*/
levelsup = rte->ctelevelsup;
if (levelsup == 0) /* shouldn't happen */
elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
levelsup--;
cteroot = root;
while (levelsup-- > 0)
{
cteroot = cteroot->parent_root;
if (!cteroot) /* shouldn't happen */
elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
}
cteplan = cteroot->non_recursive_plan;
if (!cteplan) /* shouldn't happen */
elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
/* Mark rel with estimated output rows, width, etc */
set_cte_size_estimates(root, rel, cteplan);
/*
* We don't support pushing join clauses into the quals of a worktable
* scan, but it could still have required parameterization due to LATERAL
* refs in its tlist. (I'm not sure this is actually possible given the
* restrictions on recursive references, but it's easy enough to support.)
*/
required_outer = rel->lateral_relids;
/* Generate appropriate path */
add_path(rel, create_worktablescan_path(root, rel, required_outer));
}
/*
* make_rel_from_joinlist
* Build access paths using a "joinlist" to guide the join path search.
*
* See comments for deconstruct_jointree() for definition of the joinlist
* data structure.
*/
static RelOptInfo *
make_rel_from_joinlist(PlannerInfo *root, List *joinlist)
{
int levels_needed;
List *initial_rels;
ListCell *jl;
/*
* Count the number of child joinlist nodes. This is the depth of the
* dynamic-programming algorithm we must employ to consider all ways of
* joining the child nodes.
*/
levels_needed = list_length(joinlist);
if (levels_needed <= 0)
return NULL; /* nothing to do? */
/*
* Construct a list of rels corresponding to the child joinlist nodes.
* This may contain both base rels and rels constructed according to
* sub-joinlists.
*/
initial_rels = NIL;
foreach(jl, joinlist)
{
Node *jlnode = (Node *) lfirst(jl);
RelOptInfo *thisrel;
if (IsA(jlnode, RangeTblRef))
{
int varno = ((RangeTblRef *) jlnode)->rtindex;
thisrel = find_base_rel(root, varno);
}
else if (IsA(jlnode, List))
{
/* Recurse to handle subproblem */
thisrel = make_rel_from_joinlist(root, (List *) jlnode);
}
else
{
elog(ERROR, "unrecognized joinlist node type: %d",
(int) nodeTag(jlnode));
thisrel = NULL; /* keep compiler quiet */
}
initial_rels = lappend(initial_rels, thisrel);
}
if (levels_needed == 1)
{
/*
* Single joinlist node, so we're done.
*/
return (RelOptInfo *) linitial(initial_rels);
}
else
{
/*
* Consider the different orders in which we could join the rels,
* using a plugin, GEQO, or the regular join search code.
*
* We put the initial_rels list into a PlannerInfo field because
* has_legal_joinclause() needs to look at it (ugly :-().
*/
root->initial_rels = initial_rels;
if (join_search_hook)
return (*join_search_hook) (root, levels_needed, initial_rels);
else if (enable_geqo && levels_needed >= geqo_threshold)
return geqo(root, levels_needed, initial_rels);
else
return standard_join_search(root, levels_needed, initial_rels);
}
}
/*
* standard_join_search
* Find possible joinpaths for a query by successively finding ways
* to join component relations into join relations.
*
* 'levels_needed' is the number of iterations needed, ie, the number of
* independent jointree items in the query. This is > 1.
*
* 'initial_rels' is a list of RelOptInfo nodes for each independent
* jointree item. These are the components to be joined together.
* Note that levels_needed == list_length(initial_rels).
*
* Returns the final level of join relations, i.e., the relation that is
* the result of joining all the original relations together.
* At least one implementation path must be provided for this relation and
* all required sub-relations.
*
* To support loadable plugins that modify planner behavior by changing the
* join searching algorithm, we provide a hook variable that lets a plugin
* replace or supplement this function. Any such hook must return the same
* final join relation as the standard code would, but it might have a
* different set of implementation paths attached, and only the sub-joinrels
* needed for these paths need have been instantiated.
*
* Note to plugin authors: the functions invoked during standard_join_search()
* modify root->join_rel_list and root->join_rel_hash. If you want to do more
* than one join-order search, you'll probably need to save and restore the
* original states of those data structures. See geqo_eval() for an example.
*/
RelOptInfo *
standard_join_search(PlannerInfo *root, int levels_needed, List *initial_rels)
{
int lev;
RelOptInfo *rel;
/*
* This function cannot be invoked recursively within any one planning
* problem, so join_rel_level[] can't be in use already.
*/
Assert(root->join_rel_level == NULL);
/*
* We employ a simple "dynamic programming" algorithm: we first find all
* ways to build joins of two jointree items, then all ways to build joins
* of three items (from two-item joins and single items), then four-item
* joins, and so on until we have considered all ways to join all the
* items into one rel.
*
* root->join_rel_level[j] is a list of all the j-item rels. Initially we
* set root->join_rel_level[1] to represent all the single-jointree-item
* relations.
*/
root->join_rel_level = (List **) palloc0((levels_needed + 1) * sizeof(List *));
root->join_rel_level[1] = initial_rels;
for (lev = 2; lev <= levels_needed; lev++)
{
ListCell *lc;
/*
* Determine all possible pairs of relations to be joined at this
* level, and build paths for making each one from every available
* pair of lower-level relations.
*/
join_search_one_level(root, lev);
/*
* Do cleanup work on each just-processed rel.
*/
foreach(lc, root->join_rel_level[lev])
{
rel = (RelOptInfo *) lfirst(lc);
/* Find and save the cheapest paths for this rel */
set_cheapest(rel);
#ifdef OPTIMIZER_DEBUG
debug_print_rel(root, rel);
#endif
}
}
/*
* We should have a single rel at the final level.
*/
if (root->join_rel_level[levels_needed] == NIL)
elog(ERROR, "failed to build any %d-way joins", levels_needed);
Assert(list_length(root->join_rel_level[levels_needed]) == 1);
rel = (RelOptInfo *) linitial(root->join_rel_level[levels_needed]);
root->join_rel_level = NULL;
return rel;
}
/*****************************************************************************
* PUSHING QUALS DOWN INTO SUBQUERIES
*****************************************************************************/
/*
* subquery_is_pushdown_safe - is a subquery safe for pushing down quals?
*
* subquery is the particular component query being checked. topquery
* is the top component of a set-operations tree (the same Query if no
* set-op is involved).
*
* Conditions checked here:
*
* 1. If the subquery has a LIMIT clause, we must not push down any quals,
* since that could change the set of rows returned.
*
* 2. If the subquery contains EXCEPT or EXCEPT ALL set ops we cannot push
* quals into it, because that could change the results.
*
* 3. If the subquery uses DISTINCT, we cannot push volatile quals into it.
* This is because upper-level quals should semantically be evaluated only
* once per distinct row, not once per original row, and if the qual is
* volatile then extra evaluations could change the results. (This issue
* does not apply to other forms of aggregation such as GROUP BY, because
* when those are present we push into HAVING not WHERE, so that the quals
* are still applied after aggregation.)
*
* 4. If the subquery contains window functions, we cannot push volatile quals
* into it. The issue here is a bit different from DISTINCT: a volatile qual
* might succeed for some rows of a window partition and fail for others,
* thereby changing the partition contents and thus the window functions'
* results for rows that remain.
*
* In addition, we make several checks on the subquery's output columns to see
* if it is safe to reference them in pushed-down quals. If output column k
* is found to be unsafe to reference, we set safetyInfo->unsafeColumns[k]
* to TRUE, but we don't reject the subquery overall since column k might not
* be referenced by some/all quals. The unsafeColumns[] array will be
* consulted later by qual_is_pushdown_safe(). It's better to do it this way
* than to make the checks directly in qual_is_pushdown_safe(), because when
* the subquery involves set operations we have to check the output
* expressions in each arm of the set op.
*
* Note: pushing quals into a DISTINCT subquery is theoretically dubious:
* we're effectively assuming that the quals cannot distinguish values that
* the DISTINCT's equality operator sees as equal, yet there are many
* counterexamples to that assumption. However use of such a qual with a
* DISTINCT subquery would be unsafe anyway, since there's no guarantee which
* "equal" value will be chosen as the output value by the DISTINCT operation.
* So we don't worry too much about that. Another objection is that if the
* qual is expensive to evaluate, running it for each original row might cost
* more than we save by eliminating rows before the DISTINCT step. But it
* would be very hard to estimate that at this stage, and in practice pushdown
* seldom seems to make things worse, so we ignore that problem too.
*
* Note: likewise, pushing quals into a subquery with window functions is a
* bit dubious: the quals might remove some rows of a window partition while
* leaving others, causing changes in the window functions' results for the
* surviving rows. We insist that such a qual reference only partitioning
* columns, but again that only protects us if the qual does not distinguish
* values that the partitioning equality operator sees as equal. The risks
* here are perhaps larger than for DISTINCT, since no de-duplication of rows
* occurs and thus there is no theoretical problem with such a qual. But
* we'll do this anyway because the potential performance benefits are very
* large, and we've seen no field complaints about the longstanding comparable
* behavior with DISTINCT.
*/
static bool
subquery_is_pushdown_safe(Query *subquery, Query *topquery,
pushdown_safety_info *safetyInfo)
{
SetOperationStmt *topop;
/* Check point 1 */
if (subquery->limitOffset != NULL || subquery->limitCount != NULL)
return false;
/* Check points 3 and 4 */
if (subquery->distinctClause || subquery->hasWindowFuncs)
safetyInfo->unsafeVolatile = true;
/*
* If we're at a leaf query, check for unsafe expressions in its target
* list, and mark any unsafe ones in unsafeColumns[]. (Non-leaf nodes in
* setop trees have only simple Vars in their tlists, so no need to check
* them.)
*/
if (subquery->setOperations == NULL)
check_output_expressions(subquery, safetyInfo);
/* Are we at top level, or looking at a setop component? */
if (subquery == topquery)
{
/* Top level, so check any component queries */
if (subquery->setOperations != NULL)
if (!recurse_pushdown_safe(subquery->setOperations, topquery,
safetyInfo))
return false;
}
else
{
/* Setop component must not have more components (too weird) */
if (subquery->setOperations != NULL)
return false;
/* Check whether setop component output types match top level */
topop = (SetOperationStmt *) topquery->setOperations;
Assert(topop && IsA(topop, SetOperationStmt));
compare_tlist_datatypes(subquery->targetList,
topop->colTypes,
safetyInfo);
}
return true;
}
/*
* Helper routine to recurse through setOperations tree
*/
static bool
recurse_pushdown_safe(Node *setOp, Query *topquery,
pushdown_safety_info *safetyInfo)
{
if (IsA(setOp, RangeTblRef))
{
RangeTblRef *rtr = (RangeTblRef *) setOp;
RangeTblEntry *rte = rt_fetch(rtr->rtindex, topquery->rtable);
Query *subquery = rte->subquery;
Assert(subquery != NULL);
return subquery_is_pushdown_safe(subquery, topquery, safetyInfo);
}
else if (IsA(setOp, SetOperationStmt))
{
SetOperationStmt *op = (SetOperationStmt *) setOp;
/* EXCEPT is no good (point 2 for subquery_is_pushdown_safe) */
if (op->op == SETOP_EXCEPT)
return false;
/* Else recurse */
if (!recurse_pushdown_safe(op->larg, topquery, safetyInfo))
return false;
if (!recurse_pushdown_safe(op->rarg, topquery, safetyInfo))
return false;
}
else
{
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(setOp));
}
return true;
}
/*
* check_output_expressions - check subquery's output expressions for safety
*
* There are several cases in which it's unsafe to push down an upper-level
* qual if it references a particular output column of a subquery. We check
* each output column of the subquery and set unsafeColumns[k] to TRUE if
* that column is unsafe for a pushed-down qual to reference. The conditions
* checked here are:
*
* 1. We must not push down any quals that refer to subselect outputs that
* return sets, else we'd introduce functions-returning-sets into the
* subquery's WHERE/HAVING quals.
*
* 2. We must not push down any quals that refer to subselect outputs that
* contain volatile functions, for fear of introducing strange results due
* to multiple evaluation of a volatile function.
*
* 3. If the subquery uses DISTINCT ON, we must not push down any quals that
* refer to non-DISTINCT output columns, because that could change the set
* of rows returned. (This condition is vacuous for DISTINCT, because then
* there are no non-DISTINCT output columns, so we needn't check. Note that
* subquery_is_pushdown_safe already reported that we can't use volatile
* quals if there's DISTINCT or DISTINCT ON.)
*
* 4. If the subquery has any window functions, we must not push down quals
* that reference any output columns that are not listed in all the subquery's
* window PARTITION BY clauses. We can push down quals that use only
* partitioning columns because they should succeed or fail identically for
* every row of any one window partition, and totally excluding some
* partitions will not change a window function's results for remaining
* partitions. (Again, this also requires nonvolatile quals, but
* subquery_is_pushdown_safe handles that.)
*/
static void
check_output_expressions(Query *subquery, pushdown_safety_info *safetyInfo)
{
ListCell *lc;
foreach(lc, subquery->targetList)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
if (tle->resjunk)
continue; /* ignore resjunk columns */
/* We need not check further if output col is already known unsafe */
if (safetyInfo->unsafeColumns[tle->resno])
continue;
/* Functions returning sets are unsafe (point 1) */
if (expression_returns_set((Node *) tle->expr))
{
safetyInfo->unsafeColumns[tle->resno] = true;
continue;
}
/* Volatile functions are unsafe (point 2) */
if (contain_volatile_functions((Node *) tle->expr))
{
safetyInfo->unsafeColumns[tle->resno] = true;
continue;
}
/* If subquery uses DISTINCT ON, check point 3 */
if (subquery->hasDistinctOn &&
!targetIsInSortList(tle, InvalidOid, subquery->distinctClause))
{
/* non-DISTINCT column, so mark it unsafe */
safetyInfo->unsafeColumns[tle->resno] = true;
continue;
}
/* If subquery uses window functions, check point 4 */
if (subquery->hasWindowFuncs &&
!targetIsInAllPartitionLists(tle, subquery))
{
/* not present in all PARTITION BY clauses, so mark it unsafe */
safetyInfo->unsafeColumns[tle->resno] = true;
continue;
}
}
}
/*
* For subqueries using UNION/UNION ALL/INTERSECT/INTERSECT ALL, we can
* push quals into each component query, but the quals can only reference
* subquery columns that suffer no type coercions in the set operation.
* Otherwise there are possible semantic gotchas. So, we check the
* component queries to see if any of them have output types different from
* the top-level setop outputs. unsafeColumns[k] is set true if column k
* has different type in any component.
*
* We don't have to care about typmods here: the only allowed difference
* between set-op input and output typmods is input is a specific typmod
* and output is -1, and that does not require a coercion.
*
* tlist is a subquery tlist.
* colTypes is an OID list of the top-level setop's output column types.
* safetyInfo->unsafeColumns[] is the result array.
*/
static void
compare_tlist_datatypes(List *tlist, List *colTypes,
pushdown_safety_info *safetyInfo)
{
ListCell *l;
ListCell *colType = list_head(colTypes);
foreach(l, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(l);
if (tle->resjunk)
continue; /* ignore resjunk columns */
if (colType == NULL)
elog(ERROR, "wrong number of tlist entries");
if (exprType((Node *) tle->expr) != lfirst_oid(colType))
safetyInfo->unsafeColumns[tle->resno] = true;
colType = lnext(colType);
}
if (colType != NULL)
elog(ERROR, "wrong number of tlist entries");
}
/*
* targetIsInAllPartitionLists
* True if the TargetEntry is listed in the PARTITION BY clause
* of every window defined in the query.
*
* It would be safe to ignore windows not actually used by any window
* function, but it's not easy to get that info at this stage; and it's
* unlikely to be useful to spend any extra cycles getting it, since
* unreferenced window definitions are probably infrequent in practice.
*/
static bool
targetIsInAllPartitionLists(TargetEntry *tle, Query *query)
{
ListCell *lc;
foreach(lc, query->windowClause)
{
WindowClause *wc = (WindowClause *) lfirst(lc);
if (!targetIsInSortList(tle, InvalidOid, wc->partitionClause))
return false;
}
return true;
}
/*
* qual_is_pushdown_safe - is a particular qual safe to push down?
*
* qual is a restriction clause applying to the given subquery (whose RTE
* has index rti in the parent query).
*
* Conditions checked here:
*
* 1. The qual must not contain any subselects (mainly because I'm not sure
* it will work correctly: sublinks will already have been transformed into
* subplans in the qual, but not in the subquery).
*
* 2. If unsafeVolatile is set, the qual must not contain any volatile
* functions.
*
* 3. If unsafeLeaky is set, the qual must not contain any leaky functions
* that are passed Var nodes, and therefore might reveal values from the
* subquery as side effects.
*
* 4. The qual must not refer to the whole-row output of the subquery
* (since there is no easy way to name that within the subquery itself).
*
* 5. The qual must not refer to any subquery output columns that were
* found to be unsafe to reference by subquery_is_pushdown_safe().
*/
static bool
qual_is_pushdown_safe(Query *subquery, Index rti, Node *qual,
pushdown_safety_info *safetyInfo)
{
bool safe = true;
List *vars;
ListCell *vl;
/* Refuse subselects (point 1) */
if (contain_subplans(qual))
return false;
/* Refuse volatile quals if we found they'd be unsafe (point 2) */
if (safetyInfo->unsafeVolatile &&
contain_volatile_functions(qual))
return false;
/* Refuse leaky quals if told to (point 3) */
if (safetyInfo->unsafeLeaky &&
contain_leaked_vars(qual))
return false;
/*
* It would be unsafe to push down window function calls, but at least for
* the moment we could never see any in a qual anyhow. (The same applies
* to aggregates, which we check for in pull_var_clause below.)
*/
Assert(!contain_window_function(qual));
/*
* Examine all Vars used in clause; since it's a restriction clause, all
* such Vars must refer to subselect output columns.
*/
vars = pull_var_clause(qual,
PVC_REJECT_AGGREGATES,
PVC_INCLUDE_PLACEHOLDERS);
foreach(vl, vars)
{
Var *var = (Var *) lfirst(vl);
/*
* XXX Punt if we find any PlaceHolderVars in the restriction clause.
* It's not clear whether a PHV could safely be pushed down, and even
* less clear whether such a situation could arise in any cases of
* practical interest anyway. So for the moment, just refuse to push
* down.
*/
if (!IsA(var, Var))
{
safe = false;
break;
}
Assert(var->varno == rti);
Assert(var->varattno >= 0);
/* Check point 4 */
if (var->varattno == 0)
{
safe = false;
break;
}
/* Check point 5 */
if (safetyInfo->unsafeColumns[var->varattno])
{
safe = false;
break;
}
}
list_free(vars);
return safe;
}
/*
* subquery_push_qual - push down a qual that we have determined is safe
*/
static void
subquery_push_qual(Query *subquery, RangeTblEntry *rte, Index rti, Node *qual)
{
if (subquery->setOperations != NULL)
{
/* Recurse to push it separately to each component query */
recurse_push_qual(subquery->setOperations, subquery,
rte, rti, qual);
}
else if (IsA(qual, CurrentOfExpr))
{
/*
* This is possible when a WHERE CURRENT OF expression is applied to a
* table with row-level security. In that case, the subquery should
* contain precisely one rtable entry for the table, and we can safely
* push the expression down into the subquery. This will cause a TID
* scan subquery plan to be generated allowing the target relation to
* be updated.
*
* Someday we might also be able to use a WHERE CURRENT OF expression
* on a view, but currently the rewriter prevents that, so we should
* never see any other case here, but generate sane error messages in
* case it does somehow happen.
*/
if (subquery->rtable == NIL)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("WHERE CURRENT OF is not supported on a view with no underlying relation")));
if (list_length(subquery->rtable) > 1)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("WHERE CURRENT OF is not supported on a view with more than one underlying relation")));
if (subquery->hasAggs || subquery->groupClause || subquery->groupingSets || subquery->havingQual)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("WHERE CURRENT OF is not supported on a view with grouping or aggregation")));
/*
* Adjust the CURRENT OF expression to refer to the underlying table
* in the subquery, and attach it to the subquery's WHERE clause.
*/
qual = copyObject(qual);
((CurrentOfExpr *) qual)->cvarno = 1;
subquery->jointree->quals =
make_and_qual(subquery->jointree->quals, qual);
}
else
{
/*
* We need to replace Vars in the qual (which must refer to outputs of
* the subquery) with copies of the subquery's targetlist expressions.
* Note that at this point, any uplevel Vars in the qual should have
* been replaced with Params, so they need no work.
*
* This step also ensures that when we are pushing into a setop tree,
* each component query gets its own copy of the qual.
*/
qual = ReplaceVarsFromTargetList(qual, rti, 0, rte,
subquery->targetList,
REPLACEVARS_REPORT_ERROR, 0,
&subquery->hasSubLinks);
/*
* Now attach the qual to the proper place: normally WHERE, but if the
* subquery uses grouping or aggregation, put it in HAVING (since the
* qual really refers to the group-result rows).
*/
if (subquery->hasAggs || subquery->groupClause || subquery->groupingSets || subquery->havingQual)
subquery->havingQual = make_and_qual(subquery->havingQual, qual);
else
subquery->jointree->quals =
make_and_qual(subquery->jointree->quals, qual);
/*
* We need not change the subquery's hasAggs or hasSublinks flags,
* since we can't be pushing down any aggregates that weren't there
* before, and we don't push down subselects at all.
*/
}
}
/*
* Helper routine to recurse through setOperations tree
*/
static void
recurse_push_qual(Node *setOp, Query *topquery,
RangeTblEntry *rte, Index rti, Node *qual)
{
if (IsA(setOp, RangeTblRef))
{
RangeTblRef *rtr = (RangeTblRef *) setOp;
RangeTblEntry *subrte = rt_fetch(rtr->rtindex, topquery->rtable);
Query *subquery = subrte->subquery;
Assert(subquery != NULL);
subquery_push_qual(subquery, rte, rti, qual);
}
else if (IsA(setOp, SetOperationStmt))
{
SetOperationStmt *op = (SetOperationStmt *) setOp;
recurse_push_qual(op->larg, topquery, rte, rti, qual);
recurse_push_qual(op->rarg, topquery, rte, rti, qual);
}
else
{
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(setOp));
}
}
/*****************************************************************************
* SIMPLIFYING SUBQUERY TARGETLISTS
*****************************************************************************/
/*
* remove_unused_subquery_outputs
* Remove subquery targetlist items we don't need
*
* It's possible, even likely, that the upper query does not read all the
* output columns of the subquery. We can remove any such outputs that are
* not needed by the subquery itself (e.g., as sort/group columns) and do not
* affect semantics otherwise (e.g., volatile functions can't be removed).
* This is useful not only because we might be able to remove expensive-to-
* compute expressions, but because deletion of output columns might allow
* optimizations such as join removal to occur within the subquery.
*
* To avoid affecting column numbering in the targetlist, we don't physically
* remove unused tlist entries, but rather replace their expressions with NULL
* constants. This is implemented by modifying subquery->targetList.
*/
static void
remove_unused_subquery_outputs(Query *subquery, RelOptInfo *rel)
{
Bitmapset *attrs_used = NULL;
ListCell *lc;
/*
* Do nothing if subquery has UNION/INTERSECT/EXCEPT: in principle we
* could update all the child SELECTs' tlists, but it seems not worth the
* trouble presently.
*/
if (subquery->setOperations)
return;
/*
* If subquery has regular DISTINCT (not DISTINCT ON), we're wasting our
* time: all its output columns must be used in the distinctClause.
*/
if (subquery->distinctClause && !subquery->hasDistinctOn)
return;
/*
* Collect a bitmap of all the output column numbers used by the upper
* query.
*
* Add all the attributes needed for joins or final output. Note: we must
* look at reltargetlist, not the attr_needed data, because attr_needed
* isn't computed for inheritance child rels, cf set_append_rel_size().
* (XXX might be worth changing that sometime.)
*/
pull_varattnos((Node *) rel->reltargetlist, rel->relid, &attrs_used);
/* Add all the attributes used by un-pushed-down restriction clauses. */
foreach(lc, rel->baserestrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
pull_varattnos((Node *) rinfo->clause, rel->relid, &attrs_used);
}
/*
* If there's a whole-row reference to the subquery, we can't remove
* anything.
*/
if (bms_is_member(0 - FirstLowInvalidHeapAttributeNumber, attrs_used))
return;
/*
* Run through the tlist and zap entries we don't need. It's okay to
* modify the tlist items in-place because set_subquery_pathlist made a
* copy of the subquery.
*/
foreach(lc, subquery->targetList)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
Node *texpr = (Node *) tle->expr;
/*
* If it has a sortgroupref number, it's used in some sort/group
* clause so we'd better not remove it. Also, don't remove any
* resjunk columns, since their reason for being has nothing to do
* with anybody reading the subquery's output. (It's likely that
* resjunk columns in a sub-SELECT would always have ressortgroupref
* set, but even if they don't, it seems imprudent to remove them.)
*/
if (tle->ressortgroupref || tle->resjunk)
continue;
/*
* If it's used by the upper query, we can't remove it.
*/
if (bms_is_member(tle->resno - FirstLowInvalidHeapAttributeNumber,
attrs_used))
continue;
/*
* If it contains a set-returning function, we can't remove it since
* that could change the number of rows returned by the subquery.
*/
if (expression_returns_set(texpr))
continue;
/*
* If it contains volatile functions, we daren't remove it for fear
* that the user is expecting their side-effects to happen.
*/
if (contain_volatile_functions(texpr))
continue;
/*
* OK, we don't need it. Replace the expression with a NULL constant.
* Preserve the exposed type of the expression, in case something
* looks at the rowtype of the subquery's result.
*/
tle->expr = (Expr *) makeNullConst(exprType(texpr),
exprTypmod(texpr),
exprCollation(texpr));
}
}
/*****************************************************************************
* DEBUG SUPPORT
*****************************************************************************/
#ifdef OPTIMIZER_DEBUG
static void
print_relids(Relids relids)
{
int x;
bool first = true;
x = -1;
while ((x = bms_next_member(relids, x)) >= 0)
{
if (!first)
printf(" ");
printf("%d", x);
first = false;
}
}
static void
print_restrictclauses(PlannerInfo *root, List *clauses)
{
ListCell *l;
foreach(l, clauses)
{
RestrictInfo *c = lfirst(l);
print_expr((Node *) c->clause, root->parse->rtable);
if (lnext(l))
printf(", ");
}
}
static void
print_path(PlannerInfo *root, Path *path, int indent)
{
const char *ptype;
bool join = false;
Path *subpath = NULL;
int i;
switch (nodeTag(path))
{
case T_Path:
switch (path->pathtype)
{
case T_SeqScan:
ptype = "SeqScan";
break;
case T_SampleScan:
ptype = "SampleScan";
break;
case T_SubqueryScan:
ptype = "SubqueryScan";
break;
case T_FunctionScan:
ptype = "FunctionScan";
break;
case T_ValuesScan:
ptype = "ValuesScan";
break;
case T_CteScan:
ptype = "CteScan";
break;
case T_WorkTableScan:
ptype = "WorkTableScan";
break;
default:
ptype = "???Path";
break;
}
break;
case T_IndexPath:
ptype = "IdxScan";
break;
case T_BitmapHeapPath:
ptype = "BitmapHeapScan";
break;
case T_BitmapAndPath:
ptype = "BitmapAndPath";
break;
case T_BitmapOrPath:
ptype = "BitmapOrPath";
break;
case T_TidPath:
ptype = "TidScan";
break;
case T_ForeignPath:
ptype = "ForeignScan";
break;
case T_AppendPath:
ptype = "Append";
break;
case T_MergeAppendPath:
ptype = "MergeAppend";
break;
case T_ResultPath:
ptype = "Result";
break;
case T_MaterialPath:
ptype = "Material";
subpath = ((MaterialPath *) path)->subpath;
break;
case T_UniquePath:
ptype = "Unique";
subpath = ((UniquePath *) path)->subpath;
break;
case T_NestPath:
ptype = "NestLoop";
join = true;
break;
case T_MergePath:
ptype = "MergeJoin";
join = true;
break;
case T_HashPath:
ptype = "HashJoin";
join = true;
break;
default:
ptype = "???Path";
break;
}
for (i = 0; i < indent; i++)
printf("\t");
printf("%s", ptype);
if (path->parent)
{
printf("(");
print_relids(path->parent->relids);
printf(") rows=%.0f", path->parent->rows);
}
printf(" cost=%.2f..%.2f\n", path->startup_cost, path->total_cost);
if (path->pathkeys)
{
for (i = 0; i < indent; i++)
printf("\t");
printf(" pathkeys: ");
print_pathkeys(path->pathkeys, root->parse->rtable);
}
if (join)
{
JoinPath *jp = (JoinPath *) path;
for (i = 0; i < indent; i++)
printf("\t");
printf(" clauses: ");
print_restrictclauses(root, jp->joinrestrictinfo);
printf("\n");
if (IsA(path, MergePath))
{
MergePath *mp = (MergePath *) path;
for (i = 0; i < indent; i++)
printf("\t");
printf(" sortouter=%d sortinner=%d materializeinner=%d\n",
((mp->outersortkeys) ? 1 : 0),
((mp->innersortkeys) ? 1 : 0),
((mp->materialize_inner) ? 1 : 0));
}
print_path(root, jp->outerjoinpath, indent + 1);
print_path(root, jp->innerjoinpath, indent + 1);
}
if (subpath)
print_path(root, subpath, indent + 1);
}
void
debug_print_rel(PlannerInfo *root, RelOptInfo *rel)
{
ListCell *l;
printf("RELOPTINFO (");
print_relids(rel->relids);
printf("): rows=%.0f width=%d\n", rel->rows, rel->width);
if (rel->baserestrictinfo)
{
printf("\tbaserestrictinfo: ");
print_restrictclauses(root, rel->baserestrictinfo);
printf("\n");
}
if (rel->joininfo)
{
printf("\tjoininfo: ");
print_restrictclauses(root, rel->joininfo);
printf("\n");
}
printf("\tpath list:\n");
foreach(l, rel->pathlist)
print_path(root, lfirst(l), 1);
if (rel->cheapest_startup_path)
{
printf("\n\tcheapest startup path:\n");
print_path(root, rel->cheapest_startup_path, 1);
}
if (rel->cheapest_total_path)
{
printf("\n\tcheapest total path:\n");
print_path(root, rel->cheapest_total_path, 1);
}
printf("\n");
fflush(stdout);
}
#endif /* OPTIMIZER_DEBUG */