postgresql/src/backend/optimizer/plan/createplan.c

5129 lines
148 KiB
C

/*-------------------------------------------------------------------------
*
* createplan.c
* Routines to create the desired plan for processing a query.
* Planning is complete, we just need to convert the selected
* Path into a Plan.
*
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/plan/createplan.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <limits.h>
#include <math.h>
#include "access/stratnum.h"
#include "access/sysattr.h"
#include "catalog/pg_class.h"
#include "foreign/fdwapi.h"
#include "miscadmin.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/paths.h"
#include "optimizer/placeholder.h"
#include "optimizer/plancat.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "optimizer/predtest.h"
#include "optimizer/prep.h"
#include "optimizer/restrictinfo.h"
#include "optimizer/subselect.h"
#include "optimizer/tlist.h"
#include "optimizer/var.h"
#include "parser/parse_clause.h"
#include "parser/parsetree.h"
#include "utils/lsyscache.h"
static Plan *create_plan_recurse(PlannerInfo *root, Path *best_path);
static Plan *create_scan_plan(PlannerInfo *root, Path *best_path);
static List *build_path_tlist(PlannerInfo *root, Path *path);
static bool use_physical_tlist(PlannerInfo *root, RelOptInfo *rel);
static void disuse_physical_tlist(PlannerInfo *root, Plan *plan, Path *path);
static Plan *create_gating_plan(PlannerInfo *root, Plan *plan, List *quals);
static Plan *create_join_plan(PlannerInfo *root, JoinPath *best_path);
static Plan *create_append_plan(PlannerInfo *root, AppendPath *best_path);
static Plan *create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path);
static Result *create_result_plan(PlannerInfo *root, ResultPath *best_path);
static Material *create_material_plan(PlannerInfo *root, MaterialPath *best_path);
static Plan *create_unique_plan(PlannerInfo *root, UniquePath *best_path);
static SeqScan *create_seqscan_plan(PlannerInfo *root, Path *best_path,
List *tlist, List *scan_clauses);
static SampleScan *create_samplescan_plan(PlannerInfo *root, Path *best_path,
List *tlist, List *scan_clauses);
static Scan *create_indexscan_plan(PlannerInfo *root, IndexPath *best_path,
List *tlist, List *scan_clauses, bool indexonly);
static BitmapHeapScan *create_bitmap_scan_plan(PlannerInfo *root,
BitmapHeapPath *best_path,
List *tlist, List *scan_clauses);
static Plan *create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
List **qual, List **indexqual, List **indexECs);
static TidScan *create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
List *tlist, List *scan_clauses);
static SubqueryScan *create_subqueryscan_plan(PlannerInfo *root, Path *best_path,
List *tlist, List *scan_clauses);
static FunctionScan *create_functionscan_plan(PlannerInfo *root, Path *best_path,
List *tlist, List *scan_clauses);
static ValuesScan *create_valuesscan_plan(PlannerInfo *root, Path *best_path,
List *tlist, List *scan_clauses);
static CteScan *create_ctescan_plan(PlannerInfo *root, Path *best_path,
List *tlist, List *scan_clauses);
static WorkTableScan *create_worktablescan_plan(PlannerInfo *root, Path *best_path,
List *tlist, List *scan_clauses);
static ForeignScan *create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
List *tlist, List *scan_clauses);
static CustomScan *create_customscan_plan(PlannerInfo *root,
CustomPath *best_path,
List *tlist, List *scan_clauses);
static NestLoop *create_nestloop_plan(PlannerInfo *root, NestPath *best_path,
Plan *outer_plan, Plan *inner_plan);
static MergeJoin *create_mergejoin_plan(PlannerInfo *root, MergePath *best_path,
Plan *outer_plan, Plan *inner_plan);
static HashJoin *create_hashjoin_plan(PlannerInfo *root, HashPath *best_path,
Plan *outer_plan, Plan *inner_plan);
static Node *replace_nestloop_params(PlannerInfo *root, Node *expr);
static Node *replace_nestloop_params_mutator(Node *node, PlannerInfo *root);
static void process_subquery_nestloop_params(PlannerInfo *root,
List *subplan_params);
static List *fix_indexqual_references(PlannerInfo *root, IndexPath *index_path);
static List *fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path);
static Node *fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol);
static List *get_switched_clauses(List *clauses, Relids outerrelids);
static List *order_qual_clauses(PlannerInfo *root, List *clauses);
static void copy_path_costsize(Plan *dest, Path *src);
static void copy_plan_costsize(Plan *dest, Plan *src);
static SeqScan *make_seqscan(List *qptlist, List *qpqual, Index scanrelid);
static SampleScan *make_samplescan(List *qptlist, List *qpqual, Index scanrelid,
TableSampleClause *tsc);
static IndexScan *make_indexscan(List *qptlist, List *qpqual, Index scanrelid,
Oid indexid, List *indexqual, List *indexqualorig,
List *indexorderby, List *indexorderbyorig,
List *indexorderbyops,
ScanDirection indexscandir);
static IndexOnlyScan *make_indexonlyscan(List *qptlist, List *qpqual,
Index scanrelid, Oid indexid,
List *indexqual, List *indexorderby,
List *indextlist,
ScanDirection indexscandir);
static BitmapIndexScan *make_bitmap_indexscan(Index scanrelid, Oid indexid,
List *indexqual,
List *indexqualorig);
static BitmapHeapScan *make_bitmap_heapscan(List *qptlist,
List *qpqual,
Plan *lefttree,
List *bitmapqualorig,
Index scanrelid);
static TidScan *make_tidscan(List *qptlist, List *qpqual, Index scanrelid,
List *tidquals);
static FunctionScan *make_functionscan(List *qptlist, List *qpqual,
Index scanrelid, List *functions, bool funcordinality);
static ValuesScan *make_valuesscan(List *qptlist, List *qpqual,
Index scanrelid, List *values_lists);
static CteScan *make_ctescan(List *qptlist, List *qpqual,
Index scanrelid, int ctePlanId, int cteParam);
static WorkTableScan *make_worktablescan(List *qptlist, List *qpqual,
Index scanrelid, int wtParam);
static BitmapAnd *make_bitmap_and(List *bitmapplans);
static BitmapOr *make_bitmap_or(List *bitmapplans);
static NestLoop *make_nestloop(List *tlist,
List *joinclauses, List *otherclauses, List *nestParams,
Plan *lefttree, Plan *righttree,
JoinType jointype);
static HashJoin *make_hashjoin(List *tlist,
List *joinclauses, List *otherclauses,
List *hashclauses,
Plan *lefttree, Plan *righttree,
JoinType jointype);
static Hash *make_hash(Plan *lefttree,
Oid skewTable,
AttrNumber skewColumn,
bool skewInherit,
Oid skewColType,
int32 skewColTypmod);
static MergeJoin *make_mergejoin(List *tlist,
List *joinclauses, List *otherclauses,
List *mergeclauses,
Oid *mergefamilies,
Oid *mergecollations,
int *mergestrategies,
bool *mergenullsfirst,
Plan *lefttree, Plan *righttree,
JoinType jointype);
static Sort *make_sort(PlannerInfo *root, Plan *lefttree, int numCols,
AttrNumber *sortColIdx, Oid *sortOperators,
Oid *collations, bool *nullsFirst,
double limit_tuples);
static Plan *prepare_sort_from_pathkeys(PlannerInfo *root,
Plan *lefttree, List *pathkeys,
Relids relids,
const AttrNumber *reqColIdx,
bool adjust_tlist_in_place,
int *p_numsortkeys,
AttrNumber **p_sortColIdx,
Oid **p_sortOperators,
Oid **p_collations,
bool **p_nullsFirst);
static EquivalenceMember *find_ec_member_for_tle(EquivalenceClass *ec,
TargetEntry *tle,
Relids relids);
static Material *make_material(Plan *lefttree);
/*
* create_plan
* Creates the access plan for a query by recursively processing the
* desired tree of pathnodes, starting at the node 'best_path'. For
* every pathnode found, we create a corresponding plan node containing
* appropriate id, target list, and qualification information.
*
* The tlists and quals in the plan tree are still in planner format,
* ie, Vars still correspond to the parser's numbering. This will be
* fixed later by setrefs.c.
*
* best_path is the best access path
*
* Returns a Plan tree.
*/
Plan *
create_plan(PlannerInfo *root, Path *best_path)
{
Plan *plan;
/* plan_params should not be in use in current query level */
Assert(root->plan_params == NIL);
/* Initialize this module's private workspace in PlannerInfo */
root->curOuterRels = NULL;
root->curOuterParams = NIL;
/* Recursively process the path tree */
plan = create_plan_recurse(root, best_path);
/* Check we successfully assigned all NestLoopParams to plan nodes */
if (root->curOuterParams != NIL)
elog(ERROR, "failed to assign all NestLoopParams to plan nodes");
/*
* Reset plan_params to ensure param IDs used for nestloop params are not
* re-used later
*/
root->plan_params = NIL;
return plan;
}
/*
* create_plan_recurse
* Recursive guts of create_plan().
*/
static Plan *
create_plan_recurse(PlannerInfo *root, Path *best_path)
{
Plan *plan;
switch (best_path->pathtype)
{
case T_SeqScan:
case T_SampleScan:
case T_IndexScan:
case T_IndexOnlyScan:
case T_BitmapHeapScan:
case T_TidScan:
case T_SubqueryScan:
case T_FunctionScan:
case T_ValuesScan:
case T_CteScan:
case T_WorkTableScan:
case T_ForeignScan:
case T_CustomScan:
plan = create_scan_plan(root, best_path);
break;
case T_HashJoin:
case T_MergeJoin:
case T_NestLoop:
plan = create_join_plan(root,
(JoinPath *) best_path);
break;
case T_Append:
plan = create_append_plan(root,
(AppendPath *) best_path);
break;
case T_MergeAppend:
plan = create_merge_append_plan(root,
(MergeAppendPath *) best_path);
break;
case T_Result:
plan = (Plan *) create_result_plan(root,
(ResultPath *) best_path);
break;
case T_Material:
plan = (Plan *) create_material_plan(root,
(MaterialPath *) best_path);
break;
case T_Unique:
plan = create_unique_plan(root,
(UniquePath *) best_path);
break;
default:
elog(ERROR, "unrecognized node type: %d",
(int) best_path->pathtype);
plan = NULL; /* keep compiler quiet */
break;
}
return plan;
}
/*
* create_scan_plan
* Create a scan plan for the parent relation of 'best_path'.
*/
static Plan *
create_scan_plan(PlannerInfo *root, Path *best_path)
{
RelOptInfo *rel = best_path->parent;
List *tlist;
List *scan_clauses;
Plan *plan;
/*
* For table scans, rather than using the relation targetlist (which is
* only those Vars actually needed by the query), we prefer to generate a
* tlist containing all Vars in order. This will allow the executor to
* optimize away projection of the table tuples, if possible. (Note that
* planner.c may replace the tlist we generate here, forcing projection to
* occur.)
*/
if (use_physical_tlist(root, rel))
{
if (best_path->pathtype == T_IndexOnlyScan)
{
/* For index-only scan, the preferred tlist is the index's */
tlist = copyObject(((IndexPath *) best_path)->indexinfo->indextlist);
}
else
{
tlist = build_physical_tlist(root, rel);
/* if fail because of dropped cols, use regular method */
if (tlist == NIL)
tlist = build_path_tlist(root, best_path);
}
}
else
{
tlist = build_path_tlist(root, best_path);
}
/*
* Extract the relevant restriction clauses from the parent relation. The
* executor must apply all these restrictions during the scan, except for
* pseudoconstants which we'll take care of below.
*/
scan_clauses = rel->baserestrictinfo;
/*
* If this is a parameterized scan, we also need to enforce all the join
* clauses available from the outer relation(s).
*
* For paranoia's sake, don't modify the stored baserestrictinfo list.
*/
if (best_path->param_info)
scan_clauses = list_concat(list_copy(scan_clauses),
best_path->param_info->ppi_clauses);
switch (best_path->pathtype)
{
case T_SeqScan:
plan = (Plan *) create_seqscan_plan(root,
best_path,
tlist,
scan_clauses);
break;
case T_SampleScan:
plan = (Plan *) create_samplescan_plan(root,
best_path,
tlist,
scan_clauses);
break;
case T_IndexScan:
plan = (Plan *) create_indexscan_plan(root,
(IndexPath *) best_path,
tlist,
scan_clauses,
false);
break;
case T_IndexOnlyScan:
plan = (Plan *) create_indexscan_plan(root,
(IndexPath *) best_path,
tlist,
scan_clauses,
true);
break;
case T_BitmapHeapScan:
plan = (Plan *) create_bitmap_scan_plan(root,
(BitmapHeapPath *) best_path,
tlist,
scan_clauses);
break;
case T_TidScan:
plan = (Plan *) create_tidscan_plan(root,
(TidPath *) best_path,
tlist,
scan_clauses);
break;
case T_SubqueryScan:
plan = (Plan *) create_subqueryscan_plan(root,
best_path,
tlist,
scan_clauses);
break;
case T_FunctionScan:
plan = (Plan *) create_functionscan_plan(root,
best_path,
tlist,
scan_clauses);
break;
case T_ValuesScan:
plan = (Plan *) create_valuesscan_plan(root,
best_path,
tlist,
scan_clauses);
break;
case T_CteScan:
plan = (Plan *) create_ctescan_plan(root,
best_path,
tlist,
scan_clauses);
break;
case T_WorkTableScan:
plan = (Plan *) create_worktablescan_plan(root,
best_path,
tlist,
scan_clauses);
break;
case T_ForeignScan:
plan = (Plan *) create_foreignscan_plan(root,
(ForeignPath *) best_path,
tlist,
scan_clauses);
break;
case T_CustomScan:
plan = (Plan *) create_customscan_plan(root,
(CustomPath *) best_path,
tlist,
scan_clauses);
break;
default:
elog(ERROR, "unrecognized node type: %d",
(int) best_path->pathtype);
plan = NULL; /* keep compiler quiet */
break;
}
/*
* If there are any pseudoconstant clauses attached to this node, insert a
* gating Result node that evaluates the pseudoconstants as one-time
* quals.
*/
if (root->hasPseudoConstantQuals)
plan = create_gating_plan(root, plan, scan_clauses);
return plan;
}
/*
* Build a target list (ie, a list of TargetEntry) for the Path's output.
*/
static List *
build_path_tlist(PlannerInfo *root, Path *path)
{
RelOptInfo *rel = path->parent;
List *tlist = NIL;
int resno = 1;
ListCell *v;
foreach(v, rel->reltargetlist)
{
/* Do we really need to copy here? Not sure */
Node *node = (Node *) copyObject(lfirst(v));
/*
* If it's a parameterized path, there might be lateral references in
* the tlist, which need to be replaced with Params. There's no need
* to remake the TargetEntry nodes, so apply this to each list item
* separately.
*/
if (path->param_info)
node = replace_nestloop_params(root, node);
tlist = lappend(tlist, makeTargetEntry((Expr *) node,
resno,
NULL,
false));
resno++;
}
return tlist;
}
/*
* use_physical_tlist
* Decide whether to use a tlist matching relation structure,
* rather than only those Vars actually referenced.
*/
static bool
use_physical_tlist(PlannerInfo *root, RelOptInfo *rel)
{
int i;
ListCell *lc;
/*
* We can do this for real relation scans, subquery scans, function scans,
* values scans, and CTE scans (but not for, eg, joins).
*/
if (rel->rtekind != RTE_RELATION &&
rel->rtekind != RTE_SUBQUERY &&
rel->rtekind != RTE_FUNCTION &&
rel->rtekind != RTE_VALUES &&
rel->rtekind != RTE_CTE)
return false;
/*
* Can't do it with inheritance cases either (mainly because Append
* doesn't project).
*/
if (rel->reloptkind != RELOPT_BASEREL)
return false;
/*
* Can't do it if any system columns or whole-row Vars are requested.
* (This could possibly be fixed but would take some fragile assumptions
* in setrefs.c, I think.)
*/
for (i = rel->min_attr; i <= 0; i++)
{
if (!bms_is_empty(rel->attr_needed[i - rel->min_attr]))
return false;
}
/*
* Can't do it if the rel is required to emit any placeholder expressions,
* either.
*/
foreach(lc, root->placeholder_list)
{
PlaceHolderInfo *phinfo = (PlaceHolderInfo *) lfirst(lc);
if (bms_nonempty_difference(phinfo->ph_needed, rel->relids) &&
bms_is_subset(phinfo->ph_eval_at, rel->relids))
return false;
}
return true;
}
/*
* disuse_physical_tlist
* Switch a plan node back to emitting only Vars actually referenced.
*
* If the plan node immediately above a scan would prefer to get only
* needed Vars and not a physical tlist, it must call this routine to
* undo the decision made by use_physical_tlist(). Currently, Hash, Sort,
* and Material nodes want this, so they don't have to store useless columns.
*/
static void
disuse_physical_tlist(PlannerInfo *root, Plan *plan, Path *path)
{
/* Only need to undo it for path types handled by create_scan_plan() */
switch (path->pathtype)
{
case T_SeqScan:
case T_SampleScan:
case T_IndexScan:
case T_IndexOnlyScan:
case T_BitmapHeapScan:
case T_TidScan:
case T_SubqueryScan:
case T_FunctionScan:
case T_ValuesScan:
case T_CteScan:
case T_WorkTableScan:
case T_ForeignScan:
case T_CustomScan:
plan->targetlist = build_path_tlist(root, path);
break;
default:
break;
}
}
/*
* create_gating_plan
* Deal with pseudoconstant qual clauses
*
* If the node's quals list includes any pseudoconstant quals, put them
* into a gating Result node atop the already-built plan. Otherwise,
* return the plan as-is.
*
* Note that we don't change cost or size estimates when doing gating.
* The costs of qual eval were already folded into the plan's startup cost.
* Leaving the size alone amounts to assuming that the gating qual will
* succeed, which is the conservative estimate for planning upper queries.
* We certainly don't want to assume the output size is zero (unless the
* gating qual is actually constant FALSE, and that case is dealt with in
* clausesel.c). Interpolating between the two cases is silly, because
* it doesn't reflect what will really happen at runtime, and besides which
* in most cases we have only a very bad idea of the probability of the gating
* qual being true.
*/
static Plan *
create_gating_plan(PlannerInfo *root, Plan *plan, List *quals)
{
List *pseudoconstants;
/* Sort into desirable execution order while still in RestrictInfo form */
quals = order_qual_clauses(root, quals);
/* Pull out any pseudoconstant quals from the RestrictInfo list */
pseudoconstants = extract_actual_clauses(quals, true);
if (!pseudoconstants)
return plan;
return (Plan *) make_result(root,
plan->targetlist,
(Node *) pseudoconstants,
plan);
}
/*
* create_join_plan
* Create a join plan for 'best_path' and (recursively) plans for its
* inner and outer paths.
*/
static Plan *
create_join_plan(PlannerInfo *root, JoinPath *best_path)
{
Plan *outer_plan;
Plan *inner_plan;
Plan *plan;
Relids saveOuterRels = root->curOuterRels;
outer_plan = create_plan_recurse(root, best_path->outerjoinpath);
/* For a nestloop, include outer relids in curOuterRels for inner side */
if (best_path->path.pathtype == T_NestLoop)
root->curOuterRels = bms_union(root->curOuterRels,
best_path->outerjoinpath->parent->relids);
inner_plan = create_plan_recurse(root, best_path->innerjoinpath);
switch (best_path->path.pathtype)
{
case T_MergeJoin:
plan = (Plan *) create_mergejoin_plan(root,
(MergePath *) best_path,
outer_plan,
inner_plan);
break;
case T_HashJoin:
plan = (Plan *) create_hashjoin_plan(root,
(HashPath *) best_path,
outer_plan,
inner_plan);
break;
case T_NestLoop:
/* Restore curOuterRels */
bms_free(root->curOuterRels);
root->curOuterRels = saveOuterRels;
plan = (Plan *) create_nestloop_plan(root,
(NestPath *) best_path,
outer_plan,
inner_plan);
break;
default:
elog(ERROR, "unrecognized node type: %d",
(int) best_path->path.pathtype);
plan = NULL; /* keep compiler quiet */
break;
}
/*
* If there are any pseudoconstant clauses attached to this node, insert a
* gating Result node that evaluates the pseudoconstants as one-time
* quals.
*/
if (root->hasPseudoConstantQuals)
plan = create_gating_plan(root, plan, best_path->joinrestrictinfo);
#ifdef NOT_USED
/*
* * Expensive function pullups may have pulled local predicates * into
* this path node. Put them in the qpqual of the plan node. * JMH,
* 6/15/92
*/
if (get_loc_restrictinfo(best_path) != NIL)
set_qpqual((Plan) plan,
list_concat(get_qpqual((Plan) plan),
get_actual_clauses(get_loc_restrictinfo(best_path))));
#endif
return plan;
}
/*
* create_append_plan
* Create an Append plan for 'best_path' and (recursively) plans
* for its subpaths.
*
* Returns a Plan node.
*/
static Plan *
create_append_plan(PlannerInfo *root, AppendPath *best_path)
{
Append *plan;
List *tlist = build_path_tlist(root, &best_path->path);
List *subplans = NIL;
ListCell *subpaths;
/*
* The subpaths list could be empty, if every child was proven empty by
* constraint exclusion. In that case generate a dummy plan that returns
* no rows.
*
* Note that an AppendPath with no members is also generated in certain
* cases where there was no appending construct at all, but we know the
* relation is empty (see set_dummy_rel_pathlist).
*/
if (best_path->subpaths == NIL)
{
/* Generate a Result plan with constant-FALSE gating qual */
return (Plan *) make_result(root,
tlist,
(Node *) list_make1(makeBoolConst(false,
false)),
NULL);
}
/* Build the plan for each child */
foreach(subpaths, best_path->subpaths)
{
Path *subpath = (Path *) lfirst(subpaths);
subplans = lappend(subplans, create_plan_recurse(root, subpath));
}
/*
* XXX ideally, if there's just one child, we'd not bother to generate an
* Append node but just return the single child. At the moment this does
* not work because the varno of the child scan plan won't match the
* parent-rel Vars it'll be asked to emit.
*/
plan = make_append(subplans, tlist);
return (Plan *) plan;
}
/*
* create_merge_append_plan
* Create a MergeAppend plan for 'best_path' and (recursively) plans
* for its subpaths.
*
* Returns a Plan node.
*/
static Plan *
create_merge_append_plan(PlannerInfo *root, MergeAppendPath *best_path)
{
MergeAppend *node = makeNode(MergeAppend);
Plan *plan = &node->plan;
List *tlist = build_path_tlist(root, &best_path->path);
List *pathkeys = best_path->path.pathkeys;
List *subplans = NIL;
ListCell *subpaths;
/*
* We don't have the actual creation of the MergeAppend node split out
* into a separate make_xxx function. This is because we want to run
* prepare_sort_from_pathkeys on it before we do so on the individual
* child plans, to make cross-checking the sort info easier.
*/
copy_path_costsize(plan, (Path *) best_path);
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = NULL;
plan->righttree = NULL;
/* Compute sort column info, and adjust MergeAppend's tlist as needed */
(void) prepare_sort_from_pathkeys(root, plan, pathkeys,
best_path->path.parent->relids,
NULL,
true,
&node->numCols,
&node->sortColIdx,
&node->sortOperators,
&node->collations,
&node->nullsFirst);
/*
* Now prepare the child plans. We must apply prepare_sort_from_pathkeys
* even to subplans that don't need an explicit sort, to make sure they
* are returning the same sort key columns the MergeAppend expects.
*/
foreach(subpaths, best_path->subpaths)
{
Path *subpath = (Path *) lfirst(subpaths);
Plan *subplan;
int numsortkeys;
AttrNumber *sortColIdx;
Oid *sortOperators;
Oid *collations;
bool *nullsFirst;
/* Build the child plan */
subplan = create_plan_recurse(root, subpath);
/* Compute sort column info, and adjust subplan's tlist as needed */
subplan = prepare_sort_from_pathkeys(root, subplan, pathkeys,
subpath->parent->relids,
node->sortColIdx,
false,
&numsortkeys,
&sortColIdx,
&sortOperators,
&collations,
&nullsFirst);
/*
* Check that we got the same sort key information. We just Assert
* that the sortops match, since those depend only on the pathkeys;
* but it seems like a good idea to check the sort column numbers
* explicitly, to ensure the tlists really do match up.
*/
Assert(numsortkeys == node->numCols);
if (memcmp(sortColIdx, node->sortColIdx,
numsortkeys * sizeof(AttrNumber)) != 0)
elog(ERROR, "MergeAppend child's targetlist doesn't match MergeAppend");
Assert(memcmp(sortOperators, node->sortOperators,
numsortkeys * sizeof(Oid)) == 0);
Assert(memcmp(collations, node->collations,
numsortkeys * sizeof(Oid)) == 0);
Assert(memcmp(nullsFirst, node->nullsFirst,
numsortkeys * sizeof(bool)) == 0);
/* Now, insert a Sort node if subplan isn't sufficiently ordered */
if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
subplan = (Plan *) make_sort(root, subplan, numsortkeys,
sortColIdx, sortOperators,
collations, nullsFirst,
best_path->limit_tuples);
subplans = lappend(subplans, subplan);
}
node->mergeplans = subplans;
return (Plan *) node;
}
/*
* create_result_plan
* Create a Result plan for 'best_path'.
* This is only used for the case of a query with an empty jointree.
*
* Returns a Plan node.
*/
static Result *
create_result_plan(PlannerInfo *root, ResultPath *best_path)
{
List *tlist;
List *quals;
/* The tlist will be installed later, since we have no RelOptInfo */
Assert(best_path->path.parent == NULL);
tlist = NIL;
/* best_path->quals is just bare clauses */
quals = order_qual_clauses(root, best_path->quals);
return make_result(root, tlist, (Node *) quals, NULL);
}
/*
* create_material_plan
* Create a Material plan for 'best_path' and (recursively) plans
* for its subpaths.
*
* Returns a Plan node.
*/
static Material *
create_material_plan(PlannerInfo *root, MaterialPath *best_path)
{
Material *plan;
Plan *subplan;
subplan = create_plan_recurse(root, best_path->subpath);
/* We don't want any excess columns in the materialized tuples */
disuse_physical_tlist(root, subplan, best_path->subpath);
plan = make_material(subplan);
copy_path_costsize(&plan->plan, (Path *) best_path);
return plan;
}
/*
* create_unique_plan
* Create a Unique plan for 'best_path' and (recursively) plans
* for its subpaths.
*
* Returns a Plan node.
*/
static Plan *
create_unique_plan(PlannerInfo *root, UniquePath *best_path)
{
Plan *plan;
Plan *subplan;
List *in_operators;
List *uniq_exprs;
List *newtlist;
int nextresno;
bool newitems;
int numGroupCols;
AttrNumber *groupColIdx;
int groupColPos;
ListCell *l;
subplan = create_plan_recurse(root, best_path->subpath);
/* Done if we don't need to do any actual unique-ifying */
if (best_path->umethod == UNIQUE_PATH_NOOP)
return subplan;
/*
* As constructed, the subplan has a "flat" tlist containing just the Vars
* needed here and at upper levels. The values we are supposed to
* unique-ify may be expressions in these variables. We have to add any
* such expressions to the subplan's tlist.
*
* The subplan may have a "physical" tlist if it is a simple scan plan. If
* we're going to sort, this should be reduced to the regular tlist, so
* that we don't sort more data than we need to. For hashing, the tlist
* should be left as-is if we don't need to add any expressions; but if we
* do have to add expressions, then a projection step will be needed at
* runtime anyway, so we may as well remove unneeded items. Therefore
* newtlist starts from build_path_tlist() not just a copy of the
* subplan's tlist; and we don't install it into the subplan unless we are
* sorting or stuff has to be added.
*/
in_operators = best_path->in_operators;
uniq_exprs = best_path->uniq_exprs;
/* initialize modified subplan tlist as just the "required" vars */
newtlist = build_path_tlist(root, &best_path->path);
nextresno = list_length(newtlist) + 1;
newitems = false;
foreach(l, uniq_exprs)
{
Node *uniqexpr = lfirst(l);
TargetEntry *tle;
tle = tlist_member(uniqexpr, newtlist);
if (!tle)
{
tle = makeTargetEntry((Expr *) uniqexpr,
nextresno,
NULL,
false);
newtlist = lappend(newtlist, tle);
nextresno++;
newitems = true;
}
}
if (newitems || best_path->umethod == UNIQUE_PATH_SORT)
{
/*
* If the top plan node can't do projections and its existing target
* list isn't already what we need, we need to add a Result node to
* help it along.
*/
if (!is_projection_capable_plan(subplan) &&
!tlist_same_exprs(newtlist, subplan->targetlist))
subplan = (Plan *) make_result(root, newtlist, NULL, subplan);
else
subplan->targetlist = newtlist;
}
/*
* Build control information showing which subplan output columns are to
* be examined by the grouping step. Unfortunately we can't merge this
* with the previous loop, since we didn't then know which version of the
* subplan tlist we'd end up using.
*/
newtlist = subplan->targetlist;
numGroupCols = list_length(uniq_exprs);
groupColIdx = (AttrNumber *) palloc(numGroupCols * sizeof(AttrNumber));
groupColPos = 0;
foreach(l, uniq_exprs)
{
Node *uniqexpr = lfirst(l);
TargetEntry *tle;
tle = tlist_member(uniqexpr, newtlist);
if (!tle) /* shouldn't happen */
elog(ERROR, "failed to find unique expression in subplan tlist");
groupColIdx[groupColPos++] = tle->resno;
}
if (best_path->umethod == UNIQUE_PATH_HASH)
{
long numGroups;
Oid *groupOperators;
numGroups = (long) Min(best_path->path.rows, (double) LONG_MAX);
/*
* Get the hashable equality operators for the Agg node to use.
* Normally these are the same as the IN clause operators, but if
* those are cross-type operators then the equality operators are the
* ones for the IN clause operators' RHS datatype.
*/
groupOperators = (Oid *) palloc(numGroupCols * sizeof(Oid));
groupColPos = 0;
foreach(l, in_operators)
{
Oid in_oper = lfirst_oid(l);
Oid eq_oper;
if (!get_compatible_hash_operators(in_oper, NULL, &eq_oper))
elog(ERROR, "could not find compatible hash operator for operator %u",
in_oper);
groupOperators[groupColPos++] = eq_oper;
}
/*
* Since the Agg node is going to project anyway, we can give it the
* minimum output tlist, without any stuff we might have added to the
* subplan tlist.
*/
plan = (Plan *) make_agg(root,
build_path_tlist(root, &best_path->path),
NIL,
AGG_HASHED,
NULL,
numGroupCols,
groupColIdx,
groupOperators,
NIL,
numGroups,
subplan);
}
else
{
List *sortList = NIL;
/* Create an ORDER BY list to sort the input compatibly */
groupColPos = 0;
foreach(l, in_operators)
{
Oid in_oper = lfirst_oid(l);
Oid sortop;
Oid eqop;
TargetEntry *tle;
SortGroupClause *sortcl;
sortop = get_ordering_op_for_equality_op(in_oper, false);
if (!OidIsValid(sortop)) /* shouldn't happen */
elog(ERROR, "could not find ordering operator for equality operator %u",
in_oper);
/*
* The Unique node will need equality operators. Normally these
* are the same as the IN clause operators, but if those are
* cross-type operators then the equality operators are the ones
* for the IN clause operators' RHS datatype.
*/
eqop = get_equality_op_for_ordering_op(sortop, NULL);
if (!OidIsValid(eqop)) /* shouldn't happen */
elog(ERROR, "could not find equality operator for ordering operator %u",
sortop);
tle = get_tle_by_resno(subplan->targetlist,
groupColIdx[groupColPos]);
Assert(tle != NULL);
sortcl = makeNode(SortGroupClause);
sortcl->tleSortGroupRef = assignSortGroupRef(tle,
subplan->targetlist);
sortcl->eqop = eqop;
sortcl->sortop = sortop;
sortcl->nulls_first = false;
sortcl->hashable = false; /* no need to make this accurate */
sortList = lappend(sortList, sortcl);
groupColPos++;
}
plan = (Plan *) make_sort_from_sortclauses(root, sortList, subplan);
plan = (Plan *) make_unique(plan, sortList);
}
/* Adjust output size estimate (other fields should be OK already) */
plan->plan_rows = best_path->path.rows;
return plan;
}
/*****************************************************************************
*
* BASE-RELATION SCAN METHODS
*
*****************************************************************************/
/*
* create_seqscan_plan
* Returns a seqscan plan for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static SeqScan *
create_seqscan_plan(PlannerInfo *root, Path *best_path,
List *tlist, List *scan_clauses)
{
SeqScan *scan_plan;
Index scan_relid = best_path->parent->relid;
/* it should be a base rel... */
Assert(scan_relid > 0);
Assert(best_path->parent->rtekind == RTE_RELATION);
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
scan_clauses = extract_actual_clauses(scan_clauses, false);
/* Replace any outer-relation variables with nestloop params */
if (best_path->param_info)
{
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
}
scan_plan = make_seqscan(tlist,
scan_clauses,
scan_relid);
copy_path_costsize(&scan_plan->plan, best_path);
return scan_plan;
}
/*
* create_samplescan_plan
* Returns a samplescan plan for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static SampleScan *
create_samplescan_plan(PlannerInfo *root, Path *best_path,
List *tlist, List *scan_clauses)
{
SampleScan *scan_plan;
Index scan_relid = best_path->parent->relid;
RangeTblEntry *rte;
TableSampleClause *tsc;
/* it should be a base rel with a tablesample clause... */
Assert(scan_relid > 0);
rte = planner_rt_fetch(scan_relid, root);
Assert(rte->rtekind == RTE_RELATION);
tsc = rte->tablesample;
Assert(tsc != NULL);
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
scan_clauses = extract_actual_clauses(scan_clauses, false);
/* Replace any outer-relation variables with nestloop params */
if (best_path->param_info)
{
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
tsc = (TableSampleClause *)
replace_nestloop_params(root, (Node *) tsc);
}
scan_plan = make_samplescan(tlist,
scan_clauses,
scan_relid,
tsc);
copy_path_costsize(&scan_plan->scan.plan, best_path);
return scan_plan;
}
/*
* create_indexscan_plan
* Returns an indexscan plan for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*
* We use this for both plain IndexScans and IndexOnlyScans, because the
* qual preprocessing work is the same for both. Note that the caller tells
* us which to build --- we don't look at best_path->path.pathtype, because
* create_bitmap_subplan needs to be able to override the prior decision.
*/
static Scan *
create_indexscan_plan(PlannerInfo *root,
IndexPath *best_path,
List *tlist,
List *scan_clauses,
bool indexonly)
{
Scan *scan_plan;
List *indexquals = best_path->indexquals;
List *indexorderbys = best_path->indexorderbys;
Index baserelid = best_path->path.parent->relid;
Oid indexoid = best_path->indexinfo->indexoid;
List *qpqual;
List *stripped_indexquals;
List *fixed_indexquals;
List *fixed_indexorderbys;
List *indexorderbyops = NIL;
ListCell *l;
/* it should be a base rel... */
Assert(baserelid > 0);
Assert(best_path->path.parent->rtekind == RTE_RELATION);
/*
* Build "stripped" indexquals structure (no RestrictInfos) to pass to
* executor as indexqualorig
*/
stripped_indexquals = get_actual_clauses(indexquals);
/*
* The executor needs a copy with the indexkey on the left of each clause
* and with index Vars substituted for table ones.
*/
fixed_indexquals = fix_indexqual_references(root, best_path);
/*
* Likewise fix up index attr references in the ORDER BY expressions.
*/
fixed_indexorderbys = fix_indexorderby_references(root, best_path);
/*
* The qpqual list must contain all restrictions not automatically handled
* by the index, other than pseudoconstant clauses which will be handled
* by a separate gating plan node. All the predicates in the indexquals
* will be checked (either by the index itself, or by nodeIndexscan.c),
* but if there are any "special" operators involved then they must be
* included in qpqual. The upshot is that qpqual must contain
* scan_clauses minus whatever appears in indexquals.
*
* In normal cases simple pointer equality checks will be enough to spot
* duplicate RestrictInfos, so we try that first.
*
* Another common case is that a scan_clauses entry is generated from the
* same EquivalenceClass as some indexqual, and is therefore redundant
* with it, though not equal. (This happens when indxpath.c prefers a
* different derived equality than what generate_join_implied_equalities
* picked for a parameterized scan's ppi_clauses.)
*
* In some situations (particularly with OR'd index conditions) we may
* have scan_clauses that are not equal to, but are logically implied by,
* the index quals; so we also try a predicate_implied_by() check to see
* if we can discard quals that way. (predicate_implied_by assumes its
* first input contains only immutable functions, so we have to check
* that.)
*
* We can also discard quals that are implied by a partial index's
* predicate, but only in a plain SELECT; when scanning a target relation
* of UPDATE/DELETE/SELECT FOR UPDATE, we must leave such quals in the
* plan so that they'll be properly rechecked by EvalPlanQual testing.
*
* Note: if you change this bit of code you should also look at
* extract_nonindex_conditions() in costsize.c.
*/
qpqual = NIL;
foreach(l, scan_clauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
Assert(IsA(rinfo, RestrictInfo));
if (rinfo->pseudoconstant)
continue; /* we may drop pseudoconstants here */
if (list_member_ptr(indexquals, rinfo))
continue; /* simple duplicate */
if (is_redundant_derived_clause(rinfo, indexquals))
continue; /* derived from same EquivalenceClass */
if (!contain_mutable_functions((Node *) rinfo->clause))
{
List *clausel = list_make1(rinfo->clause);
if (predicate_implied_by(clausel, indexquals))
continue; /* provably implied by indexquals */
if (best_path->indexinfo->indpred)
{
if (baserelid != root->parse->resultRelation &&
get_plan_rowmark(root->rowMarks, baserelid) == NULL)
if (predicate_implied_by(clausel,
best_path->indexinfo->indpred))
continue; /* implied by index predicate */
}
}
qpqual = lappend(qpqual, rinfo);
}
/* Sort clauses into best execution order */
qpqual = order_qual_clauses(root, qpqual);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
qpqual = extract_actual_clauses(qpqual, false);
/*
* We have to replace any outer-relation variables with nestloop params in
* the indexqualorig, qpqual, and indexorderbyorig expressions. A bit
* annoying to have to do this separately from the processing in
* fix_indexqual_references --- rethink this when generalizing the inner
* indexscan support. But note we can't really do this earlier because
* it'd break the comparisons to predicates above ... (or would it? Those
* wouldn't have outer refs)
*/
if (best_path->path.param_info)
{
stripped_indexquals = (List *)
replace_nestloop_params(root, (Node *) stripped_indexquals);
qpqual = (List *)
replace_nestloop_params(root, (Node *) qpqual);
indexorderbys = (List *)
replace_nestloop_params(root, (Node *) indexorderbys);
}
/*
* If there are ORDER BY expressions, look up the sort operators for their
* result datatypes.
*/
if (indexorderbys)
{
ListCell *pathkeyCell,
*exprCell;
/*
* PathKey contains OID of the btree opfamily we're sorting by, but
* that's not quite enough because we need the expression's datatype
* to look up the sort operator in the operator family.
*/
Assert(list_length(best_path->path.pathkeys) == list_length(indexorderbys));
forboth(pathkeyCell, best_path->path.pathkeys, exprCell, indexorderbys)
{
PathKey *pathkey = (PathKey *) lfirst(pathkeyCell);
Node *expr = (Node *) lfirst(exprCell);
Oid exprtype = exprType(expr);
Oid sortop;
/* Get sort operator from opfamily */
sortop = get_opfamily_member(pathkey->pk_opfamily,
exprtype,
exprtype,
pathkey->pk_strategy);
if (!OidIsValid(sortop))
elog(ERROR, "failed to find sort operator for ORDER BY expression");
indexorderbyops = lappend_oid(indexorderbyops, sortop);
}
}
/* Finally ready to build the plan node */
if (indexonly)
scan_plan = (Scan *) make_indexonlyscan(tlist,
qpqual,
baserelid,
indexoid,
fixed_indexquals,
fixed_indexorderbys,
best_path->indexinfo->indextlist,
best_path->indexscandir);
else
scan_plan = (Scan *) make_indexscan(tlist,
qpqual,
baserelid,
indexoid,
fixed_indexquals,
stripped_indexquals,
fixed_indexorderbys,
indexorderbys,
indexorderbyops,
best_path->indexscandir);
copy_path_costsize(&scan_plan->plan, &best_path->path);
return scan_plan;
}
/*
* create_bitmap_scan_plan
* Returns a bitmap scan plan for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static BitmapHeapScan *
create_bitmap_scan_plan(PlannerInfo *root,
BitmapHeapPath *best_path,
List *tlist,
List *scan_clauses)
{
Index baserelid = best_path->path.parent->relid;
Plan *bitmapqualplan;
List *bitmapqualorig;
List *indexquals;
List *indexECs;
List *qpqual;
ListCell *l;
BitmapHeapScan *scan_plan;
/* it should be a base rel... */
Assert(baserelid > 0);
Assert(best_path->path.parent->rtekind == RTE_RELATION);
/* Process the bitmapqual tree into a Plan tree and qual lists */
bitmapqualplan = create_bitmap_subplan(root, best_path->bitmapqual,
&bitmapqualorig, &indexquals,
&indexECs);
/*
* The qpqual list must contain all restrictions not automatically handled
* by the index, other than pseudoconstant clauses which will be handled
* by a separate gating plan node. All the predicates in the indexquals
* will be checked (either by the index itself, or by
* nodeBitmapHeapscan.c), but if there are any "special" operators
* involved then they must be added to qpqual. The upshot is that qpqual
* must contain scan_clauses minus whatever appears in indexquals.
*
* This loop is similar to the comparable code in create_indexscan_plan(),
* but with some differences because it has to compare the scan clauses to
* stripped (no RestrictInfos) indexquals. See comments there for more
* info.
*
* In normal cases simple equal() checks will be enough to spot duplicate
* clauses, so we try that first. We next see if the scan clause is
* redundant with any top-level indexqual by virtue of being generated
* from the same EC. After that, try predicate_implied_by().
*
* Unlike create_indexscan_plan(), we need take no special thought here
* for partial index predicates; this is because the predicate conditions
* are already listed in bitmapqualorig and indexquals. Bitmap scans have
* to do it that way because predicate conditions need to be rechecked if
* the scan becomes lossy, so they have to be included in bitmapqualorig.
*/
qpqual = NIL;
foreach(l, scan_clauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
Node *clause = (Node *) rinfo->clause;
Assert(IsA(rinfo, RestrictInfo));
if (rinfo->pseudoconstant)
continue; /* we may drop pseudoconstants here */
if (list_member(indexquals, clause))
continue; /* simple duplicate */
if (rinfo->parent_ec && list_member_ptr(indexECs, rinfo->parent_ec))
continue; /* derived from same EquivalenceClass */
if (!contain_mutable_functions(clause))
{
List *clausel = list_make1(clause);
if (predicate_implied_by(clausel, indexquals))
continue; /* provably implied by indexquals */
}
qpqual = lappend(qpqual, rinfo);
}
/* Sort clauses into best execution order */
qpqual = order_qual_clauses(root, qpqual);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
qpqual = extract_actual_clauses(qpqual, false);
/*
* When dealing with special operators, we will at this point have
* duplicate clauses in qpqual and bitmapqualorig. We may as well drop
* 'em from bitmapqualorig, since there's no point in making the tests
* twice.
*/
bitmapqualorig = list_difference_ptr(bitmapqualorig, qpqual);
/*
* We have to replace any outer-relation variables with nestloop params in
* the qpqual and bitmapqualorig expressions. (This was already done for
* expressions attached to plan nodes in the bitmapqualplan tree.)
*/
if (best_path->path.param_info)
{
qpqual = (List *)
replace_nestloop_params(root, (Node *) qpqual);
bitmapqualorig = (List *)
replace_nestloop_params(root, (Node *) bitmapqualorig);
}
/* Finally ready to build the plan node */
scan_plan = make_bitmap_heapscan(tlist,
qpqual,
bitmapqualplan,
bitmapqualorig,
baserelid);
copy_path_costsize(&scan_plan->scan.plan, &best_path->path);
return scan_plan;
}
/*
* Given a bitmapqual tree, generate the Plan tree that implements it
*
* As byproducts, we also return in *qual and *indexqual the qual lists
* (in implicit-AND form, without RestrictInfos) describing the original index
* conditions and the generated indexqual conditions. (These are the same in
* simple cases, but when special index operators are involved, the former
* list includes the special conditions while the latter includes the actual
* indexable conditions derived from them.) Both lists include partial-index
* predicates, because we have to recheck predicates as well as index
* conditions if the bitmap scan becomes lossy.
*
* In addition, we return a list of EquivalenceClass pointers for all the
* top-level indexquals that were possibly-redundantly derived from ECs.
* This allows removal of scan_clauses that are redundant with such quals.
* (We do not attempt to detect such redundancies for quals that are within
* OR subtrees. This could be done in a less hacky way if we returned the
* indexquals in RestrictInfo form, but that would be slower and still pretty
* messy, since we'd have to build new RestrictInfos in many cases.)
*/
static Plan *
create_bitmap_subplan(PlannerInfo *root, Path *bitmapqual,
List **qual, List **indexqual, List **indexECs)
{
Plan *plan;
if (IsA(bitmapqual, BitmapAndPath))
{
BitmapAndPath *apath = (BitmapAndPath *) bitmapqual;
List *subplans = NIL;
List *subquals = NIL;
List *subindexquals = NIL;
List *subindexECs = NIL;
ListCell *l;
/*
* There may well be redundant quals among the subplans, since a
* top-level WHERE qual might have gotten used to form several
* different index quals. We don't try exceedingly hard to eliminate
* redundancies, but we do eliminate obvious duplicates by using
* list_concat_unique.
*/
foreach(l, apath->bitmapquals)
{
Plan *subplan;
List *subqual;
List *subindexqual;
List *subindexEC;
subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
&subqual, &subindexqual,
&subindexEC);
subplans = lappend(subplans, subplan);
subquals = list_concat_unique(subquals, subqual);
subindexquals = list_concat_unique(subindexquals, subindexqual);
/* Duplicates in indexECs aren't worth getting rid of */
subindexECs = list_concat(subindexECs, subindexEC);
}
plan = (Plan *) make_bitmap_and(subplans);
plan->startup_cost = apath->path.startup_cost;
plan->total_cost = apath->path.total_cost;
plan->plan_rows =
clamp_row_est(apath->bitmapselectivity * apath->path.parent->tuples);
plan->plan_width = 0; /* meaningless */
*qual = subquals;
*indexqual = subindexquals;
*indexECs = subindexECs;
}
else if (IsA(bitmapqual, BitmapOrPath))
{
BitmapOrPath *opath = (BitmapOrPath *) bitmapqual;
List *subplans = NIL;
List *subquals = NIL;
List *subindexquals = NIL;
bool const_true_subqual = false;
bool const_true_subindexqual = false;
ListCell *l;
/*
* Here, we only detect qual-free subplans. A qual-free subplan would
* cause us to generate "... OR true ..." which we may as well reduce
* to just "true". We do not try to eliminate redundant subclauses
* because (a) it's not as likely as in the AND case, and (b) we might
* well be working with hundreds or even thousands of OR conditions,
* perhaps from a long IN list. The performance of list_append_unique
* would be unacceptable.
*/
foreach(l, opath->bitmapquals)
{
Plan *subplan;
List *subqual;
List *subindexqual;
List *subindexEC;
subplan = create_bitmap_subplan(root, (Path *) lfirst(l),
&subqual, &subindexqual,
&subindexEC);
subplans = lappend(subplans, subplan);
if (subqual == NIL)
const_true_subqual = true;
else if (!const_true_subqual)
subquals = lappend(subquals,
make_ands_explicit(subqual));
if (subindexqual == NIL)
const_true_subindexqual = true;
else if (!const_true_subindexqual)
subindexquals = lappend(subindexquals,
make_ands_explicit(subindexqual));
}
/*
* In the presence of ScalarArrayOpExpr quals, we might have built
* BitmapOrPaths with just one subpath; don't add an OR step.
*/
if (list_length(subplans) == 1)
{
plan = (Plan *) linitial(subplans);
}
else
{
plan = (Plan *) make_bitmap_or(subplans);
plan->startup_cost = opath->path.startup_cost;
plan->total_cost = opath->path.total_cost;
plan->plan_rows =
clamp_row_est(opath->bitmapselectivity * opath->path.parent->tuples);
plan->plan_width = 0; /* meaningless */
}
/*
* If there were constant-TRUE subquals, the OR reduces to constant
* TRUE. Also, avoid generating one-element ORs, which could happen
* due to redundancy elimination or ScalarArrayOpExpr quals.
*/
if (const_true_subqual)
*qual = NIL;
else if (list_length(subquals) <= 1)
*qual = subquals;
else
*qual = list_make1(make_orclause(subquals));
if (const_true_subindexqual)
*indexqual = NIL;
else if (list_length(subindexquals) <= 1)
*indexqual = subindexquals;
else
*indexqual = list_make1(make_orclause(subindexquals));
*indexECs = NIL;
}
else if (IsA(bitmapqual, IndexPath))
{
IndexPath *ipath = (IndexPath *) bitmapqual;
IndexScan *iscan;
List *subindexECs;
ListCell *l;
/* Use the regular indexscan plan build machinery... */
iscan = (IndexScan *) create_indexscan_plan(root, ipath,
NIL, NIL, false);
Assert(IsA(iscan, IndexScan));
/* then convert to a bitmap indexscan */
plan = (Plan *) make_bitmap_indexscan(iscan->scan.scanrelid,
iscan->indexid,
iscan->indexqual,
iscan->indexqualorig);
plan->startup_cost = 0.0;
plan->total_cost = ipath->indextotalcost;
plan->plan_rows =
clamp_row_est(ipath->indexselectivity * ipath->path.parent->tuples);
plan->plan_width = 0; /* meaningless */
*qual = get_actual_clauses(ipath->indexclauses);
*indexqual = get_actual_clauses(ipath->indexquals);
foreach(l, ipath->indexinfo->indpred)
{
Expr *pred = (Expr *) lfirst(l);
/*
* We know that the index predicate must have been implied by the
* query condition as a whole, but it may or may not be implied by
* the conditions that got pushed into the bitmapqual. Avoid
* generating redundant conditions.
*/
if (!predicate_implied_by(list_make1(pred), ipath->indexclauses))
{
*qual = lappend(*qual, pred);
*indexqual = lappend(*indexqual, pred);
}
}
subindexECs = NIL;
foreach(l, ipath->indexquals)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(l);
if (rinfo->parent_ec)
subindexECs = lappend(subindexECs, rinfo->parent_ec);
}
*indexECs = subindexECs;
}
else
{
elog(ERROR, "unrecognized node type: %d", nodeTag(bitmapqual));
plan = NULL; /* keep compiler quiet */
}
return plan;
}
/*
* create_tidscan_plan
* Returns a tidscan plan for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static TidScan *
create_tidscan_plan(PlannerInfo *root, TidPath *best_path,
List *tlist, List *scan_clauses)
{
TidScan *scan_plan;
Index scan_relid = best_path->path.parent->relid;
List *tidquals = best_path->tidquals;
List *ortidquals;
/* it should be a base rel... */
Assert(scan_relid > 0);
Assert(best_path->path.parent->rtekind == RTE_RELATION);
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
scan_clauses = extract_actual_clauses(scan_clauses, false);
/* Replace any outer-relation variables with nestloop params */
if (best_path->path.param_info)
{
tidquals = (List *)
replace_nestloop_params(root, (Node *) tidquals);
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
}
/*
* Remove any clauses that are TID quals. This is a bit tricky since the
* tidquals list has implicit OR semantics.
*/
ortidquals = tidquals;
if (list_length(ortidquals) > 1)
ortidquals = list_make1(make_orclause(ortidquals));
scan_clauses = list_difference(scan_clauses, ortidquals);
scan_plan = make_tidscan(tlist,
scan_clauses,
scan_relid,
tidquals);
copy_path_costsize(&scan_plan->scan.plan, &best_path->path);
return scan_plan;
}
/*
* create_subqueryscan_plan
* Returns a subqueryscan plan for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static SubqueryScan *
create_subqueryscan_plan(PlannerInfo *root, Path *best_path,
List *tlist, List *scan_clauses)
{
SubqueryScan *scan_plan;
Index scan_relid = best_path->parent->relid;
/* it should be a subquery base rel... */
Assert(scan_relid > 0);
Assert(best_path->parent->rtekind == RTE_SUBQUERY);
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
scan_clauses = extract_actual_clauses(scan_clauses, false);
/* Replace any outer-relation variables with nestloop params */
if (best_path->param_info)
{
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
process_subquery_nestloop_params(root,
best_path->parent->subplan_params);
}
scan_plan = make_subqueryscan(tlist,
scan_clauses,
scan_relid,
best_path->parent->subplan);
copy_path_costsize(&scan_plan->scan.plan, best_path);
return scan_plan;
}
/*
* create_functionscan_plan
* Returns a functionscan plan for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static FunctionScan *
create_functionscan_plan(PlannerInfo *root, Path *best_path,
List *tlist, List *scan_clauses)
{
FunctionScan *scan_plan;
Index scan_relid = best_path->parent->relid;
RangeTblEntry *rte;
List *functions;
/* it should be a function base rel... */
Assert(scan_relid > 0);
rte = planner_rt_fetch(scan_relid, root);
Assert(rte->rtekind == RTE_FUNCTION);
functions = rte->functions;
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
scan_clauses = extract_actual_clauses(scan_clauses, false);
/* Replace any outer-relation variables with nestloop params */
if (best_path->param_info)
{
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
/* The function expressions could contain nestloop params, too */
functions = (List *) replace_nestloop_params(root, (Node *) functions);
}
scan_plan = make_functionscan(tlist, scan_clauses, scan_relid,
functions, rte->funcordinality);
copy_path_costsize(&scan_plan->scan.plan, best_path);
return scan_plan;
}
/*
* create_valuesscan_plan
* Returns a valuesscan plan for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static ValuesScan *
create_valuesscan_plan(PlannerInfo *root, Path *best_path,
List *tlist, List *scan_clauses)
{
ValuesScan *scan_plan;
Index scan_relid = best_path->parent->relid;
RangeTblEntry *rte;
List *values_lists;
/* it should be a values base rel... */
Assert(scan_relid > 0);
rte = planner_rt_fetch(scan_relid, root);
Assert(rte->rtekind == RTE_VALUES);
values_lists = rte->values_lists;
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
scan_clauses = extract_actual_clauses(scan_clauses, false);
/* Replace any outer-relation variables with nestloop params */
if (best_path->param_info)
{
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
/* The values lists could contain nestloop params, too */
values_lists = (List *)
replace_nestloop_params(root, (Node *) values_lists);
}
scan_plan = make_valuesscan(tlist, scan_clauses, scan_relid,
values_lists);
copy_path_costsize(&scan_plan->scan.plan, best_path);
return scan_plan;
}
/*
* create_ctescan_plan
* Returns a ctescan plan for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static CteScan *
create_ctescan_plan(PlannerInfo *root, Path *best_path,
List *tlist, List *scan_clauses)
{
CteScan *scan_plan;
Index scan_relid = best_path->parent->relid;
RangeTblEntry *rte;
SubPlan *ctesplan = NULL;
int plan_id;
int cte_param_id;
PlannerInfo *cteroot;
Index levelsup;
int ndx;
ListCell *lc;
Assert(scan_relid > 0);
rte = planner_rt_fetch(scan_relid, root);
Assert(rte->rtekind == RTE_CTE);
Assert(!rte->self_reference);
/*
* Find the referenced CTE, and locate the SubPlan previously made for it.
*/
levelsup = rte->ctelevelsup;
cteroot = root;
while (levelsup-- > 0)
{
cteroot = cteroot->parent_root;
if (!cteroot) /* shouldn't happen */
elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
}
/*
* Note: cte_plan_ids can be shorter than cteList, if we are still working
* on planning the CTEs (ie, this is a side-reference from another CTE).
* So we mustn't use forboth here.
*/
ndx = 0;
foreach(lc, cteroot->parse->cteList)
{
CommonTableExpr *cte = (CommonTableExpr *) lfirst(lc);
if (strcmp(cte->ctename, rte->ctename) == 0)
break;
ndx++;
}
if (lc == NULL) /* shouldn't happen */
elog(ERROR, "could not find CTE \"%s\"", rte->ctename);
if (ndx >= list_length(cteroot->cte_plan_ids))
elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
plan_id = list_nth_int(cteroot->cte_plan_ids, ndx);
Assert(plan_id > 0);
foreach(lc, cteroot->init_plans)
{
ctesplan = (SubPlan *) lfirst(lc);
if (ctesplan->plan_id == plan_id)
break;
}
if (lc == NULL) /* shouldn't happen */
elog(ERROR, "could not find plan for CTE \"%s\"", rte->ctename);
/*
* We need the CTE param ID, which is the sole member of the SubPlan's
* setParam list.
*/
cte_param_id = linitial_int(ctesplan->setParam);
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
scan_clauses = extract_actual_clauses(scan_clauses, false);
/* Replace any outer-relation variables with nestloop params */
if (best_path->param_info)
{
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
}
scan_plan = make_ctescan(tlist, scan_clauses, scan_relid,
plan_id, cte_param_id);
copy_path_costsize(&scan_plan->scan.plan, best_path);
return scan_plan;
}
/*
* create_worktablescan_plan
* Returns a worktablescan plan for the base relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static WorkTableScan *
create_worktablescan_plan(PlannerInfo *root, Path *best_path,
List *tlist, List *scan_clauses)
{
WorkTableScan *scan_plan;
Index scan_relid = best_path->parent->relid;
RangeTblEntry *rte;
Index levelsup;
PlannerInfo *cteroot;
Assert(scan_relid > 0);
rte = planner_rt_fetch(scan_relid, root);
Assert(rte->rtekind == RTE_CTE);
Assert(rte->self_reference);
/*
* We need to find the worktable param ID, which is in the plan level
* that's processing the recursive UNION, which is one level *below* where
* the CTE comes from.
*/
levelsup = rte->ctelevelsup;
if (levelsup == 0) /* shouldn't happen */
elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
levelsup--;
cteroot = root;
while (levelsup-- > 0)
{
cteroot = cteroot->parent_root;
if (!cteroot) /* shouldn't happen */
elog(ERROR, "bad levelsup for CTE \"%s\"", rte->ctename);
}
if (cteroot->wt_param_id < 0) /* shouldn't happen */
elog(ERROR, "could not find param ID for CTE \"%s\"", rte->ctename);
/* Sort clauses into best execution order */
scan_clauses = order_qual_clauses(root, scan_clauses);
/* Reduce RestrictInfo list to bare expressions; ignore pseudoconstants */
scan_clauses = extract_actual_clauses(scan_clauses, false);
/* Replace any outer-relation variables with nestloop params */
if (best_path->param_info)
{
scan_clauses = (List *)
replace_nestloop_params(root, (Node *) scan_clauses);
}
scan_plan = make_worktablescan(tlist, scan_clauses, scan_relid,
cteroot->wt_param_id);
copy_path_costsize(&scan_plan->scan.plan, best_path);
return scan_plan;
}
/*
* create_foreignscan_plan
* Returns a foreignscan plan for the relation scanned by 'best_path'
* with restriction clauses 'scan_clauses' and targetlist 'tlist'.
*/
static ForeignScan *
create_foreignscan_plan(PlannerInfo *root, ForeignPath *best_path,
List *tlist, List *scan_clauses)
{
ForeignScan *scan_plan;
RelOptInfo *rel = best_path->path.parent;
Index scan_relid = rel->relid;
Oid rel_oid = InvalidOid;
Bitmapset *attrs_used = NULL;
ListCell *lc;
int i;
Assert(rel->fdwroutine != NULL);
/*
* If we're scanning a base relation, fetch its OID. (Irrelevant if
* scanning a join relation.)
*/
if (scan_relid > 0)
{
RangeTblEntry *rte;
Assert(rel->rtekind == RTE_RELATION);
rte = planner_rt_fetch(scan_relid, root);
Assert(rte->rtekind == RTE_RELATION);
rel_oid = rte->relid;
}
/*
* Sort clauses into best execution order. We do this first since the FDW
* might have more info than we do and wish to adjust the ordering.
*/
scan_clauses = order_qual_clauses(root, scan_clauses);
/*
* Let the FDW perform its processing on the restriction clauses and
* generate the plan node. Note that the FDW might remove restriction
* clauses that it intends to execute remotely, or even add more (if it
* has selected some join clauses for remote use but also wants them
* rechecked locally).
*/
scan_plan = rel->fdwroutine->GetForeignPlan(root, rel, rel_oid,
best_path,
tlist, scan_clauses);
/* Copy cost data from Path to Plan; no need to make FDW do this */
copy_path_costsize(&scan_plan->scan.plan, &best_path->path);
/* Copy foreign server OID; likewise, no need to make FDW do this */
scan_plan->fs_server = rel->serverid;
/* Likewise, copy the relids that are represented by this foreign scan */
scan_plan->fs_relids = best_path->path.parent->relids;
/*
* Replace any outer-relation variables with nestloop params in the qual
* and fdw_exprs expressions. We do this last so that the FDW doesn't
* have to be involved. (Note that parts of fdw_exprs could have come
* from join clauses, so doing this beforehand on the scan_clauses
* wouldn't work.) We assume fdw_scan_tlist contains no such variables.
*/
if (best_path->path.param_info)
{
scan_plan->scan.plan.qual = (List *)
replace_nestloop_params(root, (Node *) scan_plan->scan.plan.qual);
scan_plan->fdw_exprs = (List *)
replace_nestloop_params(root, (Node *) scan_plan->fdw_exprs);
}
/*
* Detect whether any system columns are requested from rel. This is a
* bit of a kluge and might go away someday, so we intentionally leave it
* out of the API presented to FDWs.
*
* First, examine all the attributes needed for joins or final output.
* Note: we must look at reltargetlist, not the attr_needed data, because
* attr_needed isn't computed for inheritance child rels.
*/
pull_varattnos((Node *) rel->reltargetlist, rel->relid, &attrs_used);
/* Add all the attributes used by restriction clauses. */
foreach(lc, rel->baserestrictinfo)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
pull_varattnos((Node *) rinfo->clause, rel->relid, &attrs_used);
}
/* Now, are any system columns requested from rel? */
scan_plan->fsSystemCol = false;
for (i = FirstLowInvalidHeapAttributeNumber + 1; i < 0; i++)
{
if (bms_is_member(i - FirstLowInvalidHeapAttributeNumber, attrs_used))
{
scan_plan->fsSystemCol = true;
break;
}
}
bms_free(attrs_used);
return scan_plan;
}
/*
* create_custom_plan
*
* Transform a CustomPath into a Plan.
*/
static CustomScan *
create_customscan_plan(PlannerInfo *root, CustomPath *best_path,
List *tlist, List *scan_clauses)
{
CustomScan *cplan;
RelOptInfo *rel = best_path->path.parent;
List *custom_plans = NIL;
ListCell *lc;
/* Recursively transform child paths. */
foreach(lc, best_path->custom_paths)
{
Plan *plan = create_plan_recurse(root, (Path *) lfirst(lc));
custom_plans = lappend(custom_plans, plan);
}
/*
* Sort clauses into the best execution order, although custom-scan
* provider can reorder them again.
*/
scan_clauses = order_qual_clauses(root, scan_clauses);
/*
* Invoke custom plan provider to create the Plan node represented by the
* CustomPath.
*/
cplan = (CustomScan *) best_path->methods->PlanCustomPath(root,
rel,
best_path,
tlist,
scan_clauses,
custom_plans);
Assert(IsA(cplan, CustomScan));
/*
* Copy cost data from Path to Plan; no need to make custom-plan providers
* do this
*/
copy_path_costsize(&cplan->scan.plan, &best_path->path);
/* Likewise, copy the relids that are represented by this custom scan */
cplan->custom_relids = best_path->path.parent->relids;
/*
* Replace any outer-relation variables with nestloop params in the qual
* and custom_exprs expressions. We do this last so that the custom-plan
* provider doesn't have to be involved. (Note that parts of custom_exprs
* could have come from join clauses, so doing this beforehand on the
* scan_clauses wouldn't work.) We assume custom_scan_tlist contains no
* such variables.
*/
if (best_path->path.param_info)
{
cplan->scan.plan.qual = (List *)
replace_nestloop_params(root, (Node *) cplan->scan.plan.qual);
cplan->custom_exprs = (List *)
replace_nestloop_params(root, (Node *) cplan->custom_exprs);
}
return cplan;
}
/*****************************************************************************
*
* JOIN METHODS
*
*****************************************************************************/
static NestLoop *
create_nestloop_plan(PlannerInfo *root,
NestPath *best_path,
Plan *outer_plan,
Plan *inner_plan)
{
NestLoop *join_plan;
List *tlist = build_path_tlist(root, &best_path->path);
List *joinrestrictclauses = best_path->joinrestrictinfo;
List *joinclauses;
List *otherclauses;
Relids outerrelids;
List *nestParams;
ListCell *cell;
ListCell *prev;
ListCell *next;
/* Sort join qual clauses into best execution order */
joinrestrictclauses = order_qual_clauses(root, joinrestrictclauses);
/* Get the join qual clauses (in plain expression form) */
/* Any pseudoconstant clauses are ignored here */
if (IS_OUTER_JOIN(best_path->jointype))
{
extract_actual_join_clauses(joinrestrictclauses,
&joinclauses, &otherclauses);
}
else
{
/* We can treat all clauses alike for an inner join */
joinclauses = extract_actual_clauses(joinrestrictclauses, false);
otherclauses = NIL;
}
/* Replace any outer-relation variables with nestloop params */
if (best_path->path.param_info)
{
joinclauses = (List *)
replace_nestloop_params(root, (Node *) joinclauses);
otherclauses = (List *)
replace_nestloop_params(root, (Node *) otherclauses);
}
/*
* Identify any nestloop parameters that should be supplied by this join
* node, and move them from root->curOuterParams to the nestParams list.
*/
outerrelids = best_path->outerjoinpath->parent->relids;
nestParams = NIL;
prev = NULL;
for (cell = list_head(root->curOuterParams); cell; cell = next)
{
NestLoopParam *nlp = (NestLoopParam *) lfirst(cell);
next = lnext(cell);
if (IsA(nlp->paramval, Var) &&
bms_is_member(nlp->paramval->varno, outerrelids))
{
root->curOuterParams = list_delete_cell(root->curOuterParams,
cell, prev);
nestParams = lappend(nestParams, nlp);
}
else if (IsA(nlp->paramval, PlaceHolderVar) &&
bms_overlap(((PlaceHolderVar *) nlp->paramval)->phrels,
outerrelids) &&
bms_is_subset(find_placeholder_info(root,
(PlaceHolderVar *) nlp->paramval,
false)->ph_eval_at,
outerrelids))
{
root->curOuterParams = list_delete_cell(root->curOuterParams,
cell, prev);
nestParams = lappend(nestParams, nlp);
}
else
prev = cell;
}
join_plan = make_nestloop(tlist,
joinclauses,
otherclauses,
nestParams,
outer_plan,
inner_plan,
best_path->jointype);
copy_path_costsize(&join_plan->join.plan, &best_path->path);
return join_plan;
}
static MergeJoin *
create_mergejoin_plan(PlannerInfo *root,
MergePath *best_path,
Plan *outer_plan,
Plan *inner_plan)
{
List *tlist = build_path_tlist(root, &best_path->jpath.path);
List *joinclauses;
List *otherclauses;
List *mergeclauses;
List *outerpathkeys;
List *innerpathkeys;
int nClauses;
Oid *mergefamilies;
Oid *mergecollations;
int *mergestrategies;
bool *mergenullsfirst;
MergeJoin *join_plan;
int i;
ListCell *lc;
ListCell *lop;
ListCell *lip;
/* Sort join qual clauses into best execution order */
/* NB: do NOT reorder the mergeclauses */
joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
/* Get the join qual clauses (in plain expression form) */
/* Any pseudoconstant clauses are ignored here */
if (IS_OUTER_JOIN(best_path->jpath.jointype))
{
extract_actual_join_clauses(joinclauses,
&joinclauses, &otherclauses);
}
else
{
/* We can treat all clauses alike for an inner join */
joinclauses = extract_actual_clauses(joinclauses, false);
otherclauses = NIL;
}
/*
* Remove the mergeclauses from the list of join qual clauses, leaving the
* list of quals that must be checked as qpquals.
*/
mergeclauses = get_actual_clauses(best_path->path_mergeclauses);
joinclauses = list_difference(joinclauses, mergeclauses);
/*
* Replace any outer-relation variables with nestloop params. There
* should not be any in the mergeclauses.
*/
if (best_path->jpath.path.param_info)
{
joinclauses = (List *)
replace_nestloop_params(root, (Node *) joinclauses);
otherclauses = (List *)
replace_nestloop_params(root, (Node *) otherclauses);
}
/*
* Rearrange mergeclauses, if needed, so that the outer variable is always
* on the left; mark the mergeclause restrictinfos with correct
* outer_is_left status.
*/
mergeclauses = get_switched_clauses(best_path->path_mergeclauses,
best_path->jpath.outerjoinpath->parent->relids);
/*
* Create explicit sort nodes for the outer and inner paths if necessary.
* Make sure there are no excess columns in the inputs if sorting.
*/
if (best_path->outersortkeys)
{
disuse_physical_tlist(root, outer_plan, best_path->jpath.outerjoinpath);
outer_plan = (Plan *)
make_sort_from_pathkeys(root,
outer_plan,
best_path->outersortkeys,
-1.0);
outerpathkeys = best_path->outersortkeys;
}
else
outerpathkeys = best_path->jpath.outerjoinpath->pathkeys;
if (best_path->innersortkeys)
{
disuse_physical_tlist(root, inner_plan, best_path->jpath.innerjoinpath);
inner_plan = (Plan *)
make_sort_from_pathkeys(root,
inner_plan,
best_path->innersortkeys,
-1.0);
innerpathkeys = best_path->innersortkeys;
}
else
innerpathkeys = best_path->jpath.innerjoinpath->pathkeys;
/*
* If specified, add a materialize node to shield the inner plan from the
* need to handle mark/restore.
*/
if (best_path->materialize_inner)
{
Plan *matplan = (Plan *) make_material(inner_plan);
/*
* We assume the materialize will not spill to disk, and therefore
* charge just cpu_operator_cost per tuple. (Keep this estimate in
* sync with final_cost_mergejoin.)
*/
copy_plan_costsize(matplan, inner_plan);
matplan->total_cost += cpu_operator_cost * matplan->plan_rows;
inner_plan = matplan;
}
/*
* Compute the opfamily/collation/strategy/nullsfirst arrays needed by the
* executor. The information is in the pathkeys for the two inputs, but
* we need to be careful about the possibility of mergeclauses sharing a
* pathkey (compare find_mergeclauses_for_pathkeys()).
*/
nClauses = list_length(mergeclauses);
Assert(nClauses == list_length(best_path->path_mergeclauses));
mergefamilies = (Oid *) palloc(nClauses * sizeof(Oid));
mergecollations = (Oid *) palloc(nClauses * sizeof(Oid));
mergestrategies = (int *) palloc(nClauses * sizeof(int));
mergenullsfirst = (bool *) palloc(nClauses * sizeof(bool));
lop = list_head(outerpathkeys);
lip = list_head(innerpathkeys);
i = 0;
foreach(lc, best_path->path_mergeclauses)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lc);
EquivalenceClass *oeclass;
EquivalenceClass *ieclass;
PathKey *opathkey;
PathKey *ipathkey;
EquivalenceClass *opeclass;
EquivalenceClass *ipeclass;
ListCell *l2;
/* fetch outer/inner eclass from mergeclause */
Assert(IsA(rinfo, RestrictInfo));
if (rinfo->outer_is_left)
{
oeclass = rinfo->left_ec;
ieclass = rinfo->right_ec;
}
else
{
oeclass = rinfo->right_ec;
ieclass = rinfo->left_ec;
}
Assert(oeclass != NULL);
Assert(ieclass != NULL);
/*
* For debugging purposes, we check that the eclasses match the paths'
* pathkeys. In typical cases the merge clauses are one-to-one with
* the pathkeys, but when dealing with partially redundant query
* conditions, we might have clauses that re-reference earlier path
* keys. The case that we need to reject is where a pathkey is
* entirely skipped over.
*
* lop and lip reference the first as-yet-unused pathkey elements;
* it's okay to match them, or any element before them. If they're
* NULL then we have found all pathkey elements to be used.
*/
if (lop)
{
opathkey = (PathKey *) lfirst(lop);
opeclass = opathkey->pk_eclass;
if (oeclass == opeclass)
{
/* fast path for typical case */
lop = lnext(lop);
}
else
{
/* redundant clauses ... must match something before lop */
foreach(l2, outerpathkeys)
{
if (l2 == lop)
break;
opathkey = (PathKey *) lfirst(l2);
opeclass = opathkey->pk_eclass;
if (oeclass == opeclass)
break;
}
if (oeclass != opeclass)
elog(ERROR, "outer pathkeys do not match mergeclauses");
}
}
else
{
/* redundant clauses ... must match some already-used pathkey */
opathkey = NULL;
opeclass = NULL;
foreach(l2, outerpathkeys)
{
opathkey = (PathKey *) lfirst(l2);
opeclass = opathkey->pk_eclass;
if (oeclass == opeclass)
break;
}
if (l2 == NULL)
elog(ERROR, "outer pathkeys do not match mergeclauses");
}
if (lip)
{
ipathkey = (PathKey *) lfirst(lip);
ipeclass = ipathkey->pk_eclass;
if (ieclass == ipeclass)
{
/* fast path for typical case */
lip = lnext(lip);
}
else
{
/* redundant clauses ... must match something before lip */
foreach(l2, innerpathkeys)
{
if (l2 == lip)
break;
ipathkey = (PathKey *) lfirst(l2);
ipeclass = ipathkey->pk_eclass;
if (ieclass == ipeclass)
break;
}
if (ieclass != ipeclass)
elog(ERROR, "inner pathkeys do not match mergeclauses");
}
}
else
{
/* redundant clauses ... must match some already-used pathkey */
ipathkey = NULL;
ipeclass = NULL;
foreach(l2, innerpathkeys)
{
ipathkey = (PathKey *) lfirst(l2);
ipeclass = ipathkey->pk_eclass;
if (ieclass == ipeclass)
break;
}
if (l2 == NULL)
elog(ERROR, "inner pathkeys do not match mergeclauses");
}
/* pathkeys should match each other too (more debugging) */
if (opathkey->pk_opfamily != ipathkey->pk_opfamily ||
opathkey->pk_eclass->ec_collation != ipathkey->pk_eclass->ec_collation ||
opathkey->pk_strategy != ipathkey->pk_strategy ||
opathkey->pk_nulls_first != ipathkey->pk_nulls_first)
elog(ERROR, "left and right pathkeys do not match in mergejoin");
/* OK, save info for executor */
mergefamilies[i] = opathkey->pk_opfamily;
mergecollations[i] = opathkey->pk_eclass->ec_collation;
mergestrategies[i] = opathkey->pk_strategy;
mergenullsfirst[i] = opathkey->pk_nulls_first;
i++;
}
/*
* Note: it is not an error if we have additional pathkey elements (i.e.,
* lop or lip isn't NULL here). The input paths might be better-sorted
* than we need for the current mergejoin.
*/
/*
* Now we can build the mergejoin node.
*/
join_plan = make_mergejoin(tlist,
joinclauses,
otherclauses,
mergeclauses,
mergefamilies,
mergecollations,
mergestrategies,
mergenullsfirst,
outer_plan,
inner_plan,
best_path->jpath.jointype);
/* Costs of sort and material steps are included in path cost already */
copy_path_costsize(&join_plan->join.plan, &best_path->jpath.path);
return join_plan;
}
static HashJoin *
create_hashjoin_plan(PlannerInfo *root,
HashPath *best_path,
Plan *outer_plan,
Plan *inner_plan)
{
List *tlist = build_path_tlist(root, &best_path->jpath.path);
List *joinclauses;
List *otherclauses;
List *hashclauses;
Oid skewTable = InvalidOid;
AttrNumber skewColumn = InvalidAttrNumber;
bool skewInherit = false;
Oid skewColType = InvalidOid;
int32 skewColTypmod = -1;
HashJoin *join_plan;
Hash *hash_plan;
/* Sort join qual clauses into best execution order */
joinclauses = order_qual_clauses(root, best_path->jpath.joinrestrictinfo);
/* There's no point in sorting the hash clauses ... */
/* Get the join qual clauses (in plain expression form) */
/* Any pseudoconstant clauses are ignored here */
if (IS_OUTER_JOIN(best_path->jpath.jointype))
{
extract_actual_join_clauses(joinclauses,
&joinclauses, &otherclauses);
}
else
{
/* We can treat all clauses alike for an inner join */
joinclauses = extract_actual_clauses(joinclauses, false);
otherclauses = NIL;
}
/*
* Remove the hashclauses from the list of join qual clauses, leaving the
* list of quals that must be checked as qpquals.
*/
hashclauses = get_actual_clauses(best_path->path_hashclauses);
joinclauses = list_difference(joinclauses, hashclauses);
/*
* Replace any outer-relation variables with nestloop params. There
* should not be any in the hashclauses.
*/
if (best_path->jpath.path.param_info)
{
joinclauses = (List *)
replace_nestloop_params(root, (Node *) joinclauses);
otherclauses = (List *)
replace_nestloop_params(root, (Node *) otherclauses);
}
/*
* Rearrange hashclauses, if needed, so that the outer variable is always
* on the left.
*/
hashclauses = get_switched_clauses(best_path->path_hashclauses,
best_path->jpath.outerjoinpath->parent->relids);
/* We don't want any excess columns in the hashed tuples */
disuse_physical_tlist(root, inner_plan, best_path->jpath.innerjoinpath);
/* If we expect batching, suppress excess columns in outer tuples too */
if (best_path->num_batches > 1)
disuse_physical_tlist(root, outer_plan, best_path->jpath.outerjoinpath);
/*
* If there is a single join clause and we can identify the outer variable
* as a simple column reference, supply its identity for possible use in
* skew optimization. (Note: in principle we could do skew optimization
* with multiple join clauses, but we'd have to be able to determine the
* most common combinations of outer values, which we don't currently have
* enough stats for.)
*/
if (list_length(hashclauses) == 1)
{
OpExpr *clause = (OpExpr *) linitial(hashclauses);
Node *node;
Assert(is_opclause(clause));
node = (Node *) linitial(clause->args);
if (IsA(node, RelabelType))
node = (Node *) ((RelabelType *) node)->arg;
if (IsA(node, Var))
{
Var *var = (Var *) node;
RangeTblEntry *rte;
rte = root->simple_rte_array[var->varno];
if (rte->rtekind == RTE_RELATION)
{
skewTable = rte->relid;
skewColumn = var->varattno;
skewInherit = rte->inh;
skewColType = var->vartype;
skewColTypmod = var->vartypmod;
}
}
}
/*
* Build the hash node and hash join node.
*/
hash_plan = make_hash(inner_plan,
skewTable,
skewColumn,
skewInherit,
skewColType,
skewColTypmod);
join_plan = make_hashjoin(tlist,
joinclauses,
otherclauses,
hashclauses,
outer_plan,
(Plan *) hash_plan,
best_path->jpath.jointype);
copy_path_costsize(&join_plan->join.plan, &best_path->jpath.path);
return join_plan;
}
/*****************************************************************************
*
* SUPPORTING ROUTINES
*
*****************************************************************************/
/*
* replace_nestloop_params
* Replace outer-relation Vars and PlaceHolderVars in the given expression
* with nestloop Params
*
* All Vars and PlaceHolderVars belonging to the relation(s) identified by
* root->curOuterRels are replaced by Params, and entries are added to
* root->curOuterParams if not already present.
*/
static Node *
replace_nestloop_params(PlannerInfo *root, Node *expr)
{
/* No setup needed for tree walk, so away we go */
return replace_nestloop_params_mutator(expr, root);
}
static Node *
replace_nestloop_params_mutator(Node *node, PlannerInfo *root)
{
if (node == NULL)
return NULL;
if (IsA(node, Var))
{
Var *var = (Var *) node;
Param *param;
NestLoopParam *nlp;
ListCell *lc;
/* Upper-level Vars should be long gone at this point */
Assert(var->varlevelsup == 0);
/* If not to be replaced, we can just return the Var unmodified */
if (!bms_is_member(var->varno, root->curOuterRels))
return node;
/* Create a Param representing the Var */
param = assign_nestloop_param_var(root, var);
/* Is this param already listed in root->curOuterParams? */
foreach(lc, root->curOuterParams)
{
nlp = (NestLoopParam *) lfirst(lc);
if (nlp->paramno == param->paramid)
{
Assert(equal(var, nlp->paramval));
/* Present, so we can just return the Param */
return (Node *) param;
}
}
/* No, so add it */
nlp = makeNode(NestLoopParam);
nlp->paramno = param->paramid;
nlp->paramval = var;
root->curOuterParams = lappend(root->curOuterParams, nlp);
/* And return the replacement Param */
return (Node *) param;
}
if (IsA(node, PlaceHolderVar))
{
PlaceHolderVar *phv = (PlaceHolderVar *) node;
Param *param;
NestLoopParam *nlp;
ListCell *lc;
/* Upper-level PlaceHolderVars should be long gone at this point */
Assert(phv->phlevelsup == 0);
/*
* Check whether we need to replace the PHV. We use bms_overlap as a
* cheap/quick test to see if the PHV might be evaluated in the outer
* rels, and then grab its PlaceHolderInfo to tell for sure.
*/
if (!bms_overlap(phv->phrels, root->curOuterRels) ||
!bms_is_subset(find_placeholder_info(root, phv, false)->ph_eval_at,
root->curOuterRels))
{
/*
* We can't replace the whole PHV, but we might still need to
* replace Vars or PHVs within its expression, in case it ends up
* actually getting evaluated here. (It might get evaluated in
* this plan node, or some child node; in the latter case we don't
* really need to process the expression here, but we haven't got
* enough info to tell if that's the case.) Flat-copy the PHV
* node and then recurse on its expression.
*
* Note that after doing this, we might have different
* representations of the contents of the same PHV in different
* parts of the plan tree. This is OK because equal() will just
* match on phid/phlevelsup, so setrefs.c will still recognize an
* upper-level reference to a lower-level copy of the same PHV.
*/
PlaceHolderVar *newphv = makeNode(PlaceHolderVar);
memcpy(newphv, phv, sizeof(PlaceHolderVar));
newphv->phexpr = (Expr *)
replace_nestloop_params_mutator((Node *) phv->phexpr,
root);
return (Node *) newphv;
}
/* Create a Param representing the PlaceHolderVar */
param = assign_nestloop_param_placeholdervar(root, phv);
/* Is this param already listed in root->curOuterParams? */
foreach(lc, root->curOuterParams)
{
nlp = (NestLoopParam *) lfirst(lc);
if (nlp->paramno == param->paramid)
{
Assert(equal(phv, nlp->paramval));
/* Present, so we can just return the Param */
return (Node *) param;
}
}
/* No, so add it */
nlp = makeNode(NestLoopParam);
nlp->paramno = param->paramid;
nlp->paramval = (Var *) phv;
root->curOuterParams = lappend(root->curOuterParams, nlp);
/* And return the replacement Param */
return (Node *) param;
}
return expression_tree_mutator(node,
replace_nestloop_params_mutator,
(void *) root);
}
/*
* process_subquery_nestloop_params
* Handle params of a parameterized subquery that need to be fed
* from an outer nestloop.
*
* Currently, that would be *all* params that a subquery in FROM has demanded
* from the current query level, since they must be LATERAL references.
*
* The subplan's references to the outer variables are already represented
* as PARAM_EXEC Params, so we need not modify the subplan here. What we
* do need to do is add entries to root->curOuterParams to signal the parent
* nestloop plan node that it must provide these values.
*/
static void
process_subquery_nestloop_params(PlannerInfo *root, List *subplan_params)
{
ListCell *ppl;
foreach(ppl, subplan_params)
{
PlannerParamItem *pitem = (PlannerParamItem *) lfirst(ppl);
if (IsA(pitem->item, Var))
{
Var *var = (Var *) pitem->item;
NestLoopParam *nlp;
ListCell *lc;
/* If not from a nestloop outer rel, complain */
if (!bms_is_member(var->varno, root->curOuterRels))
elog(ERROR, "non-LATERAL parameter required by subquery");
/* Is this param already listed in root->curOuterParams? */
foreach(lc, root->curOuterParams)
{
nlp = (NestLoopParam *) lfirst(lc);
if (nlp->paramno == pitem->paramId)
{
Assert(equal(var, nlp->paramval));
/* Present, so nothing to do */
break;
}
}
if (lc == NULL)
{
/* No, so add it */
nlp = makeNode(NestLoopParam);
nlp->paramno = pitem->paramId;
nlp->paramval = copyObject(var);
root->curOuterParams = lappend(root->curOuterParams, nlp);
}
}
else if (IsA(pitem->item, PlaceHolderVar))
{
PlaceHolderVar *phv = (PlaceHolderVar *) pitem->item;
NestLoopParam *nlp;
ListCell *lc;
/* If not from a nestloop outer rel, complain */
if (!bms_is_subset(find_placeholder_info(root, phv, false)->ph_eval_at,
root->curOuterRels))
elog(ERROR, "non-LATERAL parameter required by subquery");
/* Is this param already listed in root->curOuterParams? */
foreach(lc, root->curOuterParams)
{
nlp = (NestLoopParam *) lfirst(lc);
if (nlp->paramno == pitem->paramId)
{
Assert(equal(phv, nlp->paramval));
/* Present, so nothing to do */
break;
}
}
if (lc == NULL)
{
/* No, so add it */
nlp = makeNode(NestLoopParam);
nlp->paramno = pitem->paramId;
nlp->paramval = copyObject(phv);
root->curOuterParams = lappend(root->curOuterParams, nlp);
}
}
else
elog(ERROR, "unexpected type of subquery parameter");
}
}
/*
* fix_indexqual_references
* Adjust indexqual clauses to the form the executor's indexqual
* machinery needs.
*
* We have four tasks here:
* * Remove RestrictInfo nodes from the input clauses.
* * Replace any outer-relation Var or PHV nodes with nestloop Params.
* (XXX eventually, that responsibility should go elsewhere?)
* * Index keys must be represented by Var nodes with varattno set to the
* index's attribute number, not the attribute number in the original rel.
* * If the index key is on the right, commute the clause to put it on the
* left.
*
* The result is a modified copy of the path's indexquals list --- the
* original is not changed. Note also that the copy shares no substructure
* with the original; this is needed in case there is a subplan in it (we need
* two separate copies of the subplan tree, or things will go awry).
*/
static List *
fix_indexqual_references(PlannerInfo *root, IndexPath *index_path)
{
IndexOptInfo *index = index_path->indexinfo;
List *fixed_indexquals;
ListCell *lcc,
*lci;
fixed_indexquals = NIL;
forboth(lcc, index_path->indexquals, lci, index_path->indexqualcols)
{
RestrictInfo *rinfo = (RestrictInfo *) lfirst(lcc);
int indexcol = lfirst_int(lci);
Node *clause;
Assert(IsA(rinfo, RestrictInfo));
/*
* Replace any outer-relation variables with nestloop params.
*
* This also makes a copy of the clause, so it's safe to modify it
* in-place below.
*/
clause = replace_nestloop_params(root, (Node *) rinfo->clause);
if (IsA(clause, OpExpr))
{
OpExpr *op = (OpExpr *) clause;
if (list_length(op->args) != 2)
elog(ERROR, "indexqual clause is not binary opclause");
/*
* Check to see if the indexkey is on the right; if so, commute
* the clause. The indexkey should be the side that refers to
* (only) the base relation.
*/
if (!bms_equal(rinfo->left_relids, index->rel->relids))
CommuteOpExpr(op);
/*
* Now replace the indexkey expression with an index Var.
*/
linitial(op->args) = fix_indexqual_operand(linitial(op->args),
index,
indexcol);
}
else if (IsA(clause, RowCompareExpr))
{
RowCompareExpr *rc = (RowCompareExpr *) clause;
Expr *newrc;
List *indexcolnos;
bool var_on_left;
ListCell *lca,
*lcai;
/*
* Re-discover which index columns are used in the rowcompare.
*/
newrc = adjust_rowcompare_for_index(rc,
index,
indexcol,
&indexcolnos,
&var_on_left);
/*
* Trouble if adjust_rowcompare_for_index thought the
* RowCompareExpr didn't match the index as-is; the clause should
* have gone through that routine already.
*/
if (newrc != (Expr *) rc)
elog(ERROR, "inconsistent results from adjust_rowcompare_for_index");
/*
* Check to see if the indexkey is on the right; if so, commute
* the clause.
*/
if (!var_on_left)
CommuteRowCompareExpr(rc);
/*
* Now replace the indexkey expressions with index Vars.
*/
Assert(list_length(rc->largs) == list_length(indexcolnos));
forboth(lca, rc->largs, lcai, indexcolnos)
{
lfirst(lca) = fix_indexqual_operand(lfirst(lca),
index,
lfirst_int(lcai));
}
}
else if (IsA(clause, ScalarArrayOpExpr))
{
ScalarArrayOpExpr *saop = (ScalarArrayOpExpr *) clause;
/* Never need to commute... */
/* Replace the indexkey expression with an index Var. */
linitial(saop->args) = fix_indexqual_operand(linitial(saop->args),
index,
indexcol);
}
else if (IsA(clause, NullTest))
{
NullTest *nt = (NullTest *) clause;
/* Replace the indexkey expression with an index Var. */
nt->arg = (Expr *) fix_indexqual_operand((Node *) nt->arg,
index,
indexcol);
}
else
elog(ERROR, "unsupported indexqual type: %d",
(int) nodeTag(clause));
fixed_indexquals = lappend(fixed_indexquals, clause);
}
return fixed_indexquals;
}
/*
* fix_indexorderby_references
* Adjust indexorderby clauses to the form the executor's index
* machinery needs.
*
* This is a simplified version of fix_indexqual_references. The input does
* not have RestrictInfo nodes, and we assume that indxpath.c already
* commuted the clauses to put the index keys on the left. Also, we don't
* bother to support any cases except simple OpExprs, since nothing else
* is allowed for ordering operators.
*/
static List *
fix_indexorderby_references(PlannerInfo *root, IndexPath *index_path)
{
IndexOptInfo *index = index_path->indexinfo;
List *fixed_indexorderbys;
ListCell *lcc,
*lci;
fixed_indexorderbys = NIL;
forboth(lcc, index_path->indexorderbys, lci, index_path->indexorderbycols)
{
Node *clause = (Node *) lfirst(lcc);
int indexcol = lfirst_int(lci);
/*
* Replace any outer-relation variables with nestloop params.
*
* This also makes a copy of the clause, so it's safe to modify it
* in-place below.
*/
clause = replace_nestloop_params(root, clause);
if (IsA(clause, OpExpr))
{
OpExpr *op = (OpExpr *) clause;
if (list_length(op->args) != 2)
elog(ERROR, "indexorderby clause is not binary opclause");
/*
* Now replace the indexkey expression with an index Var.
*/
linitial(op->args) = fix_indexqual_operand(linitial(op->args),
index,
indexcol);
}
else
elog(ERROR, "unsupported indexorderby type: %d",
(int) nodeTag(clause));
fixed_indexorderbys = lappend(fixed_indexorderbys, clause);
}
return fixed_indexorderbys;
}
/*
* fix_indexqual_operand
* Convert an indexqual expression to a Var referencing the index column.
*
* We represent index keys by Var nodes having varno == INDEX_VAR and varattno
* equal to the index's attribute number (index column position).
*
* Most of the code here is just for sanity cross-checking that the given
* expression actually matches the index column it's claimed to.
*/
static Node *
fix_indexqual_operand(Node *node, IndexOptInfo *index, int indexcol)
{
Var *result;
int pos;
ListCell *indexpr_item;
/*
* Remove any binary-compatible relabeling of the indexkey
*/
if (IsA(node, RelabelType))
node = (Node *) ((RelabelType *) node)->arg;
Assert(indexcol >= 0 && indexcol < index->ncolumns);
if (index->indexkeys[indexcol] != 0)
{
/* It's a simple index column */
if (IsA(node, Var) &&
((Var *) node)->varno == index->rel->relid &&
((Var *) node)->varattno == index->indexkeys[indexcol])
{
result = (Var *) copyObject(node);
result->varno = INDEX_VAR;
result->varattno = indexcol + 1;
return (Node *) result;
}
else
elog(ERROR, "index key does not match expected index column");
}
/* It's an index expression, so find and cross-check the expression */
indexpr_item = list_head(index->indexprs);
for (pos = 0; pos < index->ncolumns; pos++)
{
if (index->indexkeys[pos] == 0)
{
if (indexpr_item == NULL)
elog(ERROR, "too few entries in indexprs list");
if (pos == indexcol)
{
Node *indexkey;
indexkey = (Node *) lfirst(indexpr_item);
if (indexkey && IsA(indexkey, RelabelType))
indexkey = (Node *) ((RelabelType *) indexkey)->arg;
if (equal(node, indexkey))
{
result = makeVar(INDEX_VAR, indexcol + 1,
exprType(lfirst(indexpr_item)), -1,
exprCollation(lfirst(indexpr_item)),
0);
return (Node *) result;
}
else
elog(ERROR, "index key does not match expected index column");
}
indexpr_item = lnext(indexpr_item);
}
}
/* Ooops... */
elog(ERROR, "index key does not match expected index column");
return NULL; /* keep compiler quiet */
}
/*
* get_switched_clauses
* Given a list of merge or hash joinclauses (as RestrictInfo nodes),
* extract the bare clauses, and rearrange the elements within the
* clauses, if needed, so the outer join variable is on the left and
* the inner is on the right. The original clause data structure is not
* touched; a modified list is returned. We do, however, set the transient
* outer_is_left field in each RestrictInfo to show which side was which.
*/
static List *
get_switched_clauses(List *clauses, Relids outerrelids)
{
List *t_list = NIL;
ListCell *l;
foreach(l, clauses)
{
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(l);
OpExpr *clause = (OpExpr *) restrictinfo->clause;
Assert(is_opclause(clause));
if (bms_is_subset(restrictinfo->right_relids, outerrelids))
{
/*
* Duplicate just enough of the structure to allow commuting the
* clause without changing the original list. Could use
* copyObject, but a complete deep copy is overkill.
*/
OpExpr *temp = makeNode(OpExpr);
temp->opno = clause->opno;
temp->opfuncid = InvalidOid;
temp->opresulttype = clause->opresulttype;
temp->opretset = clause->opretset;
temp->opcollid = clause->opcollid;
temp->inputcollid = clause->inputcollid;
temp->args = list_copy(clause->args);
temp->location = clause->location;
/* Commute it --- note this modifies the temp node in-place. */
CommuteOpExpr(temp);
t_list = lappend(t_list, temp);
restrictinfo->outer_is_left = false;
}
else
{
Assert(bms_is_subset(restrictinfo->left_relids, outerrelids));
t_list = lappend(t_list, clause);
restrictinfo->outer_is_left = true;
}
}
return t_list;
}
/*
* order_qual_clauses
* Given a list of qual clauses that will all be evaluated at the same
* plan node, sort the list into the order we want to check the quals
* in at runtime.
*
* Ideally the order should be driven by a combination of execution cost and
* selectivity, but it's not immediately clear how to account for both,
* and given the uncertainty of the estimates the reliability of the decisions
* would be doubtful anyway. So we just order by estimated per-tuple cost,
* being careful not to change the order when (as is often the case) the
* estimates are identical.
*
* Although this will work on either bare clauses or RestrictInfos, it's
* much faster to apply it to RestrictInfos, since it can re-use cost
* information that is cached in RestrictInfos.
*
* Note: some callers pass lists that contain entries that will later be
* removed; this is the easiest way to let this routine see RestrictInfos
* instead of bare clauses. It's OK because we only sort by cost, but
* a cost/selectivity combination would likely do the wrong thing.
*/
static List *
order_qual_clauses(PlannerInfo *root, List *clauses)
{
typedef struct
{
Node *clause;
Cost cost;
} QualItem;
int nitems = list_length(clauses);
QualItem *items;
ListCell *lc;
int i;
List *result;
/* No need to work hard for 0 or 1 clause */
if (nitems <= 1)
return clauses;
/*
* Collect the items and costs into an array. This is to avoid repeated
* cost_qual_eval work if the inputs aren't RestrictInfos.
*/
items = (QualItem *) palloc(nitems * sizeof(QualItem));
i = 0;
foreach(lc, clauses)
{
Node *clause = (Node *) lfirst(lc);
QualCost qcost;
cost_qual_eval_node(&qcost, clause, root);
items[i].clause = clause;
items[i].cost = qcost.per_tuple;
i++;
}
/*
* Sort. We don't use qsort() because it's not guaranteed stable for
* equal keys. The expected number of entries is small enough that a
* simple insertion sort should be good enough.
*/
for (i = 1; i < nitems; i++)
{
QualItem newitem = items[i];
int j;
/* insert newitem into the already-sorted subarray */
for (j = i; j > 0; j--)
{
if (newitem.cost >= items[j - 1].cost)
break;
items[j] = items[j - 1];
}
items[j] = newitem;
}
/* Convert back to a list */
result = NIL;
for (i = 0; i < nitems; i++)
result = lappend(result, items[i].clause);
return result;
}
/*
* Copy cost and size info from a Path node to the Plan node created from it.
* The executor usually won't use this info, but it's needed by EXPLAIN.
*/
static void
copy_path_costsize(Plan *dest, Path *src)
{
if (src)
{
dest->startup_cost = src->startup_cost;
dest->total_cost = src->total_cost;
dest->plan_rows = src->rows;
dest->plan_width = src->parent->width;
}
else
{
dest->startup_cost = 0;
dest->total_cost = 0;
dest->plan_rows = 0;
dest->plan_width = 0;
}
}
/*
* Copy cost and size info from a lower plan node to an inserted node.
* (Most callers alter the info after copying it.)
*/
static void
copy_plan_costsize(Plan *dest, Plan *src)
{
if (src)
{
dest->startup_cost = src->startup_cost;
dest->total_cost = src->total_cost;
dest->plan_rows = src->plan_rows;
dest->plan_width = src->plan_width;
}
else
{
dest->startup_cost = 0;
dest->total_cost = 0;
dest->plan_rows = 0;
dest->plan_width = 0;
}
}
/*****************************************************************************
*
* PLAN NODE BUILDING ROUTINES
*
* Some of these are exported because they are called to build plan nodes
* in contexts where we're not deriving the plan node from a path node.
*
*****************************************************************************/
static SeqScan *
make_seqscan(List *qptlist,
List *qpqual,
Index scanrelid)
{
SeqScan *node = makeNode(SeqScan);
Plan *plan = &node->plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scanrelid = scanrelid;
return node;
}
static SampleScan *
make_samplescan(List *qptlist,
List *qpqual,
Index scanrelid,
TableSampleClause *tsc)
{
SampleScan *node = makeNode(SampleScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->tablesample = tsc;
return node;
}
static IndexScan *
make_indexscan(List *qptlist,
List *qpqual,
Index scanrelid,
Oid indexid,
List *indexqual,
List *indexqualorig,
List *indexorderby,
List *indexorderbyorig,
List *indexorderbyops,
ScanDirection indexscandir)
{
IndexScan *node = makeNode(IndexScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->indexid = indexid;
node->indexqual = indexqual;
node->indexqualorig = indexqualorig;
node->indexorderby = indexorderby;
node->indexorderbyorig = indexorderbyorig;
node->indexorderbyops = indexorderbyops;
node->indexorderdir = indexscandir;
return node;
}
static IndexOnlyScan *
make_indexonlyscan(List *qptlist,
List *qpqual,
Index scanrelid,
Oid indexid,
List *indexqual,
List *indexorderby,
List *indextlist,
ScanDirection indexscandir)
{
IndexOnlyScan *node = makeNode(IndexOnlyScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->indexid = indexid;
node->indexqual = indexqual;
node->indexorderby = indexorderby;
node->indextlist = indextlist;
node->indexorderdir = indexscandir;
return node;
}
static BitmapIndexScan *
make_bitmap_indexscan(Index scanrelid,
Oid indexid,
List *indexqual,
List *indexqualorig)
{
BitmapIndexScan *node = makeNode(BitmapIndexScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = NIL; /* not used */
plan->qual = NIL; /* not used */
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->indexid = indexid;
node->indexqual = indexqual;
node->indexqualorig = indexqualorig;
return node;
}
static BitmapHeapScan *
make_bitmap_heapscan(List *qptlist,
List *qpqual,
Plan *lefttree,
List *bitmapqualorig,
Index scanrelid)
{
BitmapHeapScan *node = makeNode(BitmapHeapScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->bitmapqualorig = bitmapqualorig;
return node;
}
static TidScan *
make_tidscan(List *qptlist,
List *qpqual,
Index scanrelid,
List *tidquals)
{
TidScan *node = makeNode(TidScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->tidquals = tidquals;
return node;
}
SubqueryScan *
make_subqueryscan(List *qptlist,
List *qpqual,
Index scanrelid,
Plan *subplan)
{
SubqueryScan *node = makeNode(SubqueryScan);
Plan *plan = &node->scan.plan;
/*
* Cost is figured here for the convenience of prepunion.c. Note this is
* only correct for the case where qpqual is empty; otherwise caller
* should overwrite cost with a better estimate.
*/
copy_plan_costsize(plan, subplan);
plan->total_cost += cpu_tuple_cost * subplan->plan_rows;
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->subplan = subplan;
return node;
}
static FunctionScan *
make_functionscan(List *qptlist,
List *qpqual,
Index scanrelid,
List *functions,
bool funcordinality)
{
FunctionScan *node = makeNode(FunctionScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->functions = functions;
node->funcordinality = funcordinality;
return node;
}
static ValuesScan *
make_valuesscan(List *qptlist,
List *qpqual,
Index scanrelid,
List *values_lists)
{
ValuesScan *node = makeNode(ValuesScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->values_lists = values_lists;
return node;
}
static CteScan *
make_ctescan(List *qptlist,
List *qpqual,
Index scanrelid,
int ctePlanId,
int cteParam)
{
CteScan *node = makeNode(CteScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->ctePlanId = ctePlanId;
node->cteParam = cteParam;
return node;
}
static WorkTableScan *
make_worktablescan(List *qptlist,
List *qpqual,
Index scanrelid,
int wtParam)
{
WorkTableScan *node = makeNode(WorkTableScan);
Plan *plan = &node->scan.plan;
/* cost should be inserted by caller */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
node->wtParam = wtParam;
return node;
}
ForeignScan *
make_foreignscan(List *qptlist,
List *qpqual,
Index scanrelid,
List *fdw_exprs,
List *fdw_private,
List *fdw_scan_tlist)
{
ForeignScan *node = makeNode(ForeignScan);
Plan *plan = &node->scan.plan;
/* cost will be filled in by create_foreignscan_plan */
plan->targetlist = qptlist;
plan->qual = qpqual;
plan->lefttree = NULL;
plan->righttree = NULL;
node->scan.scanrelid = scanrelid;
/* fs_server will be filled in by create_foreignscan_plan */
node->fs_server = InvalidOid;
node->fdw_exprs = fdw_exprs;
node->fdw_private = fdw_private;
node->fdw_scan_tlist = fdw_scan_tlist;
/* fs_relids will be filled in by create_foreignscan_plan */
node->fs_relids = NULL;
/* fsSystemCol will be filled in by create_foreignscan_plan */
node->fsSystemCol = false;
return node;
}
Append *
make_append(List *appendplans, List *tlist)
{
Append *node = makeNode(Append);
Plan *plan = &node->plan;
double total_size;
ListCell *subnode;
/*
* Compute cost as sum of subplan costs. We charge nothing extra for the
* Append itself, which perhaps is too optimistic, but since it doesn't do
* any selection or projection, it is a pretty cheap node.
*
* If you change this, see also create_append_path(). Also, the size
* calculations should match set_append_rel_pathlist(). It'd be better
* not to duplicate all this logic, but some callers of this function
* aren't working from an appendrel or AppendPath, so there's noplace to
* copy the data from.
*/
plan->startup_cost = 0;
plan->total_cost = 0;
plan->plan_rows = 0;
total_size = 0;
foreach(subnode, appendplans)
{
Plan *subplan = (Plan *) lfirst(subnode);
if (subnode == list_head(appendplans)) /* first node? */
plan->startup_cost = subplan->startup_cost;
plan->total_cost += subplan->total_cost;
plan->plan_rows += subplan->plan_rows;
total_size += subplan->plan_width * subplan->plan_rows;
}
if (plan->plan_rows > 0)
plan->plan_width = rint(total_size / plan->plan_rows);
else
plan->plan_width = 0;
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = NULL;
plan->righttree = NULL;
node->appendplans = appendplans;
return node;
}
RecursiveUnion *
make_recursive_union(List *tlist,
Plan *lefttree,
Plan *righttree,
int wtParam,
List *distinctList,
long numGroups)
{
RecursiveUnion *node = makeNode(RecursiveUnion);
Plan *plan = &node->plan;
int numCols = list_length(distinctList);
cost_recursive_union(plan, lefttree, righttree);
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = righttree;
node->wtParam = wtParam;
/*
* convert SortGroupClause list into arrays of attr indexes and equality
* operators, as wanted by executor
*/
node->numCols = numCols;
if (numCols > 0)
{
int keyno = 0;
AttrNumber *dupColIdx;
Oid *dupOperators;
ListCell *slitem;
dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
dupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
foreach(slitem, distinctList)
{
SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
TargetEntry *tle = get_sortgroupclause_tle(sortcl,
plan->targetlist);
dupColIdx[keyno] = tle->resno;
dupOperators[keyno] = sortcl->eqop;
Assert(OidIsValid(dupOperators[keyno]));
keyno++;
}
node->dupColIdx = dupColIdx;
node->dupOperators = dupOperators;
}
node->numGroups = numGroups;
return node;
}
static BitmapAnd *
make_bitmap_and(List *bitmapplans)
{
BitmapAnd *node = makeNode(BitmapAnd);
Plan *plan = &node->plan;
/* cost should be inserted by caller */
plan->targetlist = NIL;
plan->qual = NIL;
plan->lefttree = NULL;
plan->righttree = NULL;
node->bitmapplans = bitmapplans;
return node;
}
static BitmapOr *
make_bitmap_or(List *bitmapplans)
{
BitmapOr *node = makeNode(BitmapOr);
Plan *plan = &node->plan;
/* cost should be inserted by caller */
plan->targetlist = NIL;
plan->qual = NIL;
plan->lefttree = NULL;
plan->righttree = NULL;
node->bitmapplans = bitmapplans;
return node;
}
static NestLoop *
make_nestloop(List *tlist,
List *joinclauses,
List *otherclauses,
List *nestParams,
Plan *lefttree,
Plan *righttree,
JoinType jointype)
{
NestLoop *node = makeNode(NestLoop);
Plan *plan = &node->join.plan;
/* cost should be inserted by caller */
plan->targetlist = tlist;
plan->qual = otherclauses;
plan->lefttree = lefttree;
plan->righttree = righttree;
node->join.jointype = jointype;
node->join.joinqual = joinclauses;
node->nestParams = nestParams;
return node;
}
static HashJoin *
make_hashjoin(List *tlist,
List *joinclauses,
List *otherclauses,
List *hashclauses,
Plan *lefttree,
Plan *righttree,
JoinType jointype)
{
HashJoin *node = makeNode(HashJoin);
Plan *plan = &node->join.plan;
/* cost should be inserted by caller */
plan->targetlist = tlist;
plan->qual = otherclauses;
plan->lefttree = lefttree;
plan->righttree = righttree;
node->hashclauses = hashclauses;
node->join.jointype = jointype;
node->join.joinqual = joinclauses;
return node;
}
static Hash *
make_hash(Plan *lefttree,
Oid skewTable,
AttrNumber skewColumn,
bool skewInherit,
Oid skewColType,
int32 skewColTypmod)
{
Hash *node = makeNode(Hash);
Plan *plan = &node->plan;
copy_plan_costsize(plan, lefttree);
/*
* For plausibility, make startup & total costs equal total cost of input
* plan; this only affects EXPLAIN display not decisions.
*/
plan->startup_cost = plan->total_cost;
plan->targetlist = lefttree->targetlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->skewTable = skewTable;
node->skewColumn = skewColumn;
node->skewInherit = skewInherit;
node->skewColType = skewColType;
node->skewColTypmod = skewColTypmod;
return node;
}
static MergeJoin *
make_mergejoin(List *tlist,
List *joinclauses,
List *otherclauses,
List *mergeclauses,
Oid *mergefamilies,
Oid *mergecollations,
int *mergestrategies,
bool *mergenullsfirst,
Plan *lefttree,
Plan *righttree,
JoinType jointype)
{
MergeJoin *node = makeNode(MergeJoin);
Plan *plan = &node->join.plan;
/* cost should be inserted by caller */
plan->targetlist = tlist;
plan->qual = otherclauses;
plan->lefttree = lefttree;
plan->righttree = righttree;
node->mergeclauses = mergeclauses;
node->mergeFamilies = mergefamilies;
node->mergeCollations = mergecollations;
node->mergeStrategies = mergestrategies;
node->mergeNullsFirst = mergenullsfirst;
node->join.jointype = jointype;
node->join.joinqual = joinclauses;
return node;
}
/*
* make_sort --- basic routine to build a Sort plan node
*
* Caller must have built the sortColIdx, sortOperators, collations, and
* nullsFirst arrays already.
* limit_tuples is as for cost_sort (in particular, pass -1 if no limit)
*/
static Sort *
make_sort(PlannerInfo *root, Plan *lefttree, int numCols,
AttrNumber *sortColIdx, Oid *sortOperators,
Oid *collations, bool *nullsFirst,
double limit_tuples)
{
Sort *node = makeNode(Sort);
Plan *plan = &node->plan;
Path sort_path; /* dummy for result of cost_sort */
copy_plan_costsize(plan, lefttree); /* only care about copying size */
cost_sort(&sort_path, root, NIL,
lefttree->total_cost,
lefttree->plan_rows,
lefttree->plan_width,
0.0,
work_mem,
limit_tuples);
plan->startup_cost = sort_path.startup_cost;
plan->total_cost = sort_path.total_cost;
plan->targetlist = lefttree->targetlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->numCols = numCols;
node->sortColIdx = sortColIdx;
node->sortOperators = sortOperators;
node->collations = collations;
node->nullsFirst = nullsFirst;
return node;
}
/*
* prepare_sort_from_pathkeys
* Prepare to sort according to given pathkeys
*
* This is used to set up for both Sort and MergeAppend nodes. It calculates
* the executor's representation of the sort key information, and adjusts the
* plan targetlist if needed to add resjunk sort columns.
*
* Input parameters:
* 'lefttree' is the plan node which yields input tuples
* 'pathkeys' is the list of pathkeys by which the result is to be sorted
* 'relids' identifies the child relation being sorted, if any
* 'reqColIdx' is NULL or an array of required sort key column numbers
* 'adjust_tlist_in_place' is TRUE if lefttree must be modified in-place
*
* We must convert the pathkey information into arrays of sort key column
* numbers, sort operator OIDs, collation OIDs, and nulls-first flags,
* which is the representation the executor wants. These are returned into
* the output parameters *p_numsortkeys etc.
*
* When looking for matches to an EquivalenceClass's members, we will only
* consider child EC members if they match 'relids'. This protects against
* possible incorrect matches to child expressions that contain no Vars.
*
* If reqColIdx isn't NULL then it contains sort key column numbers that
* we should match. This is used when making child plans for a MergeAppend;
* it's an error if we can't match the columns.
*
* If the pathkeys include expressions that aren't simple Vars, we will
* usually need to add resjunk items to the input plan's targetlist to
* compute these expressions, since the Sort/MergeAppend node itself won't
* do any such calculations. If the input plan type isn't one that can do
* projections, this means adding a Result node just to do the projection.
* However, the caller can pass adjust_tlist_in_place = TRUE to force the
* lefttree tlist to be modified in-place regardless of whether the node type
* can project --- we use this for fixing the tlist of MergeAppend itself.
*
* Returns the node which is to be the input to the Sort (either lefttree,
* or a Result stacked atop lefttree).
*/
static Plan *
prepare_sort_from_pathkeys(PlannerInfo *root, Plan *lefttree, List *pathkeys,
Relids relids,
const AttrNumber *reqColIdx,
bool adjust_tlist_in_place,
int *p_numsortkeys,
AttrNumber **p_sortColIdx,
Oid **p_sortOperators,
Oid **p_collations,
bool **p_nullsFirst)
{
List *tlist = lefttree->targetlist;
ListCell *i;
int numsortkeys;
AttrNumber *sortColIdx;
Oid *sortOperators;
Oid *collations;
bool *nullsFirst;
/*
* We will need at most list_length(pathkeys) sort columns; possibly less
*/
numsortkeys = list_length(pathkeys);
sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
numsortkeys = 0;
foreach(i, pathkeys)
{
PathKey *pathkey = (PathKey *) lfirst(i);
EquivalenceClass *ec = pathkey->pk_eclass;
EquivalenceMember *em;
TargetEntry *tle = NULL;
Oid pk_datatype = InvalidOid;
Oid sortop;
ListCell *j;
if (ec->ec_has_volatile)
{
/*
* If the pathkey's EquivalenceClass is volatile, then it must
* have come from an ORDER BY clause, and we have to match it to
* that same targetlist entry.
*/
if (ec->ec_sortref == 0) /* can't happen */
elog(ERROR, "volatile EquivalenceClass has no sortref");
tle = get_sortgroupref_tle(ec->ec_sortref, tlist);
Assert(tle);
Assert(list_length(ec->ec_members) == 1);
pk_datatype = ((EquivalenceMember *) linitial(ec->ec_members))->em_datatype;
}
else if (reqColIdx != NULL)
{
/*
* If we are given a sort column number to match, only consider
* the single TLE at that position. It's possible that there is
* no such TLE, in which case fall through and generate a resjunk
* targetentry (we assume this must have happened in the parent
* plan as well). If there is a TLE but it doesn't match the
* pathkey's EC, we do the same, which is probably the wrong thing
* but we'll leave it to caller to complain about the mismatch.
*/
tle = get_tle_by_resno(tlist, reqColIdx[numsortkeys]);
if (tle)
{
em = find_ec_member_for_tle(ec, tle, relids);
if (em)
{
/* found expr at right place in tlist */
pk_datatype = em->em_datatype;
}
else
tle = NULL;
}
}
else
{
/*
* Otherwise, we can sort by any non-constant expression listed in
* the pathkey's EquivalenceClass. For now, we take the first
* tlist item found in the EC. If there's no match, we'll generate
* a resjunk entry using the first EC member that is an expression
* in the input's vars. (The non-const restriction only matters
* if the EC is below_outer_join; but if it isn't, it won't
* contain consts anyway, else we'd have discarded the pathkey as
* redundant.)
*
* XXX if we have a choice, is there any way of figuring out which
* might be cheapest to execute? (For example, int4lt is likely
* much cheaper to execute than numericlt, but both might appear
* in the same equivalence class...) Not clear that we ever will
* have an interesting choice in practice, so it may not matter.
*/
foreach(j, tlist)
{
tle = (TargetEntry *) lfirst(j);
em = find_ec_member_for_tle(ec, tle, relids);
if (em)
{
/* found expr already in tlist */
pk_datatype = em->em_datatype;
break;
}
tle = NULL;
}
}
if (!tle)
{
/*
* No matching tlist item; look for a computable expression. Note
* that we treat Aggrefs as if they were variables; this is
* necessary when attempting to sort the output from an Agg node
* for use in a WindowFunc (since grouping_planner will have
* treated the Aggrefs as variables, too).
*/
Expr *sortexpr = NULL;
foreach(j, ec->ec_members)
{
EquivalenceMember *em = (EquivalenceMember *) lfirst(j);
List *exprvars;
ListCell *k;
/*
* We shouldn't be trying to sort by an equivalence class that
* contains a constant, so no need to consider such cases any
* further.
*/
if (em->em_is_const)
continue;
/*
* Ignore child members unless they match the rel being
* sorted.
*/
if (em->em_is_child &&
!bms_equal(em->em_relids, relids))
continue;
sortexpr = em->em_expr;
exprvars = pull_var_clause((Node *) sortexpr,
PVC_INCLUDE_AGGREGATES,
PVC_INCLUDE_PLACEHOLDERS);
foreach(k, exprvars)
{
if (!tlist_member_ignore_relabel(lfirst(k), tlist))
break;
}
list_free(exprvars);
if (!k)
{
pk_datatype = em->em_datatype;
break; /* found usable expression */
}
}
if (!j)
elog(ERROR, "could not find pathkey item to sort");
/*
* Do we need to insert a Result node?
*/
if (!adjust_tlist_in_place &&
!is_projection_capable_plan(lefttree))
{
/* copy needed so we don't modify input's tlist below */
tlist = copyObject(tlist);
lefttree = (Plan *) make_result(root, tlist, NULL,
lefttree);
}
/* Don't bother testing is_projection_capable_plan again */
adjust_tlist_in_place = true;
/*
* Add resjunk entry to input's tlist
*/
tle = makeTargetEntry(sortexpr,
list_length(tlist) + 1,
NULL,
true);
tlist = lappend(tlist, tle);
lefttree->targetlist = tlist; /* just in case NIL before */
}
/*
* Look up the correct sort operator from the PathKey's slightly
* abstracted representation.
*/
sortop = get_opfamily_member(pathkey->pk_opfamily,
pk_datatype,
pk_datatype,
pathkey->pk_strategy);
if (!OidIsValid(sortop)) /* should not happen */
elog(ERROR, "could not find member %d(%u,%u) of opfamily %u",
pathkey->pk_strategy, pk_datatype, pk_datatype,
pathkey->pk_opfamily);
/* Add the column to the sort arrays */
sortColIdx[numsortkeys] = tle->resno;
sortOperators[numsortkeys] = sortop;
collations[numsortkeys] = ec->ec_collation;
nullsFirst[numsortkeys] = pathkey->pk_nulls_first;
numsortkeys++;
}
/* Return results */
*p_numsortkeys = numsortkeys;
*p_sortColIdx = sortColIdx;
*p_sortOperators = sortOperators;
*p_collations = collations;
*p_nullsFirst = nullsFirst;
return lefttree;
}
/*
* find_ec_member_for_tle
* Locate an EquivalenceClass member matching the given TLE, if any
*
* Child EC members are ignored unless they match 'relids'.
*/
static EquivalenceMember *
find_ec_member_for_tle(EquivalenceClass *ec,
TargetEntry *tle,
Relids relids)
{
Expr *tlexpr;
ListCell *lc;
/* We ignore binary-compatible relabeling on both ends */
tlexpr = tle->expr;
while (tlexpr && IsA(tlexpr, RelabelType))
tlexpr = ((RelabelType *) tlexpr)->arg;
foreach(lc, ec->ec_members)
{
EquivalenceMember *em = (EquivalenceMember *) lfirst(lc);
Expr *emexpr;
/*
* We shouldn't be trying to sort by an equivalence class that
* contains a constant, so no need to consider such cases any further.
*/
if (em->em_is_const)
continue;
/*
* Ignore child members unless they match the rel being sorted.
*/
if (em->em_is_child &&
!bms_equal(em->em_relids, relids))
continue;
/* Match if same expression (after stripping relabel) */
emexpr = em->em_expr;
while (emexpr && IsA(emexpr, RelabelType))
emexpr = ((RelabelType *) emexpr)->arg;
if (equal(emexpr, tlexpr))
return em;
}
return NULL;
}
/*
* make_sort_from_pathkeys
* Create sort plan to sort according to given pathkeys
*
* 'lefttree' is the node which yields input tuples
* 'pathkeys' is the list of pathkeys by which the result is to be sorted
* 'limit_tuples' is the bound on the number of output tuples;
* -1 if no bound
*/
Sort *
make_sort_from_pathkeys(PlannerInfo *root, Plan *lefttree, List *pathkeys,
double limit_tuples)
{
int numsortkeys;
AttrNumber *sortColIdx;
Oid *sortOperators;
Oid *collations;
bool *nullsFirst;
/* Compute sort column info, and adjust lefttree as needed */
lefttree = prepare_sort_from_pathkeys(root, lefttree, pathkeys,
NULL,
NULL,
false,
&numsortkeys,
&sortColIdx,
&sortOperators,
&collations,
&nullsFirst);
/* Now build the Sort node */
return make_sort(root, lefttree, numsortkeys,
sortColIdx, sortOperators, collations,
nullsFirst, limit_tuples);
}
/*
* make_sort_from_sortclauses
* Create sort plan to sort according to given sortclauses
*
* 'sortcls' is a list of SortGroupClauses
* 'lefttree' is the node which yields input tuples
*/
Sort *
make_sort_from_sortclauses(PlannerInfo *root, List *sortcls, Plan *lefttree)
{
List *sub_tlist = lefttree->targetlist;
ListCell *l;
int numsortkeys;
AttrNumber *sortColIdx;
Oid *sortOperators;
Oid *collations;
bool *nullsFirst;
/* Convert list-ish representation to arrays wanted by executor */
numsortkeys = list_length(sortcls);
sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
numsortkeys = 0;
foreach(l, sortcls)
{
SortGroupClause *sortcl = (SortGroupClause *) lfirst(l);
TargetEntry *tle = get_sortgroupclause_tle(sortcl, sub_tlist);
sortColIdx[numsortkeys] = tle->resno;
sortOperators[numsortkeys] = sortcl->sortop;
collations[numsortkeys] = exprCollation((Node *) tle->expr);
nullsFirst[numsortkeys] = sortcl->nulls_first;
numsortkeys++;
}
return make_sort(root, lefttree, numsortkeys,
sortColIdx, sortOperators, collations,
nullsFirst, -1.0);
}
/*
* make_sort_from_groupcols
* Create sort plan to sort based on grouping columns
*
* 'groupcls' is the list of SortGroupClauses
* 'grpColIdx' gives the column numbers to use
*
* This might look like it could be merged with make_sort_from_sortclauses,
* but presently we *must* use the grpColIdx[] array to locate sort columns,
* because the child plan's tlist is not marked with ressortgroupref info
* appropriate to the grouping node. So, only the sort ordering info
* is used from the SortGroupClause entries.
*/
Sort *
make_sort_from_groupcols(PlannerInfo *root,
List *groupcls,
AttrNumber *grpColIdx,
Plan *lefttree)
{
List *sub_tlist = lefttree->targetlist;
ListCell *l;
int numsortkeys;
AttrNumber *sortColIdx;
Oid *sortOperators;
Oid *collations;
bool *nullsFirst;
/* Convert list-ish representation to arrays wanted by executor */
numsortkeys = list_length(groupcls);
sortColIdx = (AttrNumber *) palloc(numsortkeys * sizeof(AttrNumber));
sortOperators = (Oid *) palloc(numsortkeys * sizeof(Oid));
collations = (Oid *) palloc(numsortkeys * sizeof(Oid));
nullsFirst = (bool *) palloc(numsortkeys * sizeof(bool));
numsortkeys = 0;
foreach(l, groupcls)
{
SortGroupClause *grpcl = (SortGroupClause *) lfirst(l);
TargetEntry *tle = get_tle_by_resno(sub_tlist, grpColIdx[numsortkeys]);
if (!tle)
elog(ERROR, "could not retrieve tle for sort-from-groupcols");
sortColIdx[numsortkeys] = tle->resno;
sortOperators[numsortkeys] = grpcl->sortop;
collations[numsortkeys] = exprCollation((Node *) tle->expr);
nullsFirst[numsortkeys] = grpcl->nulls_first;
numsortkeys++;
}
return make_sort(root, lefttree, numsortkeys,
sortColIdx, sortOperators, collations,
nullsFirst, -1.0);
}
static Material *
make_material(Plan *lefttree)
{
Material *node = makeNode(Material);
Plan *plan = &node->plan;
/* cost should be inserted by caller */
plan->targetlist = lefttree->targetlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
return node;
}
/*
* materialize_finished_plan: stick a Material node atop a completed plan
*
* There are a couple of places where we want to attach a Material node
* after completion of subquery_planner(). This currently requires hackery.
* Since subquery_planner has already run SS_finalize_plan on the subplan
* tree, we have to kluge up parameter lists for the Material node.
* Possibly this could be fixed by postponing SS_finalize_plan processing
* until setrefs.c is run?
*/
Plan *
materialize_finished_plan(Plan *subplan)
{
Plan *matplan;
Path matpath; /* dummy for result of cost_material */
matplan = (Plan *) make_material(subplan);
/* Set cost data */
cost_material(&matpath,
subplan->startup_cost,
subplan->total_cost,
subplan->plan_rows,
subplan->plan_width);
matplan->startup_cost = matpath.startup_cost;
matplan->total_cost = matpath.total_cost;
matplan->plan_rows = subplan->plan_rows;
matplan->plan_width = subplan->plan_width;
/* parameter kluge --- see comments above */
matplan->extParam = bms_copy(subplan->extParam);
matplan->allParam = bms_copy(subplan->allParam);
return matplan;
}
Agg *
make_agg(PlannerInfo *root, List *tlist, List *qual,
AggStrategy aggstrategy, const AggClauseCosts *aggcosts,
int numGroupCols, AttrNumber *grpColIdx, Oid *grpOperators,
List *groupingSets,
long numGroups,
Plan *lefttree)
{
Agg *node = makeNode(Agg);
Plan *plan = &node->plan;
Path agg_path; /* dummy for result of cost_agg */
QualCost qual_cost;
node->aggstrategy = aggstrategy;
node->numCols = numGroupCols;
node->grpColIdx = grpColIdx;
node->grpOperators = grpOperators;
node->numGroups = numGroups;
copy_plan_costsize(plan, lefttree); /* only care about copying size */
cost_agg(&agg_path, root,
aggstrategy, aggcosts,
numGroupCols, numGroups,
lefttree->startup_cost,
lefttree->total_cost,
lefttree->plan_rows);
plan->startup_cost = agg_path.startup_cost;
plan->total_cost = agg_path.total_cost;
/*
* We will produce a single output tuple if not grouping, and a tuple per
* group otherwise.
*/
if (aggstrategy == AGG_PLAIN)
plan->plan_rows = groupingSets ? list_length(groupingSets) : 1;
else
plan->plan_rows = numGroups;
node->groupingSets = groupingSets;
/*
* We also need to account for the cost of evaluation of the qual (ie, the
* HAVING clause) and the tlist. Note that cost_qual_eval doesn't charge
* anything for Aggref nodes; this is okay since they are really
* comparable to Vars.
*
* See notes in add_tlist_costs_to_plan about why only make_agg,
* make_windowagg and make_group worry about tlist eval cost.
*/
if (qual)
{
cost_qual_eval(&qual_cost, qual, root);
plan->startup_cost += qual_cost.startup;
plan->total_cost += qual_cost.startup;
plan->total_cost += qual_cost.per_tuple * plan->plan_rows;
}
add_tlist_costs_to_plan(root, plan, tlist);
plan->qual = qual;
plan->targetlist = tlist;
plan->lefttree = lefttree;
plan->righttree = NULL;
return node;
}
WindowAgg *
make_windowagg(PlannerInfo *root, List *tlist,
List *windowFuncs, Index winref,
int partNumCols, AttrNumber *partColIdx, Oid *partOperators,
int ordNumCols, AttrNumber *ordColIdx, Oid *ordOperators,
int frameOptions, Node *startOffset, Node *endOffset,
Plan *lefttree)
{
WindowAgg *node = makeNode(WindowAgg);
Plan *plan = &node->plan;
Path windowagg_path; /* dummy for result of cost_windowagg */
node->winref = winref;
node->partNumCols = partNumCols;
node->partColIdx = partColIdx;
node->partOperators = partOperators;
node->ordNumCols = ordNumCols;
node->ordColIdx = ordColIdx;
node->ordOperators = ordOperators;
node->frameOptions = frameOptions;
node->startOffset = startOffset;
node->endOffset = endOffset;
copy_plan_costsize(plan, lefttree); /* only care about copying size */
cost_windowagg(&windowagg_path, root,
windowFuncs, partNumCols, ordNumCols,
lefttree->startup_cost,
lefttree->total_cost,
lefttree->plan_rows);
plan->startup_cost = windowagg_path.startup_cost;
plan->total_cost = windowagg_path.total_cost;
/*
* We also need to account for the cost of evaluation of the tlist.
*
* See notes in add_tlist_costs_to_plan about why only make_agg,
* make_windowagg and make_group worry about tlist eval cost.
*/
add_tlist_costs_to_plan(root, plan, tlist);
plan->targetlist = tlist;
plan->lefttree = lefttree;
plan->righttree = NULL;
/* WindowAgg nodes never have a qual clause */
plan->qual = NIL;
return node;
}
Group *
make_group(PlannerInfo *root,
List *tlist,
List *qual,
int numGroupCols,
AttrNumber *grpColIdx,
Oid *grpOperators,
double numGroups,
Plan *lefttree)
{
Group *node = makeNode(Group);
Plan *plan = &node->plan;
Path group_path; /* dummy for result of cost_group */
QualCost qual_cost;
node->numCols = numGroupCols;
node->grpColIdx = grpColIdx;
node->grpOperators = grpOperators;
copy_plan_costsize(plan, lefttree); /* only care about copying size */
cost_group(&group_path, root,
numGroupCols, numGroups,
lefttree->startup_cost,
lefttree->total_cost,
lefttree->plan_rows);
plan->startup_cost = group_path.startup_cost;
plan->total_cost = group_path.total_cost;
/* One output tuple per estimated result group */
plan->plan_rows = numGroups;
/*
* We also need to account for the cost of evaluation of the qual (ie, the
* HAVING clause) and the tlist.
*
* XXX this double-counts the cost of evaluation of any expressions used
* for grouping, since in reality those will have been evaluated at a
* lower plan level and will only be copied by the Group node. Worth
* fixing?
*
* See notes in add_tlist_costs_to_plan about why only make_agg,
* make_windowagg and make_group worry about tlist eval cost.
*/
if (qual)
{
cost_qual_eval(&qual_cost, qual, root);
plan->startup_cost += qual_cost.startup;
plan->total_cost += qual_cost.startup;
plan->total_cost += qual_cost.per_tuple * plan->plan_rows;
}
add_tlist_costs_to_plan(root, plan, tlist);
plan->qual = qual;
plan->targetlist = tlist;
plan->lefttree = lefttree;
plan->righttree = NULL;
return node;
}
/*
* distinctList is a list of SortGroupClauses, identifying the targetlist items
* that should be considered by the Unique filter. The input path must
* already be sorted accordingly.
*/
Unique *
make_unique(Plan *lefttree, List *distinctList)
{
Unique *node = makeNode(Unique);
Plan *plan = &node->plan;
int numCols = list_length(distinctList);
int keyno = 0;
AttrNumber *uniqColIdx;
Oid *uniqOperators;
ListCell *slitem;
copy_plan_costsize(plan, lefttree);
/*
* Charge one cpu_operator_cost per comparison per input tuple. We assume
* all columns get compared at most of the tuples. (XXX probably this is
* an overestimate.)
*/
plan->total_cost += cpu_operator_cost * plan->plan_rows * numCols;
/*
* plan->plan_rows is left as a copy of the input subplan's plan_rows; ie,
* we assume the filter removes nothing. The caller must alter this if he
* has a better idea.
*/
plan->targetlist = lefttree->targetlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
/*
* convert SortGroupClause list into arrays of attr indexes and equality
* operators, as wanted by executor
*/
Assert(numCols > 0);
uniqColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
uniqOperators = (Oid *) palloc(sizeof(Oid) * numCols);
foreach(slitem, distinctList)
{
SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);
uniqColIdx[keyno] = tle->resno;
uniqOperators[keyno] = sortcl->eqop;
Assert(OidIsValid(uniqOperators[keyno]));
keyno++;
}
node->numCols = numCols;
node->uniqColIdx = uniqColIdx;
node->uniqOperators = uniqOperators;
return node;
}
/*
* distinctList is a list of SortGroupClauses, identifying the targetlist
* items that should be considered by the SetOp filter. The input path must
* already be sorted accordingly.
*/
SetOp *
make_setop(SetOpCmd cmd, SetOpStrategy strategy, Plan *lefttree,
List *distinctList, AttrNumber flagColIdx, int firstFlag,
long numGroups, double outputRows)
{
SetOp *node = makeNode(SetOp);
Plan *plan = &node->plan;
int numCols = list_length(distinctList);
int keyno = 0;
AttrNumber *dupColIdx;
Oid *dupOperators;
ListCell *slitem;
copy_plan_costsize(plan, lefttree);
plan->plan_rows = outputRows;
/*
* Charge one cpu_operator_cost per comparison per input tuple. We assume
* all columns get compared at most of the tuples.
*/
plan->total_cost += cpu_operator_cost * lefttree->plan_rows * numCols;
plan->targetlist = lefttree->targetlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
/*
* convert SortGroupClause list into arrays of attr indexes and equality
* operators, as wanted by executor
*/
Assert(numCols > 0);
dupColIdx = (AttrNumber *) palloc(sizeof(AttrNumber) * numCols);
dupOperators = (Oid *) palloc(sizeof(Oid) * numCols);
foreach(slitem, distinctList)
{
SortGroupClause *sortcl = (SortGroupClause *) lfirst(slitem);
TargetEntry *tle = get_sortgroupclause_tle(sortcl, plan->targetlist);
dupColIdx[keyno] = tle->resno;
dupOperators[keyno] = sortcl->eqop;
Assert(OidIsValid(dupOperators[keyno]));
keyno++;
}
node->cmd = cmd;
node->strategy = strategy;
node->numCols = numCols;
node->dupColIdx = dupColIdx;
node->dupOperators = dupOperators;
node->flagColIdx = flagColIdx;
node->firstFlag = firstFlag;
node->numGroups = numGroups;
return node;
}
/*
* make_lockrows
* Build a LockRows plan node
*/
LockRows *
make_lockrows(Plan *lefttree, List *rowMarks, int epqParam)
{
LockRows *node = makeNode(LockRows);
Plan *plan = &node->plan;
copy_plan_costsize(plan, lefttree);
/* charge cpu_tuple_cost to reflect locking costs (underestimate?) */
plan->total_cost += cpu_tuple_cost * plan->plan_rows;
plan->targetlist = lefttree->targetlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->rowMarks = rowMarks;
node->epqParam = epqParam;
return node;
}
/*
* Note: offset_est and count_est are passed in to save having to repeat
* work already done to estimate the values of the limitOffset and limitCount
* expressions. Their values are as returned by preprocess_limit (0 means
* "not relevant", -1 means "couldn't estimate"). Keep the code below in sync
* with that function!
*/
Limit *
make_limit(Plan *lefttree, Node *limitOffset, Node *limitCount,
int64 offset_est, int64 count_est)
{
Limit *node = makeNode(Limit);
Plan *plan = &node->plan;
copy_plan_costsize(plan, lefttree);
/*
* Adjust the output rows count and costs according to the offset/limit.
* This is only a cosmetic issue if we are at top level, but if we are
* building a subquery then it's important to report correct info to the
* outer planner.
*
* When the offset or count couldn't be estimated, use 10% of the
* estimated number of rows emitted from the subplan.
*/
if (offset_est != 0)
{
double offset_rows;
if (offset_est > 0)
offset_rows = (double) offset_est;
else
offset_rows = clamp_row_est(lefttree->plan_rows * 0.10);
if (offset_rows > plan->plan_rows)
offset_rows = plan->plan_rows;
if (plan->plan_rows > 0)
plan->startup_cost +=
(plan->total_cost - plan->startup_cost)
* offset_rows / plan->plan_rows;
plan->plan_rows -= offset_rows;
if (plan->plan_rows < 1)
plan->plan_rows = 1;
}
if (count_est != 0)
{
double count_rows;
if (count_est > 0)
count_rows = (double) count_est;
else
count_rows = clamp_row_est(lefttree->plan_rows * 0.10);
if (count_rows > plan->plan_rows)
count_rows = plan->plan_rows;
if (plan->plan_rows > 0)
plan->total_cost = plan->startup_cost +
(plan->total_cost - plan->startup_cost)
* count_rows / plan->plan_rows;
plan->plan_rows = count_rows;
if (plan->plan_rows < 1)
plan->plan_rows = 1;
}
plan->targetlist = lefttree->targetlist;
plan->qual = NIL;
plan->lefttree = lefttree;
plan->righttree = NULL;
node->limitOffset = limitOffset;
node->limitCount = limitCount;
return node;
}
/*
* make_result
* Build a Result plan node
*
* If we have a subplan, assume that any evaluation costs for the gating qual
* were already factored into the subplan's startup cost, and just copy the
* subplan cost. If there's no subplan, we should include the qual eval
* cost. In either case, tlist eval cost is not to be included here.
*/
Result *
make_result(PlannerInfo *root,
List *tlist,
Node *resconstantqual,
Plan *subplan)
{
Result *node = makeNode(Result);
Plan *plan = &node->plan;
if (subplan)
copy_plan_costsize(plan, subplan);
else
{
plan->startup_cost = 0;
plan->total_cost = cpu_tuple_cost;
plan->plan_rows = 1; /* wrong if we have a set-valued function? */
plan->plan_width = 0; /* XXX is it worth being smarter? */
if (resconstantqual)
{
QualCost qual_cost;
cost_qual_eval(&qual_cost, (List *) resconstantqual, root);
/* resconstantqual is evaluated once at startup */
plan->startup_cost += qual_cost.startup + qual_cost.per_tuple;
plan->total_cost += qual_cost.startup + qual_cost.per_tuple;
}
}
plan->targetlist = tlist;
plan->qual = NIL;
plan->lefttree = subplan;
plan->righttree = NULL;
node->resconstantqual = resconstantqual;
return node;
}
/*
* make_modifytable
* Build a ModifyTable plan node
*
* Currently, we don't charge anything extra for the actual table modification
* work, nor for the WITH CHECK OPTIONS or RETURNING expressions if any. It
* would only be window dressing, since these are always top-level nodes and
* there is no way for the costs to change any higher-level planning choices.
* But we might want to make it look better sometime.
*/
ModifyTable *
make_modifytable(PlannerInfo *root,
CmdType operation, bool canSetTag,
Index nominalRelation,
List *resultRelations, List *subplans,
List *withCheckOptionLists, List *returningLists,
List *rowMarks, OnConflictExpr *onconflict, int epqParam)
{
ModifyTable *node = makeNode(ModifyTable);
Plan *plan = &node->plan;
double total_size;
List *fdw_private_list;
ListCell *subnode;
ListCell *lc;
int i;
Assert(list_length(resultRelations) == list_length(subplans));
Assert(withCheckOptionLists == NIL ||
list_length(resultRelations) == list_length(withCheckOptionLists));
Assert(returningLists == NIL ||
list_length(resultRelations) == list_length(returningLists));
/*
* Compute cost as sum of subplan costs.
*/
plan->startup_cost = 0;
plan->total_cost = 0;
plan->plan_rows = 0;
total_size = 0;
foreach(subnode, subplans)
{
Plan *subplan = (Plan *) lfirst(subnode);
if (subnode == list_head(subplans)) /* first node? */
plan->startup_cost = subplan->startup_cost;
plan->total_cost += subplan->total_cost;
plan->plan_rows += subplan->plan_rows;
total_size += subplan->plan_width * subplan->plan_rows;
}
if (plan->plan_rows > 0)
plan->plan_width = rint(total_size / plan->plan_rows);
else
plan->plan_width = 0;
node->plan.lefttree = NULL;
node->plan.righttree = NULL;
node->plan.qual = NIL;
/* setrefs.c will fill in the targetlist, if needed */
node->plan.targetlist = NIL;
node->operation = operation;
node->canSetTag = canSetTag;
node->nominalRelation = nominalRelation;
node->resultRelations = resultRelations;
node->resultRelIndex = -1; /* will be set correctly in setrefs.c */
node->plans = subplans;
if (!onconflict)
{
node->onConflictAction = ONCONFLICT_NONE;
node->onConflictSet = NIL;
node->onConflictWhere = NULL;
node->arbiterIndexes = NIL;
node->exclRelRTI = 0;
node->exclRelTlist = NIL;
}
else
{
node->onConflictAction = onconflict->action;
node->onConflictSet = onconflict->onConflictSet;
node->onConflictWhere = onconflict->onConflictWhere;
/*
* If a set of unique index inference elements was provided (an
* INSERT...ON CONFLICT "inference specification"), then infer
* appropriate unique indexes (or throw an error if none are
* available).
*/
node->arbiterIndexes = infer_arbiter_indexes(root);
node->exclRelRTI = onconflict->exclRelIndex;
node->exclRelTlist = onconflict->exclRelTlist;
}
node->withCheckOptionLists = withCheckOptionLists;
node->returningLists = returningLists;
node->rowMarks = rowMarks;
node->epqParam = epqParam;
/*
* For each result relation that is a foreign table, allow the FDW to
* construct private plan data, and accumulate it all into a list.
*/
fdw_private_list = NIL;
i = 0;
foreach(lc, resultRelations)
{
Index rti = lfirst_int(lc);
FdwRoutine *fdwroutine;
List *fdw_private;
/*
* If possible, we want to get the FdwRoutine from our RelOptInfo for
* the table. But sometimes we don't have a RelOptInfo and must get
* it the hard way. (In INSERT, the target relation is not scanned,
* so it's not a baserel; and there are also corner cases for
* updatable views where the target rel isn't a baserel.)
*/
if (rti < root->simple_rel_array_size &&
root->simple_rel_array[rti] != NULL)
{
RelOptInfo *resultRel = root->simple_rel_array[rti];
fdwroutine = resultRel->fdwroutine;
}
else
{
RangeTblEntry *rte = planner_rt_fetch(rti, root);
Assert(rte->rtekind == RTE_RELATION);
if (rte->relkind == RELKIND_FOREIGN_TABLE)
fdwroutine = GetFdwRoutineByRelId(rte->relid);
else
fdwroutine = NULL;
}
if (fdwroutine != NULL &&
fdwroutine->PlanForeignModify != NULL)
fdw_private = fdwroutine->PlanForeignModify(root, node, rti, i);
else
fdw_private = NIL;
fdw_private_list = lappend(fdw_private_list, fdw_private);
i++;
}
node->fdwPrivLists = fdw_private_list;
return node;
}
/*
* is_projection_capable_plan
* Check whether a given Plan node is able to do projection.
*/
bool
is_projection_capable_plan(Plan *plan)
{
/* Most plan types can project, so just list the ones that can't */
switch (nodeTag(plan))
{
case T_Hash:
case T_Material:
case T_Sort:
case T_Unique:
case T_SetOp:
case T_LockRows:
case T_Limit:
case T_ModifyTable:
case T_Append:
case T_MergeAppend:
case T_RecursiveUnion:
return false;
default:
break;
}
return true;
}