postgresql/src/backend/optimizer/plan/planner.c

4631 lines
142 KiB
C

/*-------------------------------------------------------------------------
*
* planner.c
* The query optimizer external interface.
*
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/plan/planner.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <limits.h>
#include <math.h>
#include "access/htup_details.h"
#include "executor/executor.h"
#include "executor/nodeAgg.h"
#include "foreign/fdwapi.h"
#include "miscadmin.h"
#include "lib/bipartite_match.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#ifdef OPTIMIZER_DEBUG
#include "nodes/print.h"
#endif
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/plancat.h"
#include "optimizer/planmain.h"
#include "optimizer/planner.h"
#include "optimizer/prep.h"
#include "optimizer/subselect.h"
#include "optimizer/tlist.h"
#include "parser/analyze.h"
#include "parser/parsetree.h"
#include "parser/parse_agg.h"
#include "rewrite/rewriteManip.h"
#include "utils/rel.h"
#include "utils/selfuncs.h"
/* GUC parameter */
double cursor_tuple_fraction = DEFAULT_CURSOR_TUPLE_FRACTION;
/* Hook for plugins to get control in planner() */
planner_hook_type planner_hook = NULL;
/* Expression kind codes for preprocess_expression */
#define EXPRKIND_QUAL 0
#define EXPRKIND_TARGET 1
#define EXPRKIND_RTFUNC 2
#define EXPRKIND_RTFUNC_LATERAL 3
#define EXPRKIND_VALUES 4
#define EXPRKIND_VALUES_LATERAL 5
#define EXPRKIND_LIMIT 6
#define EXPRKIND_APPINFO 7
#define EXPRKIND_PHV 8
#define EXPRKIND_TABLESAMPLE 9
/* Passthrough data for standard_qp_callback */
typedef struct
{
List *tlist; /* preprocessed query targetlist */
List *activeWindows; /* active windows, if any */
List *groupClause; /* overrides parse->groupClause */
} standard_qp_extra;
/* Local functions */
static Node *preprocess_expression(PlannerInfo *root, Node *expr, int kind);
static void preprocess_qual_conditions(PlannerInfo *root, Node *jtnode);
static Plan *inheritance_planner(PlannerInfo *root);
static Plan *grouping_planner(PlannerInfo *root, double tuple_fraction);
static void preprocess_rowmarks(PlannerInfo *root);
static double preprocess_limit(PlannerInfo *root,
double tuple_fraction,
int64 *offset_est, int64 *count_est);
static bool limit_needed(Query *parse);
static List *preprocess_groupclause(PlannerInfo *root, List *force);
static List *extract_rollup_sets(List *groupingSets);
static List *reorder_grouping_sets(List *groupingSets, List *sortclause);
static void standard_qp_callback(PlannerInfo *root, void *extra);
static bool choose_hashed_grouping(PlannerInfo *root,
double tuple_fraction, double limit_tuples,
double path_rows, int path_width,
Path *cheapest_path, Path *sorted_path,
double dNumGroups, AggClauseCosts *agg_costs);
static bool choose_hashed_distinct(PlannerInfo *root,
double tuple_fraction, double limit_tuples,
double path_rows, int path_width,
Cost cheapest_startup_cost, Cost cheapest_total_cost,
Cost sorted_startup_cost, Cost sorted_total_cost,
List *sorted_pathkeys,
double dNumDistinctRows);
static List *make_subplanTargetList(PlannerInfo *root, List *tlist,
AttrNumber **groupColIdx, bool *need_tlist_eval);
static int get_grouping_column_index(Query *parse, TargetEntry *tle);
static void locate_grouping_columns(PlannerInfo *root,
List *tlist,
List *sub_tlist,
AttrNumber *groupColIdx);
static List *postprocess_setop_tlist(List *new_tlist, List *orig_tlist);
static List *select_active_windows(PlannerInfo *root, WindowFuncLists *wflists);
static List *make_windowInputTargetList(PlannerInfo *root,
List *tlist, List *activeWindows);
static List *make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
List *tlist);
static void get_column_info_for_window(PlannerInfo *root, WindowClause *wc,
List *tlist,
int numSortCols, AttrNumber *sortColIdx,
int *partNumCols,
AttrNumber **partColIdx,
Oid **partOperators,
int *ordNumCols,
AttrNumber **ordColIdx,
Oid **ordOperators);
static Plan *build_grouping_chain(PlannerInfo *root,
Query *parse,
List *tlist,
bool need_sort_for_grouping,
List *rollup_groupclauses,
List *rollup_lists,
AttrNumber *groupColIdx,
AggClauseCosts *agg_costs,
long numGroups,
Plan *result_plan);
/*****************************************************************************
*
* Query optimizer entry point
*
* To support loadable plugins that monitor or modify planner behavior,
* we provide a hook variable that lets a plugin get control before and
* after the standard planning process. The plugin would normally call
* standard_planner().
*
* Note to plugin authors: standard_planner() scribbles on its Query input,
* so you'd better copy that data structure if you want to plan more than once.
*
*****************************************************************************/
PlannedStmt *
planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
{
PlannedStmt *result;
if (planner_hook)
result = (*planner_hook) (parse, cursorOptions, boundParams);
else
result = standard_planner(parse, cursorOptions, boundParams);
return result;
}
PlannedStmt *
standard_planner(Query *parse, int cursorOptions, ParamListInfo boundParams)
{
PlannedStmt *result;
PlannerGlobal *glob;
double tuple_fraction;
PlannerInfo *root;
Plan *top_plan;
ListCell *lp,
*lr;
/* Cursor options may come from caller or from DECLARE CURSOR stmt */
if (parse->utilityStmt &&
IsA(parse->utilityStmt, DeclareCursorStmt))
cursorOptions |= ((DeclareCursorStmt *) parse->utilityStmt)->options;
/*
* Set up global state for this planner invocation. This data is needed
* across all levels of sub-Query that might exist in the given command,
* so we keep it in a separate struct that's linked to by each per-Query
* PlannerInfo.
*/
glob = makeNode(PlannerGlobal);
glob->boundParams = boundParams;
glob->subplans = NIL;
glob->subroots = NIL;
glob->rewindPlanIDs = NULL;
glob->finalrtable = NIL;
glob->finalrowmarks = NIL;
glob->resultRelations = NIL;
glob->relationOids = NIL;
glob->invalItems = NIL;
glob->nParamExec = 0;
glob->lastPHId = 0;
glob->lastRowMarkId = 0;
glob->transientPlan = false;
glob->hasRowSecurity = false;
/* Determine what fraction of the plan is likely to be scanned */
if (cursorOptions & CURSOR_OPT_FAST_PLAN)
{
/*
* We have no real idea how many tuples the user will ultimately FETCH
* from a cursor, but it is often the case that he doesn't want 'em
* all, or would prefer a fast-start plan anyway so that he can
* process some of the tuples sooner. Use a GUC parameter to decide
* what fraction to optimize for.
*/
tuple_fraction = cursor_tuple_fraction;
/*
* We document cursor_tuple_fraction as simply being a fraction, which
* means the edge cases 0 and 1 have to be treated specially here. We
* convert 1 to 0 ("all the tuples") and 0 to a very small fraction.
*/
if (tuple_fraction >= 1.0)
tuple_fraction = 0.0;
else if (tuple_fraction <= 0.0)
tuple_fraction = 1e-10;
}
else
{
/* Default assumption is we need all the tuples */
tuple_fraction = 0.0;
}
/* primary planning entry point (may recurse for subqueries) */
top_plan = subquery_planner(glob, parse, NULL,
false, tuple_fraction, &root);
/*
* If creating a plan for a scrollable cursor, make sure it can run
* backwards on demand. Add a Material node at the top at need.
*/
if (cursorOptions & CURSOR_OPT_SCROLL)
{
if (!ExecSupportsBackwardScan(top_plan))
top_plan = materialize_finished_plan(top_plan);
}
/* final cleanup of the plan */
Assert(glob->finalrtable == NIL);
Assert(glob->finalrowmarks == NIL);
Assert(glob->resultRelations == NIL);
top_plan = set_plan_references(root, top_plan);
/* ... and the subplans (both regular subplans and initplans) */
Assert(list_length(glob->subplans) == list_length(glob->subroots));
forboth(lp, glob->subplans, lr, glob->subroots)
{
Plan *subplan = (Plan *) lfirst(lp);
PlannerInfo *subroot = (PlannerInfo *) lfirst(lr);
lfirst(lp) = set_plan_references(subroot, subplan);
}
/* build the PlannedStmt result */
result = makeNode(PlannedStmt);
result->commandType = parse->commandType;
result->queryId = parse->queryId;
result->hasReturning = (parse->returningList != NIL);
result->hasModifyingCTE = parse->hasModifyingCTE;
result->canSetTag = parse->canSetTag;
result->transientPlan = glob->transientPlan;
result->planTree = top_plan;
result->rtable = glob->finalrtable;
result->resultRelations = glob->resultRelations;
result->utilityStmt = parse->utilityStmt;
result->subplans = glob->subplans;
result->rewindPlanIDs = glob->rewindPlanIDs;
result->rowMarks = glob->finalrowmarks;
result->relationOids = glob->relationOids;
result->invalItems = glob->invalItems;
result->nParamExec = glob->nParamExec;
result->hasRowSecurity = glob->hasRowSecurity;
return result;
}
/*--------------------
* subquery_planner
* Invokes the planner on a subquery. We recurse to here for each
* sub-SELECT found in the query tree.
*
* glob is the global state for the current planner run.
* parse is the querytree produced by the parser & rewriter.
* parent_root is the immediate parent Query's info (NULL at the top level).
* hasRecursion is true if this is a recursive WITH query.
* tuple_fraction is the fraction of tuples we expect will be retrieved.
* tuple_fraction is interpreted as explained for grouping_planner, below.
*
* If subroot isn't NULL, we pass back the query's final PlannerInfo struct;
* among other things this tells the output sort ordering of the plan.
*
* Basically, this routine does the stuff that should only be done once
* per Query object. It then calls grouping_planner. At one time,
* grouping_planner could be invoked recursively on the same Query object;
* that's not currently true, but we keep the separation between the two
* routines anyway, in case we need it again someday.
*
* subquery_planner will be called recursively to handle sub-Query nodes
* found within the query's expressions and rangetable.
*
* Returns a query plan.
*--------------------
*/
Plan *
subquery_planner(PlannerGlobal *glob, Query *parse,
PlannerInfo *parent_root,
bool hasRecursion, double tuple_fraction,
PlannerInfo **subroot)
{
int num_old_subplans = list_length(glob->subplans);
PlannerInfo *root;
Plan *plan;
List *newWithCheckOptions;
List *newHaving;
bool hasOuterJoins;
ListCell *l;
/* Create a PlannerInfo data structure for this subquery */
root = makeNode(PlannerInfo);
root->parse = parse;
root->glob = glob;
root->query_level = parent_root ? parent_root->query_level + 1 : 1;
root->parent_root = parent_root;
root->plan_params = NIL;
root->planner_cxt = CurrentMemoryContext;
root->init_plans = NIL;
root->cte_plan_ids = NIL;
root->multiexpr_params = NIL;
root->eq_classes = NIL;
root->append_rel_list = NIL;
root->rowMarks = NIL;
root->hasInheritedTarget = false;
root->grouping_map = NULL;
root->hasRecursion = hasRecursion;
if (hasRecursion)
root->wt_param_id = SS_assign_special_param(root);
else
root->wt_param_id = -1;
root->non_recursive_plan = NULL;
/*
* If there is a WITH list, process each WITH query and build an initplan
* SubPlan structure for it.
*/
if (parse->cteList)
SS_process_ctes(root);
/*
* Look for ANY and EXISTS SubLinks in WHERE and JOIN/ON clauses, and try
* to transform them into joins. Note that this step does not descend
* into subqueries; if we pull up any subqueries below, their SubLinks are
* processed just before pulling them up.
*/
if (parse->hasSubLinks)
pull_up_sublinks(root);
/*
* Scan the rangetable for set-returning functions, and inline them if
* possible (producing subqueries that might get pulled up next).
* Recursion issues here are handled in the same way as for SubLinks.
*/
inline_set_returning_functions(root);
/*
* Check to see if any subqueries in the jointree can be merged into this
* query.
*/
pull_up_subqueries(root);
/*
* If this is a simple UNION ALL query, flatten it into an appendrel. We
* do this now because it requires applying pull_up_subqueries to the leaf
* queries of the UNION ALL, which weren't touched above because they
* weren't referenced by the jointree (they will be after we do this).
*/
if (parse->setOperations)
flatten_simple_union_all(root);
/*
* Detect whether any rangetable entries are RTE_JOIN kind; if not, we can
* avoid the expense of doing flatten_join_alias_vars(). Also check for
* outer joins --- if none, we can skip reduce_outer_joins(). And check
* for LATERAL RTEs, too. This must be done after we have done
* pull_up_subqueries(), of course.
*/
root->hasJoinRTEs = false;
root->hasLateralRTEs = false;
hasOuterJoins = false;
foreach(l, parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
if (rte->rtekind == RTE_JOIN)
{
root->hasJoinRTEs = true;
if (IS_OUTER_JOIN(rte->jointype))
hasOuterJoins = true;
}
if (rte->lateral)
root->hasLateralRTEs = true;
}
/*
* Preprocess RowMark information. We need to do this after subquery
* pullup (so that all non-inherited RTEs are present) and before
* inheritance expansion (so that the info is available for
* expand_inherited_tables to examine and modify).
*/
preprocess_rowmarks(root);
/*
* Expand any rangetable entries that are inheritance sets into "append
* relations". This can add entries to the rangetable, but they must be
* plain base relations not joins, so it's OK (and marginally more
* efficient) to do it after checking for join RTEs. We must do it after
* pulling up subqueries, else we'd fail to handle inherited tables in
* subqueries.
*/
expand_inherited_tables(root);
/*
* Set hasHavingQual to remember if HAVING clause is present. Needed
* because preprocess_expression will reduce a constant-true condition to
* an empty qual list ... but "HAVING TRUE" is not a semantic no-op.
*/
root->hasHavingQual = (parse->havingQual != NULL);
/* Clear this flag; might get set in distribute_qual_to_rels */
root->hasPseudoConstantQuals = false;
/*
* Do expression preprocessing on targetlist and quals, as well as other
* random expressions in the querytree. Note that we do not need to
* handle sort/group expressions explicitly, because they are actually
* part of the targetlist.
*/
parse->targetList = (List *)
preprocess_expression(root, (Node *) parse->targetList,
EXPRKIND_TARGET);
newWithCheckOptions = NIL;
foreach(l, parse->withCheckOptions)
{
WithCheckOption *wco = (WithCheckOption *) lfirst(l);
wco->qual = preprocess_expression(root, wco->qual,
EXPRKIND_QUAL);
if (wco->qual != NULL)
newWithCheckOptions = lappend(newWithCheckOptions, wco);
}
parse->withCheckOptions = newWithCheckOptions;
parse->returningList = (List *)
preprocess_expression(root, (Node *) parse->returningList,
EXPRKIND_TARGET);
preprocess_qual_conditions(root, (Node *) parse->jointree);
parse->havingQual = preprocess_expression(root, parse->havingQual,
EXPRKIND_QUAL);
foreach(l, parse->windowClause)
{
WindowClause *wc = (WindowClause *) lfirst(l);
/* partitionClause/orderClause are sort/group expressions */
wc->startOffset = preprocess_expression(root, wc->startOffset,
EXPRKIND_LIMIT);
wc->endOffset = preprocess_expression(root, wc->endOffset,
EXPRKIND_LIMIT);
}
parse->limitOffset = preprocess_expression(root, parse->limitOffset,
EXPRKIND_LIMIT);
parse->limitCount = preprocess_expression(root, parse->limitCount,
EXPRKIND_LIMIT);
if (parse->onConflict)
{
parse->onConflict->onConflictSet = (List *)
preprocess_expression(root, (Node *) parse->onConflict->onConflictSet,
EXPRKIND_TARGET);
parse->onConflict->onConflictWhere =
preprocess_expression(root, (Node *) parse->onConflict->onConflictWhere,
EXPRKIND_QUAL);
}
root->append_rel_list = (List *)
preprocess_expression(root, (Node *) root->append_rel_list,
EXPRKIND_APPINFO);
/* Also need to preprocess expressions within RTEs */
foreach(l, parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
int kind;
if (rte->rtekind == RTE_RELATION)
{
if (rte->tablesample)
rte->tablesample = (TableSampleClause *)
preprocess_expression(root,
(Node *) rte->tablesample,
EXPRKIND_TABLESAMPLE);
}
else if (rte->rtekind == RTE_SUBQUERY)
{
/*
* We don't want to do all preprocessing yet on the subquery's
* expressions, since that will happen when we plan it. But if it
* contains any join aliases of our level, those have to get
* expanded now, because planning of the subquery won't do it.
* That's only possible if the subquery is LATERAL.
*/
if (rte->lateral && root->hasJoinRTEs)
rte->subquery = (Query *)
flatten_join_alias_vars(root, (Node *) rte->subquery);
}
else if (rte->rtekind == RTE_FUNCTION)
{
/* Preprocess the function expression(s) fully */
kind = rte->lateral ? EXPRKIND_RTFUNC_LATERAL : EXPRKIND_RTFUNC;
rte->functions = (List *) preprocess_expression(root, (Node *) rte->functions, kind);
}
else if (rte->rtekind == RTE_VALUES)
{
/* Preprocess the values lists fully */
kind = rte->lateral ? EXPRKIND_VALUES_LATERAL : EXPRKIND_VALUES;
rte->values_lists = (List *)
preprocess_expression(root, (Node *) rte->values_lists, kind);
}
}
/*
* In some cases we may want to transfer a HAVING clause into WHERE. We
* cannot do so if the HAVING clause contains aggregates (obviously) or
* volatile functions (since a HAVING clause is supposed to be executed
* only once per group). Also, it may be that the clause is so expensive
* to execute that we're better off doing it only once per group, despite
* the loss of selectivity. This is hard to estimate short of doing the
* entire planning process twice, so we use a heuristic: clauses
* containing subplans are left in HAVING. Otherwise, we move or copy the
* HAVING clause into WHERE, in hopes of eliminating tuples before
* aggregation instead of after.
*
* If the query has explicit grouping then we can simply move such a
* clause into WHERE; any group that fails the clause will not be in the
* output because none of its tuples will reach the grouping or
* aggregation stage. Otherwise we must have a degenerate (variable-free)
* HAVING clause, which we put in WHERE so that query_planner() can use it
* in a gating Result node, but also keep in HAVING to ensure that we
* don't emit a bogus aggregated row. (This could be done better, but it
* seems not worth optimizing.)
*
* Note that both havingQual and parse->jointree->quals are in
* implicitly-ANDed-list form at this point, even though they are declared
* as Node *.
*/
newHaving = NIL;
foreach(l, (List *) parse->havingQual)
{
Node *havingclause = (Node *) lfirst(l);
if (contain_agg_clause(havingclause) ||
contain_volatile_functions(havingclause) ||
contain_subplans(havingclause) ||
parse->groupingSets)
{
/* keep it in HAVING */
newHaving = lappend(newHaving, havingclause);
}
else if (parse->groupClause)
{
/* move it to WHERE */
parse->jointree->quals = (Node *)
lappend((List *) parse->jointree->quals, havingclause);
}
else
{
/* put a copy in WHERE, keep it in HAVING */
parse->jointree->quals = (Node *)
lappend((List *) parse->jointree->quals,
copyObject(havingclause));
newHaving = lappend(newHaving, havingclause);
}
}
parse->havingQual = (Node *) newHaving;
/*
* If we have any outer joins, try to reduce them to plain inner joins.
* This step is most easily done after we've done expression
* preprocessing.
*/
if (hasOuterJoins)
reduce_outer_joins(root);
/*
* Do the main planning. If we have an inherited target relation, that
* needs special processing, else go straight to grouping_planner.
*/
if (parse->resultRelation &&
rt_fetch(parse->resultRelation, parse->rtable)->inh)
plan = inheritance_planner(root);
else
{
plan = grouping_planner(root, tuple_fraction);
/* If it's not SELECT, we need a ModifyTable node */
if (parse->commandType != CMD_SELECT)
{
List *withCheckOptionLists;
List *returningLists;
List *rowMarks;
/*
* Set up the WITH CHECK OPTION and RETURNING lists-of-lists, if
* needed.
*/
if (parse->withCheckOptions)
withCheckOptionLists = list_make1(parse->withCheckOptions);
else
withCheckOptionLists = NIL;
if (parse->returningList)
returningLists = list_make1(parse->returningList);
else
returningLists = NIL;
/*
* If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node
* will have dealt with fetching non-locked marked rows, else we
* need to have ModifyTable do that.
*/
if (parse->rowMarks)
rowMarks = NIL;
else
rowMarks = root->rowMarks;
plan = (Plan *) make_modifytable(root,
parse->commandType,
parse->canSetTag,
parse->resultRelation,
list_make1_int(parse->resultRelation),
list_make1(plan),
withCheckOptionLists,
returningLists,
rowMarks,
parse->onConflict,
SS_assign_special_param(root));
}
}
/*
* If any subplans were generated, or if there are any parameters to worry
* about, build initPlan list and extParam/allParam sets for plan nodes,
* and attach the initPlans to the top plan node.
*/
if (list_length(glob->subplans) != num_old_subplans ||
root->glob->nParamExec > 0)
SS_finalize_plan(root, plan, true);
/* Return internal info if caller wants it */
if (subroot)
*subroot = root;
return plan;
}
/*
* preprocess_expression
* Do subquery_planner's preprocessing work for an expression,
* which can be a targetlist, a WHERE clause (including JOIN/ON
* conditions), a HAVING clause, or a few other things.
*/
static Node *
preprocess_expression(PlannerInfo *root, Node *expr, int kind)
{
/*
* Fall out quickly if expression is empty. This occurs often enough to
* be worth checking. Note that null->null is the correct conversion for
* implicit-AND result format, too.
*/
if (expr == NULL)
return NULL;
/*
* If the query has any join RTEs, replace join alias variables with
* base-relation variables. We must do this before sublink processing,
* else sublinks expanded out from join aliases would not get processed.
* We can skip it in non-lateral RTE functions, VALUES lists, and
* TABLESAMPLE clauses, however, since they can't contain any Vars of the
* current query level.
*/
if (root->hasJoinRTEs &&
!(kind == EXPRKIND_RTFUNC ||
kind == EXPRKIND_VALUES ||
kind == EXPRKIND_TABLESAMPLE))
expr = flatten_join_alias_vars(root, expr);
/*
* Simplify constant expressions.
*
* Note: an essential effect of this is to convert named-argument function
* calls to positional notation and insert the current actual values of
* any default arguments for functions. To ensure that happens, we *must*
* process all expressions here. Previous PG versions sometimes skipped
* const-simplification if it didn't seem worth the trouble, but we can't
* do that anymore.
*
* Note: this also flattens nested AND and OR expressions into N-argument
* form. All processing of a qual expression after this point must be
* careful to maintain AND/OR flatness --- that is, do not generate a tree
* with AND directly under AND, nor OR directly under OR.
*/
expr = eval_const_expressions(root, expr);
/*
* If it's a qual or havingQual, canonicalize it.
*/
if (kind == EXPRKIND_QUAL)
{
expr = (Node *) canonicalize_qual((Expr *) expr);
#ifdef OPTIMIZER_DEBUG
printf("After canonicalize_qual()\n");
pprint(expr);
#endif
}
/* Expand SubLinks to SubPlans */
if (root->parse->hasSubLinks)
expr = SS_process_sublinks(root, expr, (kind == EXPRKIND_QUAL));
/*
* XXX do not insert anything here unless you have grokked the comments in
* SS_replace_correlation_vars ...
*/
/* Replace uplevel vars with Param nodes (this IS possible in VALUES) */
if (root->query_level > 1)
expr = SS_replace_correlation_vars(root, expr);
/*
* If it's a qual or havingQual, convert it to implicit-AND format. (We
* don't want to do this before eval_const_expressions, since the latter
* would be unable to simplify a top-level AND correctly. Also,
* SS_process_sublinks expects explicit-AND format.)
*/
if (kind == EXPRKIND_QUAL)
expr = (Node *) make_ands_implicit((Expr *) expr);
return expr;
}
/*
* preprocess_qual_conditions
* Recursively scan the query's jointree and do subquery_planner's
* preprocessing work on each qual condition found therein.
*/
static void
preprocess_qual_conditions(PlannerInfo *root, Node *jtnode)
{
if (jtnode == NULL)
return;
if (IsA(jtnode, RangeTblRef))
{
/* nothing to do here */
}
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
ListCell *l;
foreach(l, f->fromlist)
preprocess_qual_conditions(root, lfirst(l));
f->quals = preprocess_expression(root, f->quals, EXPRKIND_QUAL);
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
preprocess_qual_conditions(root, j->larg);
preprocess_qual_conditions(root, j->rarg);
j->quals = preprocess_expression(root, j->quals, EXPRKIND_QUAL);
}
else
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(jtnode));
}
/*
* preprocess_phv_expression
* Do preprocessing on a PlaceHolderVar expression that's been pulled up.
*
* If a LATERAL subquery references an output of another subquery, and that
* output must be wrapped in a PlaceHolderVar because of an intermediate outer
* join, then we'll push the PlaceHolderVar expression down into the subquery
* and later pull it back up during find_lateral_references, which runs after
* subquery_planner has preprocessed all the expressions that were in the
* current query level to start with. So we need to preprocess it then.
*/
Expr *
preprocess_phv_expression(PlannerInfo *root, Expr *expr)
{
return (Expr *) preprocess_expression(root, (Node *) expr, EXPRKIND_PHV);
}
/*
* inheritance_planner
* Generate a plan in the case where the result relation is an
* inheritance set.
*
* We have to handle this case differently from cases where a source relation
* is an inheritance set. Source inheritance is expanded at the bottom of the
* plan tree (see allpaths.c), but target inheritance has to be expanded at
* the top. The reason is that for UPDATE, each target relation needs a
* different targetlist matching its own column set. Fortunately,
* the UPDATE/DELETE target can never be the nullable side of an outer join,
* so it's OK to generate the plan this way.
*
* Returns a query plan.
*/
static Plan *
inheritance_planner(PlannerInfo *root)
{
Query *parse = root->parse;
int parentRTindex = parse->resultRelation;
Bitmapset *resultRTindexes;
Bitmapset *subqueryRTindexes;
Bitmapset *modifiableARIindexes;
int nominalRelation = -1;
List *final_rtable = NIL;
int save_rel_array_size = 0;
RelOptInfo **save_rel_array = NULL;
List *subplans = NIL;
List *resultRelations = NIL;
List *withCheckOptionLists = NIL;
List *returningLists = NIL;
List *rowMarks;
ListCell *lc;
Index rti;
Assert(parse->commandType != CMD_INSERT);
/*
* We generate a modified instance of the original Query for each target
* relation, plan that, and put all the plans into a list that will be
* controlled by a single ModifyTable node. All the instances share the
* same rangetable, but each instance must have its own set of subquery
* RTEs within the finished rangetable because (1) they are likely to get
* scribbled on during planning, and (2) it's not inconceivable that
* subqueries could get planned differently in different cases. We need
* not create duplicate copies of other RTE kinds, in particular not the
* target relations, because they don't have either of those issues. Not
* having to duplicate the target relations is important because doing so
* (1) would result in a rangetable of length O(N^2) for N targets, with
* at least O(N^3) work expended here; and (2) would greatly complicate
* management of the rowMarks list.
*
* Note that any RTEs with security barrier quals will be turned into
* subqueries during planning, and so we must create copies of them too,
* except where they are target relations, which will each only be used in
* a single plan.
*
* To begin with, we'll need a bitmapset of the target relation relids.
*/
resultRTindexes = bms_make_singleton(parentRTindex);
foreach(lc, root->append_rel_list)
{
AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
if (appinfo->parent_relid == parentRTindex)
resultRTindexes = bms_add_member(resultRTindexes,
appinfo->child_relid);
}
/*
* Now, generate a bitmapset of the relids of the subquery RTEs, including
* security-barrier RTEs that will become subqueries, as just explained.
*/
subqueryRTindexes = NULL;
rti = 1;
foreach(lc, parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(lc);
if (rte->rtekind == RTE_SUBQUERY ||
(rte->securityQuals != NIL &&
!bms_is_member(rti, resultRTindexes)))
subqueryRTindexes = bms_add_member(subqueryRTindexes, rti);
rti++;
}
/*
* Next, we want to identify which AppendRelInfo items contain references
* to any of the aforesaid subquery RTEs. These items will need to be
* copied and modified to adjust their subquery references; whereas the
* other ones need not be touched. It's worth being tense over this
* because we can usually avoid processing most of the AppendRelInfo
* items, thereby saving O(N^2) space and time when the target is a large
* inheritance tree. We can identify AppendRelInfo items by their
* child_relid, since that should be unique within the list.
*/
modifiableARIindexes = NULL;
if (subqueryRTindexes != NULL)
{
foreach(lc, root->append_rel_list)
{
AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
if (bms_is_member(appinfo->parent_relid, subqueryRTindexes) ||
bms_is_member(appinfo->child_relid, subqueryRTindexes) ||
bms_overlap(pull_varnos((Node *) appinfo->translated_vars),
subqueryRTindexes))
modifiableARIindexes = bms_add_member(modifiableARIindexes,
appinfo->child_relid);
}
}
/*
* And now we can get on with generating a plan for each child table.
*/
foreach(lc, root->append_rel_list)
{
AppendRelInfo *appinfo = (AppendRelInfo *) lfirst(lc);
PlannerInfo subroot;
Plan *subplan;
/* append_rel_list contains all append rels; ignore others */
if (appinfo->parent_relid != parentRTindex)
continue;
/*
* We need a working copy of the PlannerInfo so that we can control
* propagation of information back to the main copy.
*/
memcpy(&subroot, root, sizeof(PlannerInfo));
/*
* Generate modified query with this rel as target. We first apply
* adjust_appendrel_attrs, which copies the Query and changes
* references to the parent RTE to refer to the current child RTE,
* then fool around with subquery RTEs.
*/
subroot.parse = (Query *)
adjust_appendrel_attrs(root,
(Node *) parse,
appinfo);
/*
* The rowMarks list might contain references to subquery RTEs, so
* make a copy that we can apply ChangeVarNodes to. (Fortunately, the
* executor doesn't need to see the modified copies --- we can just
* pass it the original rowMarks list.)
*/
subroot.rowMarks = (List *) copyObject(root->rowMarks);
/*
* The append_rel_list likewise might contain references to subquery
* RTEs (if any subqueries were flattenable UNION ALLs). So prepare
* to apply ChangeVarNodes to that, too. As explained above, we only
* want to copy items that actually contain such references; the rest
* can just get linked into the subroot's append_rel_list.
*
* If we know there are no such references, we can just use the outer
* append_rel_list unmodified.
*/
if (modifiableARIindexes != NULL)
{
ListCell *lc2;
subroot.append_rel_list = NIL;
foreach(lc2, root->append_rel_list)
{
AppendRelInfo *appinfo2 = (AppendRelInfo *) lfirst(lc2);
if (bms_is_member(appinfo2->child_relid, modifiableARIindexes))
appinfo2 = (AppendRelInfo *) copyObject(appinfo2);
subroot.append_rel_list = lappend(subroot.append_rel_list,
appinfo2);
}
}
/*
* Add placeholders to the child Query's rangetable list to fill the
* RT indexes already reserved for subqueries in previous children.
* These won't be referenced, so there's no need to make them very
* valid-looking.
*/
while (list_length(subroot.parse->rtable) < list_length(final_rtable))
subroot.parse->rtable = lappend(subroot.parse->rtable,
makeNode(RangeTblEntry));
/*
* If this isn't the first child Query, generate duplicates of all
* subquery (or subquery-to-be) RTEs, and adjust Var numbering to
* reference the duplicates. To simplify the loop logic, we scan the
* original rtable not the copy just made by adjust_appendrel_attrs;
* that should be OK since subquery RTEs couldn't contain any
* references to the target rel.
*/
if (final_rtable != NIL && subqueryRTindexes != NULL)
{
ListCell *lr;
rti = 1;
foreach(lr, parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(lr);
if (bms_is_member(rti, subqueryRTindexes))
{
Index newrti;
/*
* The RTE can't contain any references to its own RT
* index, except in the security barrier quals, so we can
* save a few cycles by applying ChangeVarNodes before we
* append the RTE to the rangetable.
*/
newrti = list_length(subroot.parse->rtable) + 1;
ChangeVarNodes((Node *) subroot.parse, rti, newrti, 0);
ChangeVarNodes((Node *) subroot.rowMarks, rti, newrti, 0);
/* Skip processing unchanging parts of append_rel_list */
if (modifiableARIindexes != NULL)
{
ListCell *lc2;
foreach(lc2, subroot.append_rel_list)
{
AppendRelInfo *appinfo2 = (AppendRelInfo *) lfirst(lc2);
if (bms_is_member(appinfo2->child_relid,
modifiableARIindexes))
ChangeVarNodes((Node *) appinfo2, rti, newrti, 0);
}
}
rte = copyObject(rte);
ChangeVarNodes((Node *) rte->securityQuals, rti, newrti, 0);
subroot.parse->rtable = lappend(subroot.parse->rtable,
rte);
}
rti++;
}
}
/* There shouldn't be any OJ or LATERAL info to translate, as yet */
Assert(subroot.join_info_list == NIL);
Assert(subroot.lateral_info_list == NIL);
/* and we haven't created PlaceHolderInfos, either */
Assert(subroot.placeholder_list == NIL);
/* hack to mark target relation as an inheritance partition */
subroot.hasInheritedTarget = true;
/* Generate plan */
subplan = grouping_planner(&subroot, 0.0 /* retrieve all tuples */ );
/*
* Planning may have modified the query result relation (if there were
* security barrier quals on the result RTE).
*/
appinfo->child_relid = subroot.parse->resultRelation;
/*
* We'll use the first child relation (even if it's excluded) as the
* nominal target relation of the ModifyTable node. Because of the
* way expand_inherited_rtentry works, this should always be the RTE
* representing the parent table in its role as a simple member of the
* inheritance set. (It would be logically cleaner to use the
* inheritance parent RTE as the nominal target; but since that RTE
* will not be otherwise referenced in the plan, doing so would give
* rise to confusing use of multiple aliases in EXPLAIN output for
* what the user will think is the "same" table.)
*/
if (nominalRelation < 0)
nominalRelation = appinfo->child_relid;
/*
* If this child rel was excluded by constraint exclusion, exclude it
* from the result plan.
*/
if (is_dummy_plan(subplan))
continue;
subplans = lappend(subplans, subplan);
/*
* If this is the first non-excluded child, its post-planning rtable
* becomes the initial contents of final_rtable; otherwise, append
* just its modified subquery RTEs to final_rtable.
*/
if (final_rtable == NIL)
final_rtable = subroot.parse->rtable;
else
{
List *tmp_rtable = NIL;
ListCell *cell1,
*cell2;
/*
* Check to see if any of the original RTEs were turned into
* subqueries during planning. Currently, this should only ever
* happen due to securityQuals being involved which push a
* relation down under a subquery, to ensure that the security
* barrier quals are evaluated first.
*
* When this happens, we want to use the new subqueries in the
* final rtable.
*/
forboth(cell1, final_rtable, cell2, subroot.parse->rtable)
{
RangeTblEntry *rte1 = (RangeTblEntry *) lfirst(cell1);
RangeTblEntry *rte2 = (RangeTblEntry *) lfirst(cell2);
if (rte1->rtekind == RTE_RELATION &&
rte2->rtekind == RTE_SUBQUERY)
{
/* Should only be when there are securityQuals today */
Assert(rte1->securityQuals != NIL);
tmp_rtable = lappend(tmp_rtable, rte2);
}
else
tmp_rtable = lappend(tmp_rtable, rte1);
}
final_rtable = list_concat(tmp_rtable,
list_copy_tail(subroot.parse->rtable,
list_length(final_rtable)));
}
/*
* We need to collect all the RelOptInfos from all child plans into
* the main PlannerInfo, since setrefs.c will need them. We use the
* last child's simple_rel_array (previous ones are too short), so we
* have to propagate forward the RelOptInfos that were already built
* in previous children.
*/
Assert(subroot.simple_rel_array_size >= save_rel_array_size);
for (rti = 1; rti < save_rel_array_size; rti++)
{
RelOptInfo *brel = save_rel_array[rti];
if (brel)
subroot.simple_rel_array[rti] = brel;
}
save_rel_array_size = subroot.simple_rel_array_size;
save_rel_array = subroot.simple_rel_array;
/* Make sure any initplans from this rel get into the outer list */
root->init_plans = subroot.init_plans;
/* Build list of target-relation RT indexes */
resultRelations = lappend_int(resultRelations, appinfo->child_relid);
/* Build lists of per-relation WCO and RETURNING targetlists */
if (parse->withCheckOptions)
withCheckOptionLists = lappend(withCheckOptionLists,
subroot.parse->withCheckOptions);
if (parse->returningList)
returningLists = lappend(returningLists,
subroot.parse->returningList);
Assert(!parse->onConflict);
}
/* Mark result as unordered (probably unnecessary) */
root->query_pathkeys = NIL;
/*
* If we managed to exclude every child rel, return a dummy plan; it
* doesn't even need a ModifyTable node.
*/
if (subplans == NIL)
{
/* although dummy, it must have a valid tlist for executor */
List *tlist;
tlist = preprocess_targetlist(root, parse->targetList);
return (Plan *) make_result(root,
tlist,
(Node *) list_make1(makeBoolConst(false,
false)),
NULL);
}
/*
* Put back the final adjusted rtable into the master copy of the Query.
*/
parse->rtable = final_rtable;
root->simple_rel_array_size = save_rel_array_size;
root->simple_rel_array = save_rel_array;
/*
* If there was a FOR [KEY] UPDATE/SHARE clause, the LockRows node will
* have dealt with fetching non-locked marked rows, else we need to have
* ModifyTable do that.
*/
if (parse->rowMarks)
rowMarks = NIL;
else
rowMarks = root->rowMarks;
/* And last, tack on a ModifyTable node to do the UPDATE/DELETE work */
return (Plan *) make_modifytable(root,
parse->commandType,
parse->canSetTag,
nominalRelation,
resultRelations,
subplans,
withCheckOptionLists,
returningLists,
rowMarks,
NULL,
SS_assign_special_param(root));
}
/*--------------------
* grouping_planner
* Perform planning steps related to grouping, aggregation, etc.
* This primarily means adding top-level processing to the basic
* query plan produced by query_planner.
*
* tuple_fraction is the fraction of tuples we expect will be retrieved
*
* tuple_fraction is interpreted as follows:
* 0: expect all tuples to be retrieved (normal case)
* 0 < tuple_fraction < 1: expect the given fraction of tuples available
* from the plan to be retrieved
* tuple_fraction >= 1: tuple_fraction is the absolute number of tuples
* expected to be retrieved (ie, a LIMIT specification)
*
* Returns a query plan. Also, root->query_pathkeys is returned as the
* actual output ordering of the plan (in pathkey format).
*--------------------
*/
static Plan *
grouping_planner(PlannerInfo *root, double tuple_fraction)
{
Query *parse = root->parse;
List *tlist = parse->targetList;
int64 offset_est = 0;
int64 count_est = 0;
double limit_tuples = -1.0;
Plan *result_plan;
List *current_pathkeys;
double dNumGroups = 0;
bool use_hashed_distinct = false;
bool tested_hashed_distinct = false;
/* Tweak caller-supplied tuple_fraction if have LIMIT/OFFSET */
if (parse->limitCount || parse->limitOffset)
{
tuple_fraction = preprocess_limit(root, tuple_fraction,
&offset_est, &count_est);
/*
* If we have a known LIMIT, and don't have an unknown OFFSET, we can
* estimate the effects of using a bounded sort.
*/
if (count_est > 0 && offset_est >= 0)
limit_tuples = (double) count_est + (double) offset_est;
}
if (parse->setOperations)
{
List *set_sortclauses;
/*
* If there's a top-level ORDER BY, assume we have to fetch all the
* tuples. This might be too simplistic given all the hackery below
* to possibly avoid the sort; but the odds of accurate estimates here
* are pretty low anyway.
*/
if (parse->sortClause)
tuple_fraction = 0.0;
/*
* Construct the plan for set operations. The result will not need
* any work except perhaps a top-level sort and/or LIMIT. Note that
* any special work for recursive unions is the responsibility of
* plan_set_operations.
*/
result_plan = plan_set_operations(root, tuple_fraction,
&set_sortclauses);
/*
* Calculate pathkeys representing the sort order (if any) of the set
* operation's result. We have to do this before overwriting the sort
* key information...
*/
current_pathkeys = make_pathkeys_for_sortclauses(root,
set_sortclauses,
result_plan->targetlist);
/*
* We should not need to call preprocess_targetlist, since we must be
* in a SELECT query node. Instead, use the targetlist returned by
* plan_set_operations (since this tells whether it returned any
* resjunk columns!), and transfer any sort key information from the
* original tlist.
*/
Assert(parse->commandType == CMD_SELECT);
tlist = postprocess_setop_tlist(copyObject(result_plan->targetlist),
tlist);
/*
* Can't handle FOR [KEY] UPDATE/SHARE here (parser should have
* checked already, but let's make sure).
*/
if (parse->rowMarks)
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
/*------
translator: %s is a SQL row locking clause such as FOR UPDATE */
errmsg("%s is not allowed with UNION/INTERSECT/EXCEPT",
LCS_asString(((RowMarkClause *)
linitial(parse->rowMarks))->strength))));
/*
* Calculate pathkeys that represent result ordering requirements
*/
Assert(parse->distinctClause == NIL);
root->sort_pathkeys = make_pathkeys_for_sortclauses(root,
parse->sortClause,
tlist);
}
else
{
/* No set operations, do regular planning */
List *sub_tlist;
AttrNumber *groupColIdx = NULL;
bool need_tlist_eval = true;
long numGroups = 0;
AggClauseCosts agg_costs;
int numGroupCols;
double path_rows;
int path_width;
bool use_hashed_grouping = false;
WindowFuncLists *wflists = NULL;
List *activeWindows = NIL;
OnConflictExpr *onconfl;
int maxref = 0;
int *tleref_to_colnum_map;
List *rollup_lists = NIL;
List *rollup_groupclauses = NIL;
standard_qp_extra qp_extra;
RelOptInfo *final_rel;
Path *cheapest_path;
Path *sorted_path;
Path *best_path;
MemSet(&agg_costs, 0, sizeof(AggClauseCosts));
/* A recursive query should always have setOperations */
Assert(!root->hasRecursion);
/* Preprocess Grouping set, if any */
if (parse->groupingSets)
parse->groupingSets = expand_grouping_sets(parse->groupingSets, -1);
if (parse->groupClause)
{
ListCell *lc;
foreach(lc, parse->groupClause)
{
SortGroupClause *gc = lfirst(lc);
if (gc->tleSortGroupRef > maxref)
maxref = gc->tleSortGroupRef;
}
}
tleref_to_colnum_map = palloc((maxref + 1) * sizeof(int));
if (parse->groupingSets)
{
ListCell *lc;
ListCell *lc2;
ListCell *lc_set;
List *sets = extract_rollup_sets(parse->groupingSets);
foreach(lc_set, sets)
{
List *current_sets = reorder_grouping_sets(lfirst(lc_set),
(list_length(sets) == 1
? parse->sortClause
: NIL));
List *groupclause = preprocess_groupclause(root, linitial(current_sets));
int ref = 0;
/*
* Now that we've pinned down an order for the groupClause for
* this list of grouping sets, we need to remap the entries in
* the grouping sets from sortgrouprefs to plain indices
* (0-based) into the groupClause for this collection of
* grouping sets.
*/
foreach(lc, groupclause)
{
SortGroupClause *gc = lfirst(lc);
tleref_to_colnum_map[gc->tleSortGroupRef] = ref++;
}
foreach(lc, current_sets)
{
foreach(lc2, (List *) lfirst(lc))
{
lfirst_int(lc2) = tleref_to_colnum_map[lfirst_int(lc2)];
}
}
rollup_lists = lcons(current_sets, rollup_lists);
rollup_groupclauses = lcons(groupclause, rollup_groupclauses);
}
}
else
{
/* Preprocess GROUP BY clause, if any */
if (parse->groupClause)
parse->groupClause = preprocess_groupclause(root, NIL);
rollup_groupclauses = list_make1(parse->groupClause);
}
numGroupCols = list_length(parse->groupClause);
/* Preprocess targetlist */
tlist = preprocess_targetlist(root, tlist);
onconfl = parse->onConflict;
if (onconfl)
onconfl->onConflictSet =
preprocess_onconflict_targetlist(onconfl->onConflictSet,
parse->resultRelation,
parse->rtable);
/*
* Expand any rangetable entries that have security barrier quals.
* This may add new security barrier subquery RTEs to the rangetable.
*/
expand_security_quals(root, tlist);
root->glob->hasRowSecurity = parse->hasRowSecurity;
/*
* Locate any window functions in the tlist. (We don't need to look
* anywhere else, since expressions used in ORDER BY will be in there
* too.) Note that they could all have been eliminated by constant
* folding, in which case we don't need to do any more work.
*/
if (parse->hasWindowFuncs)
{
wflists = find_window_functions((Node *) tlist,
list_length(parse->windowClause));
if (wflists->numWindowFuncs > 0)
activeWindows = select_active_windows(root, wflists);
else
parse->hasWindowFuncs = false;
}
/*
* Generate appropriate target list for subplan; may be different from
* tlist if grouping or aggregation is needed.
*/
sub_tlist = make_subplanTargetList(root, tlist,
&groupColIdx, &need_tlist_eval);
/*
* Do aggregate preprocessing, if the query has any aggs.
*
* Note: think not that we can turn off hasAggs if we find no aggs. It
* is possible for constant-expression simplification to remove all
* explicit references to aggs, but we still have to follow the
* aggregate semantics (eg, producing only one output row).
*/
if (parse->hasAggs)
{
/*
* Collect statistics about aggregates for estimating costs. Note:
* we do not attempt to detect duplicate aggregates here; a
* somewhat-overestimated cost is okay for our present purposes.
*/
count_agg_clauses(root, (Node *) tlist, &agg_costs);
count_agg_clauses(root, parse->havingQual, &agg_costs);
/*
* Preprocess MIN/MAX aggregates, if any. Note: be careful about
* adding logic between here and the optimize_minmax_aggregates
* call. Anything that is needed in MIN/MAX-optimizable cases
* will have to be duplicated in planagg.c.
*/
preprocess_minmax_aggregates(root, tlist);
}
/* Make tuple_fraction accessible to lower-level routines */
root->tuple_fraction = tuple_fraction;
/*
* Figure out whether there's a hard limit on the number of rows that
* query_planner's result subplan needs to return. Even if we know a
* hard limit overall, it doesn't apply if the query has any
* grouping/aggregation operations.
*/
if (parse->groupClause ||
parse->groupingSets ||
parse->distinctClause ||
parse->hasAggs ||
parse->hasWindowFuncs ||
root->hasHavingQual)
root->limit_tuples = -1.0;
else
root->limit_tuples = limit_tuples;
/* Set up data needed by standard_qp_callback */
qp_extra.tlist = tlist;
qp_extra.activeWindows = activeWindows;
qp_extra.groupClause = llast(rollup_groupclauses);
/*
* Generate the best unsorted and presorted paths for this Query (but
* note there may not be any presorted paths). We also generate (in
* standard_qp_callback) pathkey representations of the query's sort
* clause, distinct clause, etc.
*/
final_rel = query_planner(root, sub_tlist,
standard_qp_callback, &qp_extra);
/*
* Extract rowcount and width estimates for use below.
*/
path_rows = final_rel->rows;
path_width = final_rel->width;
/*
* If there's grouping going on, estimate the number of result groups.
* We couldn't do this any earlier because it depends on relation size
* estimates that are created within query_planner().
*
* Then convert tuple_fraction to fractional form if it is absolute,
* and if grouping or aggregation is involved, adjust tuple_fraction
* to describe the fraction of the underlying un-aggregated tuples
* that will be fetched.
*/
dNumGroups = 1; /* in case not grouping */
if (parse->groupClause)
{
List *groupExprs;
if (parse->groupingSets)
{
ListCell *lc,
*lc2;
dNumGroups = 0;
forboth(lc, rollup_groupclauses, lc2, rollup_lists)
{
ListCell *lc3;
groupExprs = get_sortgrouplist_exprs(lfirst(lc),
parse->targetList);
foreach(lc3, lfirst(lc2))
{
List *gset = lfirst(lc3);
dNumGroups += estimate_num_groups(root,
groupExprs,
path_rows,
&gset);
}
}
}
else
{
groupExprs = get_sortgrouplist_exprs(parse->groupClause,
parse->targetList);
dNumGroups = estimate_num_groups(root, groupExprs, path_rows,
NULL);
}
/*
* In GROUP BY mode, an absolute LIMIT is relative to the number
* of groups not the number of tuples. If the caller gave us a
* fraction, keep it as-is. (In both cases, we are effectively
* assuming that all the groups are about the same size.)
*/
if (tuple_fraction >= 1.0)
tuple_fraction /= dNumGroups;
/*
* If there's more than one grouping set, we'll have to sort the
* entire input.
*/
if (list_length(rollup_lists) > 1)
tuple_fraction = 0.0;
/*
* If both GROUP BY and ORDER BY are specified, we will need two
* levels of sort --- and, therefore, certainly need to read all
* the tuples --- unless ORDER BY is a subset of GROUP BY.
* Likewise if we have both DISTINCT and GROUP BY, or if we have a
* window specification not compatible with the GROUP BY.
*/
if (!pathkeys_contained_in(root->sort_pathkeys,
root->group_pathkeys) ||
!pathkeys_contained_in(root->distinct_pathkeys,
root->group_pathkeys) ||
!pathkeys_contained_in(root->window_pathkeys,
root->group_pathkeys))
tuple_fraction = 0.0;
}
else if (parse->hasAggs || root->hasHavingQual || parse->groupingSets)
{
/*
* Ungrouped aggregate will certainly want to read all the tuples,
* and it will deliver a single result row per grouping set (or 1
* if no grouping sets were explicitly given, in which case leave
* dNumGroups as-is)
*/
tuple_fraction = 0.0;
if (parse->groupingSets)
dNumGroups = list_length(parse->groupingSets);
}
else if (parse->distinctClause)
{
/*
* Since there was no grouping or aggregation, it's reasonable to
* assume the UNIQUE filter has effects comparable to GROUP BY.
* (If DISTINCT is used with grouping, we ignore its effects for
* rowcount estimation purposes; this amounts to assuming the
* grouped rows are distinct already.)
*/
List *distinctExprs;
distinctExprs = get_sortgrouplist_exprs(parse->distinctClause,
parse->targetList);
dNumGroups = estimate_num_groups(root, distinctExprs, path_rows, NULL);
/*
* Adjust tuple_fraction the same way as for GROUP BY, too.
*/
if (tuple_fraction >= 1.0)
tuple_fraction /= dNumGroups;
}
else
{
/*
* Plain non-grouped, non-aggregated query: an absolute tuple
* fraction can be divided by the number of tuples.
*/
if (tuple_fraction >= 1.0)
tuple_fraction /= path_rows;
}
/*
* Pick out the cheapest-total path as well as the cheapest presorted
* path for the requested pathkeys (if there is one). We should take
* the tuple fraction into account when selecting the cheapest
* presorted path, but not when selecting the cheapest-total path,
* since if we have to sort then we'll have to fetch all the tuples.
* (But there's a special case: if query_pathkeys is NIL, meaning
* order doesn't matter, then the "cheapest presorted" path will be
* the cheapest overall for the tuple fraction.)
*/
cheapest_path = final_rel->cheapest_total_path;
sorted_path =
get_cheapest_fractional_path_for_pathkeys(final_rel->pathlist,
root->query_pathkeys,
NULL,
tuple_fraction);
/* Don't consider same path in both guises; just wastes effort */
if (sorted_path == cheapest_path)
sorted_path = NULL;
/*
* Forget about the presorted path if it would be cheaper to sort the
* cheapest-total path. Here we need consider only the behavior at
* the tuple_fraction point. Also, limit_tuples is only relevant if
* not grouping/aggregating, so use root->limit_tuples in the
* cost_sort call.
*/
if (sorted_path)
{
Path sort_path; /* dummy for result of cost_sort */
if (root->query_pathkeys == NIL ||
pathkeys_contained_in(root->query_pathkeys,
cheapest_path->pathkeys))
{
/* No sort needed for cheapest path */
sort_path.startup_cost = cheapest_path->startup_cost;
sort_path.total_cost = cheapest_path->total_cost;
}
else
{
/* Figure cost for sorting */
cost_sort(&sort_path, root, root->query_pathkeys,
cheapest_path->total_cost,
path_rows, path_width,
0.0, work_mem, root->limit_tuples);
}
if (compare_fractional_path_costs(sorted_path, &sort_path,
tuple_fraction) > 0)
{
/* Presorted path is a loser */
sorted_path = NULL;
}
}
/*
* Consider whether we want to use hashing instead of sorting.
*/
if (parse->groupClause)
{
/*
* If grouping, decide whether to use sorted or hashed grouping.
* If grouping sets are present, we can currently do only sorted
* grouping.
*/
if (parse->groupingSets)
{
use_hashed_grouping = false;
}
else
{
use_hashed_grouping =
choose_hashed_grouping(root,
tuple_fraction, limit_tuples,
path_rows, path_width,
cheapest_path, sorted_path,
dNumGroups, &agg_costs);
}
/* Also convert # groups to long int --- but 'ware overflow! */
numGroups = (long) Min(dNumGroups, (double) LONG_MAX);
}
else if (parse->distinctClause && sorted_path &&
!root->hasHavingQual && !parse->hasAggs && !activeWindows)
{
/*
* We'll reach the DISTINCT stage without any intermediate
* processing, so figure out whether we will want to hash or not
* so we can choose whether to use cheapest or sorted path.
*/
use_hashed_distinct =
choose_hashed_distinct(root,
tuple_fraction, limit_tuples,
path_rows, path_width,
cheapest_path->startup_cost,
cheapest_path->total_cost,
sorted_path->startup_cost,
sorted_path->total_cost,
sorted_path->pathkeys,
dNumGroups);
tested_hashed_distinct = true;
}
/*
* Select the best path. If we are doing hashed grouping, we will
* always read all the input tuples, so use the cheapest-total path.
* Otherwise, the comparison above is correct.
*/
if (use_hashed_grouping || use_hashed_distinct || !sorted_path)
best_path = cheapest_path;
else
best_path = sorted_path;
/*
* Check to see if it's possible to optimize MIN/MAX aggregates. If
* so, we will forget all the work we did so far to choose a "regular"
* path ... but we had to do it anyway to be able to tell which way is
* cheaper.
*/
result_plan = optimize_minmax_aggregates(root,
tlist,
&agg_costs,
best_path);
if (result_plan != NULL)
{
/*
* optimize_minmax_aggregates generated the full plan, with the
* right tlist, and it has no sort order.
*/
current_pathkeys = NIL;
}
else
{
/*
* Normal case --- create a plan according to query_planner's
* results.
*/
bool need_sort_for_grouping = false;
result_plan = create_plan(root, best_path);
current_pathkeys = best_path->pathkeys;
/* Detect if we'll need an explicit sort for grouping */
if (parse->groupClause && !use_hashed_grouping &&
!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
{
need_sort_for_grouping = true;
/*
* Always override create_plan's tlist, so that we don't sort
* useless data from a "physical" tlist.
*/
need_tlist_eval = true;
}
/*
* create_plan returns a plan with just a "flat" tlist of required
* Vars. Usually we need to insert the sub_tlist as the tlist of
* the top plan node. However, we can skip that if we determined
* that whatever create_plan chose to return will be good enough.
*/
if (need_tlist_eval)
{
/*
* If the top-level plan node is one that cannot do expression
* evaluation and its existing target list isn't already what
* we need, we must insert a Result node to project the
* desired tlist.
*/
if (!is_projection_capable_plan(result_plan) &&
!tlist_same_exprs(sub_tlist, result_plan->targetlist))
{
result_plan = (Plan *) make_result(root,
sub_tlist,
NULL,
result_plan);
}
else
{
/*
* Otherwise, just replace the subplan's flat tlist with
* the desired tlist.
*/
result_plan->targetlist = sub_tlist;
}
/*
* Also, account for the cost of evaluation of the sub_tlist.
* See comments for add_tlist_costs_to_plan() for more info.
*/
add_tlist_costs_to_plan(root, result_plan, sub_tlist);
}
else
{
/*
* Since we're using create_plan's tlist and not the one
* make_subplanTargetList calculated, we have to refigure any
* grouping-column indexes make_subplanTargetList computed.
*/
locate_grouping_columns(root, tlist, result_plan->targetlist,
groupColIdx);
}
/*
* groupColIdx is now cast in stone, so record a mapping from
* tleSortGroupRef to column index. setrefs.c needs this to
* finalize GROUPING() operations.
*/
if (parse->groupingSets)
{
AttrNumber *grouping_map = palloc0(sizeof(AttrNumber) * (maxref + 1));
ListCell *lc;
int i = 0;
foreach(lc, parse->groupClause)
{
SortGroupClause *gc = lfirst(lc);
grouping_map[gc->tleSortGroupRef] = groupColIdx[i++];
}
root->grouping_map = grouping_map;
}
/*
* Insert AGG or GROUP node if needed, plus an explicit sort step
* if necessary.
*
* HAVING clause, if any, becomes qual of the Agg or Group node.
*/
if (use_hashed_grouping)
{
/* Hashed aggregate plan --- no sort needed */
result_plan = (Plan *) make_agg(root,
tlist,
(List *) parse->havingQual,
AGG_HASHED,
&agg_costs,
numGroupCols,
groupColIdx,
extract_grouping_ops(parse->groupClause),
NIL,
numGroups,
result_plan);
/* Hashed aggregation produces randomly-ordered results */
current_pathkeys = NIL;
}
else if (parse->hasAggs || (parse->groupingSets && parse->groupClause))
{
/*
* Output is in sorted order by group_pathkeys if, and only
* if, there is a single rollup operation on a non-empty list
* of grouping expressions.
*/
if (list_length(rollup_groupclauses) == 1
&& list_length(linitial(rollup_groupclauses)) > 0)
current_pathkeys = root->group_pathkeys;
else
current_pathkeys = NIL;
result_plan = build_grouping_chain(root,
parse,
tlist,
need_sort_for_grouping,
rollup_groupclauses,
rollup_lists,
groupColIdx,
&agg_costs,
numGroups,
result_plan);
/*
* these are destroyed by build_grouping_chain, so make sure
* we don't try and touch them again
*/
rollup_groupclauses = NIL;
rollup_lists = NIL;
}
else if (parse->groupClause)
{
/*
* GROUP BY without aggregation, so insert a group node (plus
* the appropriate sort node, if necessary).
*
* Add an explicit sort if we couldn't make the path come out
* the way the GROUP node needs it.
*/
if (need_sort_for_grouping)
{
result_plan = (Plan *)
make_sort_from_groupcols(root,
parse->groupClause,
groupColIdx,
result_plan);
current_pathkeys = root->group_pathkeys;
}
result_plan = (Plan *) make_group(root,
tlist,
(List *) parse->havingQual,
numGroupCols,
groupColIdx,
extract_grouping_ops(parse->groupClause),
dNumGroups,
result_plan);
/* The Group node won't change sort ordering */
}
else if (root->hasHavingQual || parse->groupingSets)
{
int nrows = list_length(parse->groupingSets);
/*
* No aggregates, and no GROUP BY, but we have a HAVING qual
* or grouping sets (which by elimination of cases above must
* consist solely of empty grouping sets, since otherwise
* groupClause will be non-empty).
*
* This is a degenerate case in which we are supposed to emit
* either 0 or 1 row for each grouping set depending on
* whether HAVING succeeds. Furthermore, there cannot be any
* variables in either HAVING or the targetlist, so we
* actually do not need the FROM table at all! We can just
* throw away the plan-so-far and generate a Result node. This
* is a sufficiently unusual corner case that it's not worth
* contorting the structure of this routine to avoid having to
* generate the plan in the first place.
*/
result_plan = (Plan *) make_result(root,
tlist,
parse->havingQual,
NULL);
/*
* Doesn't seem worthwhile writing code to cons up a
* generate_series or a values scan to emit multiple rows.
* Instead just clone the result in an Append.
*/
if (nrows > 1)
{
List *plans = list_make1(result_plan);
while (--nrows > 0)
plans = lappend(plans, copyObject(result_plan));
result_plan = (Plan *) make_append(plans, tlist);
}
}
} /* end of non-minmax-aggregate case */
/*
* Since each window function could require a different sort order, we
* stack up a WindowAgg node for each window, with sort steps between
* them as needed.
*/
if (activeWindows)
{
List *window_tlist;
ListCell *l;
/*
* If the top-level plan node is one that cannot do expression
* evaluation, we must insert a Result node to project the desired
* tlist. (In some cases this might not really be required, but
* it's not worth trying to avoid it. In particular, think not to
* skip adding the Result if the initial window_tlist matches the
* top-level plan node's output, because we might change the tlist
* inside the following loop.) Note that on second and subsequent
* passes through the following loop, the top-level node will be a
* WindowAgg which we know can project; so we only need to check
* once.
*/
if (!is_projection_capable_plan(result_plan))
{
result_plan = (Plan *) make_result(root,
NIL,
NULL,
result_plan);
}
/*
* The "base" targetlist for all steps of the windowing process is
* a flat tlist of all Vars and Aggs needed in the result. (In
* some cases we wouldn't need to propagate all of these all the
* way to the top, since they might only be needed as inputs to
* WindowFuncs. It's probably not worth trying to optimize that
* though.) We also add window partitioning and sorting
* expressions to the base tlist, to ensure they're computed only
* once at the bottom of the stack (that's critical for volatile
* functions). As we climb up the stack, we'll add outputs for
* the WindowFuncs computed at each level.
*/
window_tlist = make_windowInputTargetList(root,
tlist,
activeWindows);
/*
* The copyObject steps here are needed to ensure that each plan
* node has a separately modifiable tlist. (XXX wouldn't a
* shallow list copy do for that?)
*/
result_plan->targetlist = (List *) copyObject(window_tlist);
foreach(l, activeWindows)
{
WindowClause *wc = (WindowClause *) lfirst(l);
List *window_pathkeys;
int partNumCols;
AttrNumber *partColIdx;
Oid *partOperators;
int ordNumCols;
AttrNumber *ordColIdx;
Oid *ordOperators;
window_pathkeys = make_pathkeys_for_window(root,
wc,
tlist);
/*
* This is a bit tricky: we build a sort node even if we don't
* really have to sort. Even when no explicit sort is needed,
* we need to have suitable resjunk items added to the input
* plan's tlist for any partitioning or ordering columns that
* aren't plain Vars. (In theory, make_windowInputTargetList
* should have provided all such columns, but let's not assume
* that here.) Furthermore, this way we can use existing
* infrastructure to identify which input columns are the
* interesting ones.
*/
if (window_pathkeys)
{
Sort *sort_plan;
sort_plan = make_sort_from_pathkeys(root,
result_plan,
window_pathkeys,
-1.0);
if (!pathkeys_contained_in(window_pathkeys,
current_pathkeys))
{
/* we do indeed need to sort */
result_plan = (Plan *) sort_plan;
current_pathkeys = window_pathkeys;
}
/* In either case, extract the per-column information */
get_column_info_for_window(root, wc, tlist,
sort_plan->numCols,
sort_plan->sortColIdx,
&partNumCols,
&partColIdx,
&partOperators,
&ordNumCols,
&ordColIdx,
&ordOperators);
}
else
{
/* empty window specification, nothing to sort */
partNumCols = 0;
partColIdx = NULL;
partOperators = NULL;
ordNumCols = 0;
ordColIdx = NULL;
ordOperators = NULL;
}
if (lnext(l))
{
/* Add the current WindowFuncs to the running tlist */
window_tlist = add_to_flat_tlist(window_tlist,
wflists->windowFuncs[wc->winref]);
}
else
{
/* Install the original tlist in the topmost WindowAgg */
window_tlist = tlist;
}
/* ... and make the WindowAgg plan node */
result_plan = (Plan *)
make_windowagg(root,
(List *) copyObject(window_tlist),
wflists->windowFuncs[wc->winref],
wc->winref,
partNumCols,
partColIdx,
partOperators,
ordNumCols,
ordColIdx,
ordOperators,
wc->frameOptions,
wc->startOffset,
wc->endOffset,
result_plan);
}
}
} /* end of if (setOperations) */
/*
* If there is a DISTINCT clause, add the necessary node(s).
*/
if (parse->distinctClause)
{
double dNumDistinctRows;
long numDistinctRows;
/*
* If there was grouping or aggregation, use the current number of
* rows as the estimated number of DISTINCT rows (ie, assume the
* result was already mostly unique). If not, use the number of
* distinct-groups calculated previously.
*/
if (parse->groupClause || parse->groupingSets || root->hasHavingQual || parse->hasAggs)
dNumDistinctRows = result_plan->plan_rows;
else
dNumDistinctRows = dNumGroups;
/* Also convert to long int --- but 'ware overflow! */
numDistinctRows = (long) Min(dNumDistinctRows, (double) LONG_MAX);
/* Choose implementation method if we didn't already */
if (!tested_hashed_distinct)
{
/*
* At this point, either hashed or sorted grouping will have to
* work from result_plan, so we pass that as both "cheapest" and
* "sorted".
*/
use_hashed_distinct =
choose_hashed_distinct(root,
tuple_fraction, limit_tuples,
result_plan->plan_rows,
result_plan->plan_width,
result_plan->startup_cost,
result_plan->total_cost,
result_plan->startup_cost,
result_plan->total_cost,
current_pathkeys,
dNumDistinctRows);
}
if (use_hashed_distinct)
{
/* Hashed aggregate plan --- no sort needed */
result_plan = (Plan *) make_agg(root,
result_plan->targetlist,
NIL,
AGG_HASHED,
NULL,
list_length(parse->distinctClause),
extract_grouping_cols(parse->distinctClause,
result_plan->targetlist),
extract_grouping_ops(parse->distinctClause),
NIL,
numDistinctRows,
result_plan);
/* Hashed aggregation produces randomly-ordered results */
current_pathkeys = NIL;
}
else
{
/*
* Use a Unique node to implement DISTINCT. Add an explicit sort
* if we couldn't make the path come out the way the Unique node
* needs it. If we do have to sort, always sort by the more
* rigorous of DISTINCT and ORDER BY, to avoid a second sort
* below. However, for regular DISTINCT, don't sort now if we
* don't have to --- sorting afterwards will likely be cheaper,
* and also has the possibility of optimizing via LIMIT. But for
* DISTINCT ON, we *must* force the final sort now, else it won't
* have the desired behavior.
*/
List *needed_pathkeys;
if (parse->hasDistinctOn &&
list_length(root->distinct_pathkeys) <
list_length(root->sort_pathkeys))
needed_pathkeys = root->sort_pathkeys;
else
needed_pathkeys = root->distinct_pathkeys;
if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
{
if (list_length(root->distinct_pathkeys) >=
list_length(root->sort_pathkeys))
current_pathkeys = root->distinct_pathkeys;
else
{
current_pathkeys = root->sort_pathkeys;
/* Assert checks that parser didn't mess up... */
Assert(pathkeys_contained_in(root->distinct_pathkeys,
current_pathkeys));
}
result_plan = (Plan *) make_sort_from_pathkeys(root,
result_plan,
current_pathkeys,
-1.0);
}
result_plan = (Plan *) make_unique(result_plan,
parse->distinctClause);
result_plan->plan_rows = dNumDistinctRows;
/* The Unique node won't change sort ordering */
}
}
/*
* If ORDER BY was given and we were not able to make the plan come out in
* the right order, add an explicit sort step.
*/
if (parse->sortClause)
{
if (!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
{
result_plan = (Plan *) make_sort_from_pathkeys(root,
result_plan,
root->sort_pathkeys,
limit_tuples);
current_pathkeys = root->sort_pathkeys;
}
}
/*
* If there is a FOR [KEY] UPDATE/SHARE clause, add the LockRows node.
* (Note: we intentionally test parse->rowMarks not root->rowMarks here.
* If there are only non-locking rowmarks, they should be handled by the
* ModifyTable node instead.)
*/
if (parse->rowMarks)
{
result_plan = (Plan *) make_lockrows(result_plan,
root->rowMarks,
SS_assign_special_param(root));
/*
* The result can no longer be assumed sorted, since locking might
* cause the sort key columns to be replaced with new values.
*/
current_pathkeys = NIL;
}
/*
* Finally, if there is a LIMIT/OFFSET clause, add the LIMIT node.
*/
if (limit_needed(parse))
{
result_plan = (Plan *) make_limit(result_plan,
parse->limitOffset,
parse->limitCount,
offset_est,
count_est);
}
/*
* Return the actual output ordering in query_pathkeys for possible use by
* an outer query level.
*/
root->query_pathkeys = current_pathkeys;
return result_plan;
}
/*
* Given a groupclause for a collection of grouping sets, produce the
* corresponding groupColIdx.
*
* root->grouping_map maps the tleSortGroupRef to the actual column position in
* the input tuple. So we get the ref from the entries in the groupclause and
* look them up there.
*/
static AttrNumber *
remap_groupColIdx(PlannerInfo *root, List *groupClause)
{
AttrNumber *grouping_map = root->grouping_map;
AttrNumber *new_grpColIdx;
ListCell *lc;
int i;
Assert(grouping_map);
new_grpColIdx = palloc0(sizeof(AttrNumber) * list_length(groupClause));
i = 0;
foreach(lc, groupClause)
{
SortGroupClause *clause = lfirst(lc);
new_grpColIdx[i++] = grouping_map[clause->tleSortGroupRef];
}
return new_grpColIdx;
}
/*
* Build Agg and Sort nodes to implement sorted grouping with one or more
* grouping sets. (A plain GROUP BY or just the presence of aggregates counts
* for this purpose as a single grouping set; the calling code is responsible
* for providing a non-empty rollup_groupclauses list for such cases, though
* rollup_lists may be null.)
*
* The last entry in rollup_groupclauses (which is the one the input is sorted
* on, if at all) is the one used for the returned Agg node. Any additional
* rollups are attached, with corresponding sort info, to subsidiary Agg and
* Sort nodes attached to the side of the real Agg node; these nodes don't
* participate in the plan directly, but they are both a convenient way to
* represent the required data and a convenient way to account for the costs
* of execution.
*
* rollup_groupclauses and rollup_lists are destroyed by this function.
*/
static Plan *
build_grouping_chain(PlannerInfo *root,
Query *parse,
List *tlist,
bool need_sort_for_grouping,
List *rollup_groupclauses,
List *rollup_lists,
AttrNumber *groupColIdx,
AggClauseCosts *agg_costs,
long numGroups,
Plan *result_plan)
{
AttrNumber *top_grpColIdx = groupColIdx;
List *chain = NIL;
/*
* Prepare the grpColIdx for the real Agg node first, because we may need
* it for sorting
*/
if (list_length(rollup_groupclauses) > 1)
{
Assert(rollup_lists && llast(rollup_lists));
top_grpColIdx =
remap_groupColIdx(root, llast(rollup_groupclauses));
}
/*
* If we need a Sort operation on the input, generate that.
*/
if (need_sort_for_grouping)
{
result_plan = (Plan *)
make_sort_from_groupcols(root,
llast(rollup_groupclauses),
top_grpColIdx,
result_plan);
}
/*
* Generate the side nodes that describe the other sort and group
* operations besides the top one.
*/
while (list_length(rollup_groupclauses) > 1)
{
List *groupClause = linitial(rollup_groupclauses);
List *gsets = linitial(rollup_lists);
AttrNumber *new_grpColIdx;
Plan *sort_plan;
Plan *agg_plan;
Assert(groupClause);
Assert(gsets);
new_grpColIdx = remap_groupColIdx(root, groupClause);
sort_plan = (Plan *)
make_sort_from_groupcols(root,
groupClause,
new_grpColIdx,
result_plan);
/*
* sort_plan includes the cost of result_plan over again, which is not
* what we want (since it's not actually running that plan). So
* correct the cost figures.
*/
sort_plan->startup_cost -= result_plan->total_cost;
sort_plan->total_cost -= result_plan->total_cost;
agg_plan = (Plan *) make_agg(root,
tlist,
(List *) parse->havingQual,
AGG_SORTED,
agg_costs,
list_length(linitial(gsets)),
new_grpColIdx,
extract_grouping_ops(groupClause),
gsets,
numGroups,
sort_plan);
sort_plan->lefttree = NULL;
chain = lappend(chain, agg_plan);
if (rollup_lists)
rollup_lists = list_delete_first(rollup_lists);
rollup_groupclauses = list_delete_first(rollup_groupclauses);
}
/*
* Now make the final Agg node
*/
{
List *groupClause = linitial(rollup_groupclauses);
List *gsets = rollup_lists ? linitial(rollup_lists) : NIL;
int numGroupCols;
ListCell *lc;
if (gsets)
numGroupCols = list_length(linitial(gsets));
else
numGroupCols = list_length(parse->groupClause);
result_plan = (Plan *) make_agg(root,
tlist,
(List *) parse->havingQual,
(numGroupCols > 0) ? AGG_SORTED : AGG_PLAIN,
agg_costs,
numGroupCols,
top_grpColIdx,
extract_grouping_ops(groupClause),
gsets,
numGroups,
result_plan);
((Agg *) result_plan)->chain = chain;
/*
* Add the additional costs. But only the total costs count, since the
* additional sorts aren't run on startup.
*/
foreach(lc, chain)
{
Plan *subplan = lfirst(lc);
result_plan->total_cost += subplan->total_cost;
/*
* Nuke stuff we don't need to avoid bloating debug output.
*/
subplan->targetlist = NIL;
subplan->qual = NIL;
subplan->lefttree->targetlist = NIL;
}
}
return result_plan;
}
/*
* add_tlist_costs_to_plan
*
* Estimate the execution costs associated with evaluating the targetlist
* expressions, and add them to the cost estimates for the Plan node.
*
* If the tlist contains set-returning functions, also inflate the Plan's cost
* and plan_rows estimates accordingly. (Hence, this must be called *after*
* any logic that uses plan_rows to, eg, estimate qual evaluation costs.)
*
* Note: during initial stages of planning, we mostly consider plan nodes with
* "flat" tlists, containing just Vars. So their evaluation cost is zero
* according to the model used by cost_qual_eval() (or if you prefer, the cost
* is factored into cpu_tuple_cost). Thus we can avoid accounting for tlist
* cost throughout query_planner() and subroutines. But once we apply a
* tlist that might contain actual operators, sub-selects, etc, we'd better
* account for its cost. Any set-returning functions in the tlist must also
* affect the estimated rowcount.
*
* Once grouping_planner() has applied a general tlist to the topmost
* scan/join plan node, any tlist eval cost for added-on nodes should be
* accounted for as we create those nodes. Presently, of the node types we
* can add on later, only Agg, WindowAgg, and Group project new tlists (the
* rest just copy their input tuples) --- so make_agg(), make_windowagg() and
* make_group() are responsible for calling this function to account for their
* tlist costs.
*/
void
add_tlist_costs_to_plan(PlannerInfo *root, Plan *plan, List *tlist)
{
QualCost tlist_cost;
double tlist_rows;
cost_qual_eval(&tlist_cost, tlist, root);
plan->startup_cost += tlist_cost.startup;
plan->total_cost += tlist_cost.startup +
tlist_cost.per_tuple * plan->plan_rows;
tlist_rows = tlist_returns_set_rows(tlist);
if (tlist_rows > 1)
{
/*
* We assume that execution costs of the tlist proper were all
* accounted for by cost_qual_eval. However, it still seems
* appropriate to charge something more for the executor's general
* costs of processing the added tuples. The cost is probably less
* than cpu_tuple_cost, though, so we arbitrarily use half of that.
*/
plan->total_cost += plan->plan_rows * (tlist_rows - 1) *
cpu_tuple_cost / 2;
plan->plan_rows *= tlist_rows;
}
}
/*
* Detect whether a plan node is a "dummy" plan created when a relation
* is deemed not to need scanning due to constraint exclusion.
*
* Currently, such dummy plans are Result nodes with constant FALSE
* filter quals (see set_dummy_rel_pathlist and create_append_plan).
*
* XXX this probably ought to be somewhere else, but not clear where.
*/
bool
is_dummy_plan(Plan *plan)
{
if (IsA(plan, Result))
{
List *rcqual = (List *) ((Result *) plan)->resconstantqual;
if (list_length(rcqual) == 1)
{
Const *constqual = (Const *) linitial(rcqual);
if (constqual && IsA(constqual, Const))
{
if (!constqual->constisnull &&
!DatumGetBool(constqual->constvalue))
return true;
}
}
}
return false;
}
/*
* Create a bitmapset of the RT indexes of live base relations
*
* Helper for preprocess_rowmarks ... at this point in the proceedings,
* the only good way to distinguish baserels from appendrel children
* is to see what is in the join tree.
*/
static Bitmapset *
get_base_rel_indexes(Node *jtnode)
{
Bitmapset *result;
if (jtnode == NULL)
return NULL;
if (IsA(jtnode, RangeTblRef))
{
int varno = ((RangeTblRef *) jtnode)->rtindex;
result = bms_make_singleton(varno);
}
else if (IsA(jtnode, FromExpr))
{
FromExpr *f = (FromExpr *) jtnode;
ListCell *l;
result = NULL;
foreach(l, f->fromlist)
result = bms_join(result,
get_base_rel_indexes(lfirst(l)));
}
else if (IsA(jtnode, JoinExpr))
{
JoinExpr *j = (JoinExpr *) jtnode;
result = bms_join(get_base_rel_indexes(j->larg),
get_base_rel_indexes(j->rarg));
}
else
{
elog(ERROR, "unrecognized node type: %d",
(int) nodeTag(jtnode));
result = NULL; /* keep compiler quiet */
}
return result;
}
/*
* preprocess_rowmarks - set up PlanRowMarks if needed
*/
static void
preprocess_rowmarks(PlannerInfo *root)
{
Query *parse = root->parse;
Bitmapset *rels;
List *prowmarks;
ListCell *l;
int i;
if (parse->rowMarks)
{
/*
* We've got trouble if FOR [KEY] UPDATE/SHARE appears inside
* grouping, since grouping renders a reference to individual tuple
* CTIDs invalid. This is also checked at parse time, but that's
* insufficient because of rule substitution, query pullup, etc.
*/
CheckSelectLocking(parse, ((RowMarkClause *)
linitial(parse->rowMarks))->strength);
}
else
{
/*
* We only need rowmarks for UPDATE, DELETE, or FOR [KEY]
* UPDATE/SHARE.
*/
if (parse->commandType != CMD_UPDATE &&
parse->commandType != CMD_DELETE)
return;
}
/*
* We need to have rowmarks for all base relations except the target. We
* make a bitmapset of all base rels and then remove the items we don't
* need or have FOR [KEY] UPDATE/SHARE marks for.
*/
rels = get_base_rel_indexes((Node *) parse->jointree);
if (parse->resultRelation)
rels = bms_del_member(rels, parse->resultRelation);
/*
* Convert RowMarkClauses to PlanRowMark representation.
*/
prowmarks = NIL;
foreach(l, parse->rowMarks)
{
RowMarkClause *rc = (RowMarkClause *) lfirst(l);
RangeTblEntry *rte = rt_fetch(rc->rti, parse->rtable);
PlanRowMark *newrc;
/*
* Currently, it is syntactically impossible to have FOR UPDATE et al
* applied to an update/delete target rel. If that ever becomes
* possible, we should drop the target from the PlanRowMark list.
*/
Assert(rc->rti != parse->resultRelation);
/*
* Ignore RowMarkClauses for subqueries; they aren't real tables and
* can't support true locking. Subqueries that got flattened into the
* main query should be ignored completely. Any that didn't will get
* ROW_MARK_COPY items in the next loop.
*/
if (rte->rtekind != RTE_RELATION)
continue;
rels = bms_del_member(rels, rc->rti);
newrc = makeNode(PlanRowMark);
newrc->rti = newrc->prti = rc->rti;
newrc->rowmarkId = ++(root->glob->lastRowMarkId);
newrc->markType = select_rowmark_type(rte, rc->strength);
newrc->allMarkTypes = (1 << newrc->markType);
newrc->strength = rc->strength;
newrc->waitPolicy = rc->waitPolicy;
newrc->isParent = false;
prowmarks = lappend(prowmarks, newrc);
}
/*
* Now, add rowmarks for any non-target, non-locked base relations.
*/
i = 0;
foreach(l, parse->rtable)
{
RangeTblEntry *rte = (RangeTblEntry *) lfirst(l);
PlanRowMark *newrc;
i++;
if (!bms_is_member(i, rels))
continue;
newrc = makeNode(PlanRowMark);
newrc->rti = newrc->prti = i;
newrc->rowmarkId = ++(root->glob->lastRowMarkId);
newrc->markType = select_rowmark_type(rte, LCS_NONE);
newrc->allMarkTypes = (1 << newrc->markType);
newrc->strength = LCS_NONE;
newrc->waitPolicy = LockWaitBlock; /* doesn't matter */
newrc->isParent = false;
prowmarks = lappend(prowmarks, newrc);
}
root->rowMarks = prowmarks;
}
/*
* Select RowMarkType to use for a given table
*/
RowMarkType
select_rowmark_type(RangeTblEntry *rte, LockClauseStrength strength)
{
if (rte->rtekind != RTE_RELATION)
{
/* If it's not a table at all, use ROW_MARK_COPY */
return ROW_MARK_COPY;
}
else if (rte->relkind == RELKIND_FOREIGN_TABLE)
{
/* Let the FDW select the rowmark type, if it wants to */
FdwRoutine *fdwroutine = GetFdwRoutineByRelId(rte->relid);
if (fdwroutine->GetForeignRowMarkType != NULL)
return fdwroutine->GetForeignRowMarkType(rte, strength);
/* Otherwise, use ROW_MARK_COPY by default */
return ROW_MARK_COPY;
}
else
{
/* Regular table, apply the appropriate lock type */
switch (strength)
{
case LCS_NONE:
/*
* We don't need a tuple lock, only the ability to re-fetch
* the row. Regular tables support ROW_MARK_REFERENCE, but if
* this RTE has security barrier quals, it will be turned into
* a subquery during planning, so use ROW_MARK_COPY.
*
* This is only necessary for LCS_NONE, since real tuple locks
* on an RTE with security barrier quals are supported by
* pushing the lock down into the subquery --- see
* expand_security_qual.
*/
if (rte->securityQuals != NIL)
return ROW_MARK_COPY;
return ROW_MARK_REFERENCE;
break;
case LCS_FORKEYSHARE:
return ROW_MARK_KEYSHARE;
break;
case LCS_FORSHARE:
return ROW_MARK_SHARE;
break;
case LCS_FORNOKEYUPDATE:
return ROW_MARK_NOKEYEXCLUSIVE;
break;
case LCS_FORUPDATE:
return ROW_MARK_EXCLUSIVE;
break;
}
elog(ERROR, "unrecognized LockClauseStrength %d", (int) strength);
return ROW_MARK_EXCLUSIVE; /* keep compiler quiet */
}
}
/*
* preprocess_limit - do pre-estimation for LIMIT and/or OFFSET clauses
*
* We try to estimate the values of the LIMIT/OFFSET clauses, and pass the
* results back in *count_est and *offset_est. These variables are set to
* 0 if the corresponding clause is not present, and -1 if it's present
* but we couldn't estimate the value for it. (The "0" convention is OK
* for OFFSET but a little bit bogus for LIMIT: effectively we estimate
* LIMIT 0 as though it were LIMIT 1. But this is in line with the planner's
* usual practice of never estimating less than one row.) These values will
* be passed to make_limit, which see if you change this code.
*
* The return value is the suitably adjusted tuple_fraction to use for
* planning the query. This adjustment is not overridable, since it reflects
* plan actions that grouping_planner() will certainly take, not assumptions
* about context.
*/
static double
preprocess_limit(PlannerInfo *root, double tuple_fraction,
int64 *offset_est, int64 *count_est)
{
Query *parse = root->parse;
Node *est;
double limit_fraction;
/* Should not be called unless LIMIT or OFFSET */
Assert(parse->limitCount || parse->limitOffset);
/*
* Try to obtain the clause values. We use estimate_expression_value
* primarily because it can sometimes do something useful with Params.
*/
if (parse->limitCount)
{
est = estimate_expression_value(root, parse->limitCount);
if (est && IsA(est, Const))
{
if (((Const *) est)->constisnull)
{
/* NULL indicates LIMIT ALL, ie, no limit */
*count_est = 0; /* treat as not present */
}
else
{
*count_est = DatumGetInt64(((Const *) est)->constvalue);
if (*count_est <= 0)
*count_est = 1; /* force to at least 1 */
}
}
else
*count_est = -1; /* can't estimate */
}
else
*count_est = 0; /* not present */
if (parse->limitOffset)
{
est = estimate_expression_value(root, parse->limitOffset);
if (est && IsA(est, Const))
{
if (((Const *) est)->constisnull)
{
/* Treat NULL as no offset; the executor will too */
*offset_est = 0; /* treat as not present */
}
else
{
*offset_est = DatumGetInt64(((Const *) est)->constvalue);
if (*offset_est < 0)
*offset_est = 0; /* treat as not present */
}
}
else
*offset_est = -1; /* can't estimate */
}
else
*offset_est = 0; /* not present */
if (*count_est != 0)
{
/*
* A LIMIT clause limits the absolute number of tuples returned.
* However, if it's not a constant LIMIT then we have to guess; for
* lack of a better idea, assume 10% of the plan's result is wanted.
*/
if (*count_est < 0 || *offset_est < 0)
{
/* LIMIT or OFFSET is an expression ... punt ... */
limit_fraction = 0.10;
}
else
{
/* LIMIT (plus OFFSET, if any) is max number of tuples needed */
limit_fraction = (double) *count_est + (double) *offset_est;
}
/*
* If we have absolute limits from both caller and LIMIT, use the
* smaller value; likewise if they are both fractional. If one is
* fractional and the other absolute, we can't easily determine which
* is smaller, but we use the heuristic that the absolute will usually
* be smaller.
*/
if (tuple_fraction >= 1.0)
{
if (limit_fraction >= 1.0)
{
/* both absolute */
tuple_fraction = Min(tuple_fraction, limit_fraction);
}
else
{
/* caller absolute, limit fractional; use caller's value */
}
}
else if (tuple_fraction > 0.0)
{
if (limit_fraction >= 1.0)
{
/* caller fractional, limit absolute; use limit */
tuple_fraction = limit_fraction;
}
else
{
/* both fractional */
tuple_fraction = Min(tuple_fraction, limit_fraction);
}
}
else
{
/* no info from caller, just use limit */
tuple_fraction = limit_fraction;
}
}
else if (*offset_est != 0 && tuple_fraction > 0.0)
{
/*
* We have an OFFSET but no LIMIT. This acts entirely differently
* from the LIMIT case: here, we need to increase rather than decrease
* the caller's tuple_fraction, because the OFFSET acts to cause more
* tuples to be fetched instead of fewer. This only matters if we got
* a tuple_fraction > 0, however.
*
* As above, use 10% if OFFSET is present but unestimatable.
*/
if (*offset_est < 0)
limit_fraction = 0.10;
else
limit_fraction = (double) *offset_est;
/*
* If we have absolute counts from both caller and OFFSET, add them
* together; likewise if they are both fractional. If one is
* fractional and the other absolute, we want to take the larger, and
* we heuristically assume that's the fractional one.
*/
if (tuple_fraction >= 1.0)
{
if (limit_fraction >= 1.0)
{
/* both absolute, so add them together */
tuple_fraction += limit_fraction;
}
else
{
/* caller absolute, limit fractional; use limit */
tuple_fraction = limit_fraction;
}
}
else
{
if (limit_fraction >= 1.0)
{
/* caller fractional, limit absolute; use caller's value */
}
else
{
/* both fractional, so add them together */
tuple_fraction += limit_fraction;
if (tuple_fraction >= 1.0)
tuple_fraction = 0.0; /* assume fetch all */
}
}
}
return tuple_fraction;
}
/*
* limit_needed - do we actually need a Limit plan node?
*
* If we have constant-zero OFFSET and constant-null LIMIT, we can skip adding
* a Limit node. This is worth checking for because "OFFSET 0" is a common
* locution for an optimization fence. (Because other places in the planner
* merely check whether parse->limitOffset isn't NULL, it will still work as
* an optimization fence --- we're just suppressing unnecessary run-time
* overhead.)
*
* This might look like it could be merged into preprocess_limit, but there's
* a key distinction: here we need hard constants in OFFSET/LIMIT, whereas
* in preprocess_limit it's good enough to consider estimated values.
*/
static bool
limit_needed(Query *parse)
{
Node *node;
node = parse->limitCount;
if (node)
{
if (IsA(node, Const))
{
/* NULL indicates LIMIT ALL, ie, no limit */
if (!((Const *) node)->constisnull)
return true; /* LIMIT with a constant value */
}
else
return true; /* non-constant LIMIT */
}
node = parse->limitOffset;
if (node)
{
if (IsA(node, Const))
{
/* Treat NULL as no offset; the executor would too */
if (!((Const *) node)->constisnull)
{
int64 offset = DatumGetInt64(((Const *) node)->constvalue);
if (offset != 0)
return true; /* OFFSET with a nonzero value */
}
}
else
return true; /* non-constant OFFSET */
}
return false; /* don't need a Limit plan node */
}
/*
* preprocess_groupclause - do preparatory work on GROUP BY clause
*
* The idea here is to adjust the ordering of the GROUP BY elements
* (which in itself is semantically insignificant) to match ORDER BY,
* thereby allowing a single sort operation to both implement the ORDER BY
* requirement and set up for a Unique step that implements GROUP BY.
*
* In principle it might be interesting to consider other orderings of the
* GROUP BY elements, which could match the sort ordering of other
* possible plans (eg an indexscan) and thereby reduce cost. We don't
* bother with that, though. Hashed grouping will frequently win anyway.
*
* Note: we need no comparable processing of the distinctClause because
* the parser already enforced that that matches ORDER BY.
*
* For grouping sets, the order of items is instead forced to agree with that
* of the grouping set (and items not in the grouping set are skipped). The
* work of sorting the order of grouping set elements to match the ORDER BY if
* possible is done elsewhere.
*/
static List *
preprocess_groupclause(PlannerInfo *root, List *force)
{
Query *parse = root->parse;
List *new_groupclause = NIL;
bool partial_match;
ListCell *sl;
ListCell *gl;
/* For grouping sets, we need to force the ordering */
if (force)
{
foreach(sl, force)
{
Index ref = lfirst_int(sl);
SortGroupClause *cl = get_sortgroupref_clause(ref, parse->groupClause);
new_groupclause = lappend(new_groupclause, cl);
}
return new_groupclause;
}
/* If no ORDER BY, nothing useful to do here */
if (parse->sortClause == NIL)
return parse->groupClause;
/*
* Scan the ORDER BY clause and construct a list of matching GROUP BY
* items, but only as far as we can make a matching prefix.
*
* This code assumes that the sortClause contains no duplicate items.
*/
foreach(sl, parse->sortClause)
{
SortGroupClause *sc = (SortGroupClause *) lfirst(sl);
foreach(gl, parse->groupClause)
{
SortGroupClause *gc = (SortGroupClause *) lfirst(gl);
if (equal(gc, sc))
{
new_groupclause = lappend(new_groupclause, gc);
break;
}
}
if (gl == NULL)
break; /* no match, so stop scanning */
}
/* Did we match all of the ORDER BY list, or just some of it? */
partial_match = (sl != NULL);
/* If no match at all, no point in reordering GROUP BY */
if (new_groupclause == NIL)
return parse->groupClause;
/*
* Add any remaining GROUP BY items to the new list, but only if we were
* able to make a complete match. In other words, we only rearrange the
* GROUP BY list if the result is that one list is a prefix of the other
* --- otherwise there's no possibility of a common sort. Also, give up
* if there are any non-sortable GROUP BY items, since then there's no
* hope anyway.
*/
foreach(gl, parse->groupClause)
{
SortGroupClause *gc = (SortGroupClause *) lfirst(gl);
if (list_member_ptr(new_groupclause, gc))
continue; /* it matched an ORDER BY item */
if (partial_match)
return parse->groupClause; /* give up, no common sort possible */
if (!OidIsValid(gc->sortop))
return parse->groupClause; /* give up, GROUP BY can't be sorted */
new_groupclause = lappend(new_groupclause, gc);
}
/* Success --- install the rearranged GROUP BY list */
Assert(list_length(parse->groupClause) == list_length(new_groupclause));
return new_groupclause;
}
/*
* Extract lists of grouping sets that can be implemented using a single
* rollup-type aggregate pass each. Returns a list of lists of grouping sets.
*
* Input must be sorted with smallest sets first. Result has each sublist
* sorted with smallest sets first.
*
* We want to produce the absolute minimum possible number of lists here to
* avoid excess sorts. Fortunately, there is an algorithm for this; the problem
* of finding the minimal partition of a partially-ordered set into chains
* (which is what we need, taking the list of grouping sets as a poset ordered
* by set inclusion) can be mapped to the problem of finding the maximum
* cardinality matching on a bipartite graph, which is solvable in polynomial
* time with a worst case of no worse than O(n^2.5) and usually much
* better. Since our N is at most 4096, we don't need to consider fallbacks to
* heuristic or approximate methods. (Planning time for a 12-d cube is under
* half a second on my modest system even with optimization off and assertions
* on.)
*/
static List *
extract_rollup_sets(List *groupingSets)
{
int num_sets_raw = list_length(groupingSets);
int num_empty = 0;
int num_sets = 0; /* distinct sets */
int num_chains = 0;
List *result = NIL;
List **results;
List **orig_sets;
Bitmapset **set_masks;
int *chains;
short **adjacency;
short *adjacency_buf;
BipartiteMatchState *state;
int i;
int j;
int j_size;
ListCell *lc1 = list_head(groupingSets);
ListCell *lc;
/*
* Start by stripping out empty sets. The algorithm doesn't require this,
* but the planner currently needs all empty sets to be returned in the
* first list, so we strip them here and add them back after.
*/
while (lc1 && lfirst(lc1) == NIL)
{
++num_empty;
lc1 = lnext(lc1);
}
/* bail out now if it turns out that all we had were empty sets. */
if (!lc1)
return list_make1(groupingSets);
/*----------
* We don't strictly need to remove duplicate sets here, but if we don't,
* they tend to become scattered through the result, which is a bit
* confusing (and irritating if we ever decide to optimize them out).
* So we remove them here and add them back after.
*
* For each non-duplicate set, we fill in the following:
*
* orig_sets[i] = list of the original set lists
* set_masks[i] = bitmapset for testing inclusion
* adjacency[i] = array [n, v1, v2, ... vn] of adjacency indices
*
* chains[i] will be the result group this set is assigned to.
*
* We index all of these from 1 rather than 0 because it is convenient
* to leave 0 free for the NIL node in the graph algorithm.
*----------
*/
orig_sets = palloc0((num_sets_raw + 1) * sizeof(List *));
set_masks = palloc0((num_sets_raw + 1) * sizeof(Bitmapset *));
adjacency = palloc0((num_sets_raw + 1) * sizeof(short *));
adjacency_buf = palloc((num_sets_raw + 1) * sizeof(short));
j_size = 0;
j = 0;
i = 1;
for_each_cell(lc, lc1)
{
List *candidate = lfirst(lc);
Bitmapset *candidate_set = NULL;
ListCell *lc2;
int dup_of = 0;
foreach(lc2, candidate)
{
candidate_set = bms_add_member(candidate_set, lfirst_int(lc2));
}
/* we can only be a dup if we're the same length as a previous set */
if (j_size == list_length(candidate))
{
int k;
for (k = j; k < i; ++k)
{
if (bms_equal(set_masks[k], candidate_set))
{
dup_of = k;
break;
}
}
}
else if (j_size < list_length(candidate))
{
j_size = list_length(candidate);
j = i;
}
if (dup_of > 0)
{
orig_sets[dup_of] = lappend(orig_sets[dup_of], candidate);
bms_free(candidate_set);
}
else
{
int k;
int n_adj = 0;
orig_sets[i] = list_make1(candidate);
set_masks[i] = candidate_set;
/* fill in adjacency list; no need to compare equal-size sets */
for (k = j - 1; k > 0; --k)
{
if (bms_is_subset(set_masks[k], candidate_set))
adjacency_buf[++n_adj] = k;
}
if (n_adj > 0)
{
adjacency_buf[0] = n_adj;
adjacency[i] = palloc((n_adj + 1) * sizeof(short));
memcpy(adjacency[i], adjacency_buf, (n_adj + 1) * sizeof(short));
}
else
adjacency[i] = NULL;
++i;
}
}
num_sets = i - 1;
/*
* Apply the graph matching algorithm to do the work.
*/
state = BipartiteMatch(num_sets, num_sets, adjacency);
/*
* Now, the state->pair* fields have the info we need to assign sets to
* chains. Two sets (u,v) belong to the same chain if pair_uv[u] = v or
* pair_vu[v] = u (both will be true, but we check both so that we can do
* it in one pass)
*/
chains = palloc0((num_sets + 1) * sizeof(int));
for (i = 1; i <= num_sets; ++i)
{
int u = state->pair_vu[i];
int v = state->pair_uv[i];
if (u > 0 && u < i)
chains[i] = chains[u];
else if (v > 0 && v < i)
chains[i] = chains[v];
else
chains[i] = ++num_chains;
}
/* build result lists. */
results = palloc0((num_chains + 1) * sizeof(List *));
for (i = 1; i <= num_sets; ++i)
{
int c = chains[i];
Assert(c > 0);
results[c] = list_concat(results[c], orig_sets[i]);
}
/* push any empty sets back on the first list. */
while (num_empty-- > 0)
results[1] = lcons(NIL, results[1]);
/* make result list */
for (i = 1; i <= num_chains; ++i)
result = lappend(result, results[i]);
/*
* Free all the things.
*
* (This is over-fussy for small sets but for large sets we could have
* tied up a nontrivial amount of memory.)
*/
BipartiteMatchFree(state);
pfree(results);
pfree(chains);
for (i = 1; i <= num_sets; ++i)
if (adjacency[i])
pfree(adjacency[i]);
pfree(adjacency);
pfree(adjacency_buf);
pfree(orig_sets);
for (i = 1; i <= num_sets; ++i)
bms_free(set_masks[i]);
pfree(set_masks);
return result;
}
/*
* Reorder the elements of a list of grouping sets such that they have correct
* prefix relationships.
*
* The input must be ordered with smallest sets first; the result is returned
* with largest sets first.
*
* If we're passed in a sortclause, we follow its order of columns to the
* extent possible, to minimize the chance that we add unnecessary sorts.
* (We're trying here to ensure that GROUPING SETS ((a,b,c),(c)) ORDER BY c,b,a
* gets implemented in one pass.)
*/
static List *
reorder_grouping_sets(List *groupingsets, List *sortclause)
{
ListCell *lc;
ListCell *lc2;
List *previous = NIL;
List *result = NIL;
foreach(lc, groupingsets)
{
List *candidate = lfirst(lc);
List *new_elems = list_difference_int(candidate, previous);
if (list_length(new_elems) > 0)
{
while (list_length(sortclause) > list_length(previous))
{
SortGroupClause *sc = list_nth(sortclause, list_length(previous));
int ref = sc->tleSortGroupRef;
if (list_member_int(new_elems, ref))
{
previous = lappend_int(previous, ref);
new_elems = list_delete_int(new_elems, ref);
}
else
{
/* diverged from the sortclause; give up on it */
sortclause = NIL;
break;
}
}
foreach(lc2, new_elems)
{
previous = lappend_int(previous, lfirst_int(lc2));
}
}
result = lcons(list_copy(previous), result);
list_free(new_elems);
}
list_free(previous);
return result;
}
/*
* Compute query_pathkeys and other pathkeys during plan generation
*/
static void
standard_qp_callback(PlannerInfo *root, void *extra)
{
Query *parse = root->parse;
standard_qp_extra *qp_extra = (standard_qp_extra *) extra;
List *tlist = qp_extra->tlist;
List *activeWindows = qp_extra->activeWindows;
/*
* Calculate pathkeys that represent grouping/ordering requirements. The
* sortClause is certainly sort-able, but GROUP BY and DISTINCT might not
* be, in which case we just leave their pathkeys empty.
*/
if (qp_extra->groupClause &&
grouping_is_sortable(qp_extra->groupClause))
root->group_pathkeys =
make_pathkeys_for_sortclauses(root,
qp_extra->groupClause,
tlist);
else
root->group_pathkeys = NIL;
/* We consider only the first (bottom) window in pathkeys logic */
if (activeWindows != NIL)
{
WindowClause *wc = (WindowClause *) linitial(activeWindows);
root->window_pathkeys = make_pathkeys_for_window(root,
wc,
tlist);
}
else
root->window_pathkeys = NIL;
if (parse->distinctClause &&
grouping_is_sortable(parse->distinctClause))
root->distinct_pathkeys =
make_pathkeys_for_sortclauses(root,
parse->distinctClause,
tlist);
else
root->distinct_pathkeys = NIL;
root->sort_pathkeys =
make_pathkeys_for_sortclauses(root,
parse->sortClause,
tlist);
/*
* Figure out whether we want a sorted result from query_planner.
*
* If we have a sortable GROUP BY clause, then we want a result sorted
* properly for grouping. Otherwise, if we have window functions to
* evaluate, we try to sort for the first window. Otherwise, if there's a
* sortable DISTINCT clause that's more rigorous than the ORDER BY clause,
* we try to produce output that's sufficiently well sorted for the
* DISTINCT. Otherwise, if there is an ORDER BY clause, we want to sort
* by the ORDER BY clause.
*
* Note: if we have both ORDER BY and GROUP BY, and ORDER BY is a superset
* of GROUP BY, it would be tempting to request sort by ORDER BY --- but
* that might just leave us failing to exploit an available sort order at
* all. Needs more thought. The choice for DISTINCT versus ORDER BY is
* much easier, since we know that the parser ensured that one is a
* superset of the other.
*/
if (root->group_pathkeys)
root->query_pathkeys = root->group_pathkeys;
else if (root->window_pathkeys)
root->query_pathkeys = root->window_pathkeys;
else if (list_length(root->distinct_pathkeys) >
list_length(root->sort_pathkeys))
root->query_pathkeys = root->distinct_pathkeys;
else if (root->sort_pathkeys)
root->query_pathkeys = root->sort_pathkeys;
else
root->query_pathkeys = NIL;
}
/*
* choose_hashed_grouping - should we use hashed grouping?
*
* Returns TRUE to select hashing, FALSE to select sorting.
*/
static bool
choose_hashed_grouping(PlannerInfo *root,
double tuple_fraction, double limit_tuples,
double path_rows, int path_width,
Path *cheapest_path, Path *sorted_path,
double dNumGroups, AggClauseCosts *agg_costs)
{
Query *parse = root->parse;
int numGroupCols = list_length(parse->groupClause);
bool can_hash;
bool can_sort;
Size hashentrysize;
List *target_pathkeys;
List *current_pathkeys;
Path hashed_p;
Path sorted_p;
/*
* Executor doesn't support hashed aggregation with DISTINCT or ORDER BY
* aggregates. (Doing so would imply storing *all* the input values in
* the hash table, and/or running many sorts in parallel, either of which
* seems like a certain loser.) We similarly don't support ordered-set
* aggregates in hashed aggregation, but that case is included in the
* numOrderedAggs count.
*/
can_hash = (agg_costs->numOrderedAggs == 0 &&
grouping_is_hashable(parse->groupClause));
can_sort = grouping_is_sortable(parse->groupClause);
/* Quick out if only one choice is workable */
if (!(can_hash && can_sort))
{
if (can_hash)
return true;
else if (can_sort)
return false;
else
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("could not implement GROUP BY"),
errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
}
/* Prefer sorting when enable_hashagg is off */
if (!enable_hashagg)
return false;
/*
* Don't do it if it doesn't look like the hashtable will fit into
* work_mem.
*/
/* Estimate per-hash-entry space at tuple width... */
hashentrysize = MAXALIGN(path_width) + MAXALIGN(SizeofMinimalTupleHeader);
/* plus space for pass-by-ref transition values... */
hashentrysize += agg_costs->transitionSpace;
/* plus the per-hash-entry overhead */
hashentrysize += hash_agg_entry_size(agg_costs->numAggs);
if (hashentrysize * dNumGroups > work_mem * 1024L)
return false;
/*
* When we have both GROUP BY and DISTINCT, use the more-rigorous of
* DISTINCT and ORDER BY as the assumed required output sort order. This
* is an oversimplification because the DISTINCT might get implemented via
* hashing, but it's not clear that the case is common enough (or that our
* estimates are good enough) to justify trying to solve it exactly.
*/
if (list_length(root->distinct_pathkeys) >
list_length(root->sort_pathkeys))
target_pathkeys = root->distinct_pathkeys;
else
target_pathkeys = root->sort_pathkeys;
/*
* See if the estimated cost is no more than doing it the other way. While
* avoiding the need for sorted input is usually a win, the fact that the
* output won't be sorted may be a loss; so we need to do an actual cost
* comparison.
*
* We need to consider cheapest_path + hashagg [+ final sort] versus
* either cheapest_path [+ sort] + group or agg [+ final sort] or
* presorted_path + group or agg [+ final sort] where brackets indicate a
* step that may not be needed. We assume grouping_planner() will have
* passed us a presorted path only if it's a winner compared to
* cheapest_path for this purpose.
*
* These path variables are dummies that just hold cost fields; we don't
* make actual Paths for these steps.
*/
cost_agg(&hashed_p, root, AGG_HASHED, agg_costs,
numGroupCols, dNumGroups,
cheapest_path->startup_cost, cheapest_path->total_cost,
path_rows);
/* Result of hashed agg is always unsorted */
if (target_pathkeys)
cost_sort(&hashed_p, root, target_pathkeys, hashed_p.total_cost,
dNumGroups, path_width,
0.0, work_mem, limit_tuples);
if (sorted_path)
{
sorted_p.startup_cost = sorted_path->startup_cost;
sorted_p.total_cost = sorted_path->total_cost;
current_pathkeys = sorted_path->pathkeys;
}
else
{
sorted_p.startup_cost = cheapest_path->startup_cost;
sorted_p.total_cost = cheapest_path->total_cost;
current_pathkeys = cheapest_path->pathkeys;
}
if (!pathkeys_contained_in(root->group_pathkeys, current_pathkeys))
{
cost_sort(&sorted_p, root, root->group_pathkeys, sorted_p.total_cost,
path_rows, path_width,
0.0, work_mem, -1.0);
current_pathkeys = root->group_pathkeys;
}
if (parse->hasAggs)
cost_agg(&sorted_p, root, AGG_SORTED, agg_costs,
numGroupCols, dNumGroups,
sorted_p.startup_cost, sorted_p.total_cost,
path_rows);
else
cost_group(&sorted_p, root, numGroupCols, dNumGroups,
sorted_p.startup_cost, sorted_p.total_cost,
path_rows);
/* The Agg or Group node will preserve ordering */
if (target_pathkeys &&
!pathkeys_contained_in(target_pathkeys, current_pathkeys))
cost_sort(&sorted_p, root, target_pathkeys, sorted_p.total_cost,
dNumGroups, path_width,
0.0, work_mem, limit_tuples);
/*
* Now make the decision using the top-level tuple fraction.
*/
if (compare_fractional_path_costs(&hashed_p, &sorted_p,
tuple_fraction) < 0)
{
/* Hashed is cheaper, so use it */
return true;
}
return false;
}
/*
* choose_hashed_distinct - should we use hashing for DISTINCT?
*
* This is fairly similar to choose_hashed_grouping, but there are enough
* differences that it doesn't seem worth trying to unify the two functions.
* (One difference is that we sometimes apply this after forming a Plan,
* so the input alternatives can't be represented as Paths --- instead we
* pass in the costs as individual variables.)
*
* But note that making the two choices independently is a bit bogus in
* itself. If the two could be combined into a single choice operation
* it'd probably be better, but that seems far too unwieldy to be practical,
* especially considering that the combination of GROUP BY and DISTINCT
* isn't very common in real queries. By separating them, we are giving
* extra preference to using a sorting implementation when a common sort key
* is available ... and that's not necessarily wrong anyway.
*
* Returns TRUE to select hashing, FALSE to select sorting.
*/
static bool
choose_hashed_distinct(PlannerInfo *root,
double tuple_fraction, double limit_tuples,
double path_rows, int path_width,
Cost cheapest_startup_cost, Cost cheapest_total_cost,
Cost sorted_startup_cost, Cost sorted_total_cost,
List *sorted_pathkeys,
double dNumDistinctRows)
{
Query *parse = root->parse;
int numDistinctCols = list_length(parse->distinctClause);
bool can_sort;
bool can_hash;
Size hashentrysize;
List *current_pathkeys;
List *needed_pathkeys;
Path hashed_p;
Path sorted_p;
/*
* If we have a sortable DISTINCT ON clause, we always use sorting. This
* enforces the expected behavior of DISTINCT ON.
*/
can_sort = grouping_is_sortable(parse->distinctClause);
if (can_sort && parse->hasDistinctOn)
return false;
can_hash = grouping_is_hashable(parse->distinctClause);
/* Quick out if only one choice is workable */
if (!(can_hash && can_sort))
{
if (can_hash)
return true;
else if (can_sort)
return false;
else
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("could not implement DISTINCT"),
errdetail("Some of the datatypes only support hashing, while others only support sorting.")));
}
/* Prefer sorting when enable_hashagg is off */
if (!enable_hashagg)
return false;
/*
* Don't do it if it doesn't look like the hashtable will fit into
* work_mem.
*/
/* Estimate per-hash-entry space at tuple width... */
hashentrysize = MAXALIGN(path_width) + MAXALIGN(SizeofMinimalTupleHeader);
/* plus the per-hash-entry overhead */
hashentrysize += hash_agg_entry_size(0);
if (hashentrysize * dNumDistinctRows > work_mem * 1024L)
return false;
/*
* See if the estimated cost is no more than doing it the other way. While
* avoiding the need for sorted input is usually a win, the fact that the
* output won't be sorted may be a loss; so we need to do an actual cost
* comparison.
*
* We need to consider cheapest_path + hashagg [+ final sort] versus
* sorted_path [+ sort] + group [+ final sort] where brackets indicate a
* step that may not be needed.
*
* These path variables are dummies that just hold cost fields; we don't
* make actual Paths for these steps.
*/
cost_agg(&hashed_p, root, AGG_HASHED, NULL,
numDistinctCols, dNumDistinctRows,
cheapest_startup_cost, cheapest_total_cost,
path_rows);
/*
* Result of hashed agg is always unsorted, so if ORDER BY is present we
* need to charge for the final sort.
*/
if (parse->sortClause)
cost_sort(&hashed_p, root, root->sort_pathkeys, hashed_p.total_cost,
dNumDistinctRows, path_width,
0.0, work_mem, limit_tuples);
/*
* Now for the GROUP case. See comments in grouping_planner about the
* sorting choices here --- this code should match that code.
*/
sorted_p.startup_cost = sorted_startup_cost;
sorted_p.total_cost = sorted_total_cost;
current_pathkeys = sorted_pathkeys;
if (parse->hasDistinctOn &&
list_length(root->distinct_pathkeys) <
list_length(root->sort_pathkeys))
needed_pathkeys = root->sort_pathkeys;
else
needed_pathkeys = root->distinct_pathkeys;
if (!pathkeys_contained_in(needed_pathkeys, current_pathkeys))
{
if (list_length(root->distinct_pathkeys) >=
list_length(root->sort_pathkeys))
current_pathkeys = root->distinct_pathkeys;
else
current_pathkeys = root->sort_pathkeys;
cost_sort(&sorted_p, root, current_pathkeys, sorted_p.total_cost,
path_rows, path_width,
0.0, work_mem, -1.0);
}
cost_group(&sorted_p, root, numDistinctCols, dNumDistinctRows,
sorted_p.startup_cost, sorted_p.total_cost,
path_rows);
if (parse->sortClause &&
!pathkeys_contained_in(root->sort_pathkeys, current_pathkeys))
cost_sort(&sorted_p, root, root->sort_pathkeys, sorted_p.total_cost,
dNumDistinctRows, path_width,
0.0, work_mem, limit_tuples);
/*
* Now make the decision using the top-level tuple fraction.
*/
if (compare_fractional_path_costs(&hashed_p, &sorted_p,
tuple_fraction) < 0)
{
/* Hashed is cheaper, so use it */
return true;
}
return false;
}
/*
* make_subplanTargetList
* Generate appropriate target list when grouping is required.
*
* When grouping_planner inserts grouping or aggregation plan nodes
* above the scan/join plan constructed by query_planner+create_plan,
* we typically want the scan/join plan to emit a different target list
* than the outer plan nodes should have. This routine generates the
* correct target list for the scan/join subplan.
*
* The initial target list passed from the parser already contains entries
* for all ORDER BY and GROUP BY expressions, but it will not have entries
* for variables used only in HAVING clauses; so we need to add those
* variables to the subplan target list. Also, we flatten all expressions
* except GROUP BY items into their component variables; the other expressions
* will be computed by the inserted nodes rather than by the subplan.
* For example, given a query like
* SELECT a+b,SUM(c+d) FROM table GROUP BY a+b;
* we want to pass this targetlist to the subplan:
* a+b,c,d
* where the a+b target will be used by the Sort/Group steps, and the
* other targets will be used for computing the final results.
*
* If we are grouping or aggregating, *and* there are no non-Var grouping
* expressions, then the returned tlist is effectively dummy; we do not
* need to force it to be evaluated, because all the Vars it contains
* should be present in the "flat" tlist generated by create_plan, though
* possibly in a different order. In that case we'll use create_plan's tlist,
* and the tlist made here is only needed as input to query_planner to tell
* it which Vars are needed in the output of the scan/join plan.
*
* 'tlist' is the query's target list.
* 'groupColIdx' receives an array of column numbers for the GROUP BY
* expressions (if there are any) in the returned target list.
* 'need_tlist_eval' is set true if we really need to evaluate the
* returned tlist as-is. (Note: locate_grouping_columns assumes
* that if this is FALSE, all grouping columns are simple Vars.)
*
* The result is the targetlist to be passed to query_planner.
*/
static List *
make_subplanTargetList(PlannerInfo *root,
List *tlist,
AttrNumber **groupColIdx,
bool *need_tlist_eval)
{
Query *parse = root->parse;
List *sub_tlist;
List *non_group_cols;
List *non_group_vars;
int numCols;
*groupColIdx = NULL;
/*
* If we're not grouping or aggregating, there's nothing to do here;
* query_planner should receive the unmodified target list.
*/
if (!parse->hasAggs && !parse->groupClause && !parse->groupingSets && !root->hasHavingQual &&
!parse->hasWindowFuncs)
{
*need_tlist_eval = true;
return tlist;
}
/*
* Otherwise, we must build a tlist containing all grouping columns, plus
* any other Vars mentioned in the targetlist and HAVING qual.
*/
sub_tlist = NIL;
non_group_cols = NIL;
*need_tlist_eval = false; /* only eval if not flat tlist */
numCols = list_length(parse->groupClause);
if (numCols > 0)
{
/*
* If grouping, create sub_tlist entries for all GROUP BY columns, and
* make an array showing where the group columns are in the sub_tlist.
*
* Note: with this implementation, the array entries will always be
* 1..N, but we don't want callers to assume that.
*/
AttrNumber *grpColIdx;
ListCell *tl;
grpColIdx = (AttrNumber *) palloc0(sizeof(AttrNumber) * numCols);
*groupColIdx = grpColIdx;
foreach(tl, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(tl);
int colno;
colno = get_grouping_column_index(parse, tle);
if (colno >= 0)
{
/*
* It's a grouping column, so add it to the result tlist and
* remember its resno in grpColIdx[].
*/
TargetEntry *newtle;
newtle = makeTargetEntry(tle->expr,
list_length(sub_tlist) + 1,
NULL,
false);
sub_tlist = lappend(sub_tlist, newtle);
Assert(grpColIdx[colno] == 0); /* no dups expected */
grpColIdx[colno] = newtle->resno;
if (!(newtle->expr && IsA(newtle->expr, Var)))
*need_tlist_eval = true; /* tlist contains non Vars */
}
else
{
/*
* Non-grouping column, so just remember the expression for
* later call to pull_var_clause. There's no need for
* pull_var_clause to examine the TargetEntry node itself.
*/
non_group_cols = lappend(non_group_cols, tle->expr);
}
}
}
else
{
/*
* With no grouping columns, just pass whole tlist to pull_var_clause.
* Need (shallow) copy to avoid damaging input tlist below.
*/
non_group_cols = list_copy(tlist);
}
/*
* If there's a HAVING clause, we'll need the Vars it uses, too.
*/
if (parse->havingQual)
non_group_cols = lappend(non_group_cols, parse->havingQual);
/*
* Pull out all the Vars mentioned in non-group cols (plus HAVING), and
* add them to the result tlist if not already present. (A Var used
* directly as a GROUP BY item will be present already.) Note this
* includes Vars used in resjunk items, so we are covering the needs of
* ORDER BY and window specifications. Vars used within Aggrefs will be
* pulled out here, too.
*/
non_group_vars = pull_var_clause((Node *) non_group_cols,
PVC_RECURSE_AGGREGATES,
PVC_INCLUDE_PLACEHOLDERS);
sub_tlist = add_to_flat_tlist(sub_tlist, non_group_vars);
/* clean up cruft */
list_free(non_group_vars);
list_free(non_group_cols);
return sub_tlist;
}
/*
* get_grouping_column_index
* Get the GROUP BY column position, if any, of a targetlist entry.
*
* Returns the index (counting from 0) of the TLE in the GROUP BY list, or -1
* if it's not a grouping column. Note: the result is unique because the
* parser won't make multiple groupClause entries for the same TLE.
*/
static int
get_grouping_column_index(Query *parse, TargetEntry *tle)
{
int colno = 0;
Index ressortgroupref = tle->ressortgroupref;
ListCell *gl;
/* No need to search groupClause if TLE hasn't got a sortgroupref */
if (ressortgroupref == 0)
return -1;
foreach(gl, parse->groupClause)
{
SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
if (grpcl->tleSortGroupRef == ressortgroupref)
return colno;
colno++;
}
return -1;
}
/*
* locate_grouping_columns
* Locate grouping columns in the tlist chosen by create_plan.
*
* This is only needed if we don't use the sub_tlist chosen by
* make_subplanTargetList. We have to forget the column indexes found
* by that routine and re-locate the grouping exprs in the real sub_tlist.
* We assume the grouping exprs are just Vars (see make_subplanTargetList).
*/
static void
locate_grouping_columns(PlannerInfo *root,
List *tlist,
List *sub_tlist,
AttrNumber *groupColIdx)
{
int keyno = 0;
ListCell *gl;
/*
* No work unless grouping.
*/
if (!root->parse->groupClause)
{
Assert(groupColIdx == NULL);
return;
}
Assert(groupColIdx != NULL);
foreach(gl, root->parse->groupClause)
{
SortGroupClause *grpcl = (SortGroupClause *) lfirst(gl);
Var *groupexpr = (Var *) get_sortgroupclause_expr(grpcl, tlist);
TargetEntry *te;
/*
* The grouping column returned by create_plan might not have the same
* typmod as the original Var. (This can happen in cases where a
* set-returning function has been inlined, so that we now have more
* knowledge about what it returns than we did when the original Var
* was created.) So we can't use tlist_member() to search the tlist;
* instead use tlist_member_match_var. For safety, still check that
* the vartype matches.
*/
if (!(groupexpr && IsA(groupexpr, Var)))
elog(ERROR, "grouping column is not a Var as expected");
te = tlist_member_match_var(groupexpr, sub_tlist);
if (!te)
elog(ERROR, "failed to locate grouping columns");
Assert(((Var *) te->expr)->vartype == groupexpr->vartype);
groupColIdx[keyno++] = te->resno;
}
}
/*
* postprocess_setop_tlist
* Fix up targetlist returned by plan_set_operations().
*
* We need to transpose sort key info from the orig_tlist into new_tlist.
* NOTE: this would not be good enough if we supported resjunk sort keys
* for results of set operations --- then, we'd need to project a whole
* new tlist to evaluate the resjunk columns. For now, just ereport if we
* find any resjunk columns in orig_tlist.
*/
static List *
postprocess_setop_tlist(List *new_tlist, List *orig_tlist)
{
ListCell *l;
ListCell *orig_tlist_item = list_head(orig_tlist);
foreach(l, new_tlist)
{
TargetEntry *new_tle = (TargetEntry *) lfirst(l);
TargetEntry *orig_tle;
/* ignore resjunk columns in setop result */
if (new_tle->resjunk)
continue;
Assert(orig_tlist_item != NULL);
orig_tle = (TargetEntry *) lfirst(orig_tlist_item);
orig_tlist_item = lnext(orig_tlist_item);
if (orig_tle->resjunk) /* should not happen */
elog(ERROR, "resjunk output columns are not implemented");
Assert(new_tle->resno == orig_tle->resno);
new_tle->ressortgroupref = orig_tle->ressortgroupref;
}
if (orig_tlist_item != NULL)
elog(ERROR, "resjunk output columns are not implemented");
return new_tlist;
}
/*
* select_active_windows
* Create a list of the "active" window clauses (ie, those referenced
* by non-deleted WindowFuncs) in the order they are to be executed.
*/
static List *
select_active_windows(PlannerInfo *root, WindowFuncLists *wflists)
{
List *result;
List *actives;
ListCell *lc;
/* First, make a list of the active windows */
actives = NIL;
foreach(lc, root->parse->windowClause)
{
WindowClause *wc = (WindowClause *) lfirst(lc);
/* It's only active if wflists shows some related WindowFuncs */
Assert(wc->winref <= wflists->maxWinRef);
if (wflists->windowFuncs[wc->winref] != NIL)
actives = lappend(actives, wc);
}
/*
* Now, ensure that windows with identical partitioning/ordering clauses
* are adjacent in the list. This is required by the SQL standard, which
* says that only one sort is to be used for such windows, even if they
* are otherwise distinct (eg, different names or framing clauses).
*
* There is room to be much smarter here, for example detecting whether
* one window's sort keys are a prefix of another's (so that sorting for
* the latter would do for the former), or putting windows first that
* match a sort order available for the underlying query. For the moment
* we are content with meeting the spec.
*/
result = NIL;
while (actives != NIL)
{
WindowClause *wc = (WindowClause *) linitial(actives);
ListCell *prev;
ListCell *next;
/* Move wc from actives to result */
actives = list_delete_first(actives);
result = lappend(result, wc);
/* Now move any matching windows from actives to result */
prev = NULL;
for (lc = list_head(actives); lc; lc = next)
{
WindowClause *wc2 = (WindowClause *) lfirst(lc);
next = lnext(lc);
/* framing options are NOT to be compared here! */
if (equal(wc->partitionClause, wc2->partitionClause) &&
equal(wc->orderClause, wc2->orderClause))
{
actives = list_delete_cell(actives, lc, prev);
result = lappend(result, wc2);
}
else
prev = lc;
}
}
return result;
}
/*
* make_windowInputTargetList
* Generate appropriate target list for initial input to WindowAgg nodes.
*
* When grouping_planner inserts one or more WindowAgg nodes into the plan,
* this function computes the initial target list to be computed by the node
* just below the first WindowAgg. This list must contain all values needed
* to evaluate the window functions, compute the final target list, and
* perform any required final sort step. If multiple WindowAggs are needed,
* each intermediate one adds its window function results onto this tlist;
* only the topmost WindowAgg computes the actual desired target list.
*
* This function is much like make_subplanTargetList, though not quite enough
* like it to share code. As in that function, we flatten most expressions
* into their component variables. But we do not want to flatten window
* PARTITION BY/ORDER BY clauses, since that might result in multiple
* evaluations of them, which would be bad (possibly even resulting in
* inconsistent answers, if they contain volatile functions). Also, we must
* not flatten GROUP BY clauses that were left unflattened by
* make_subplanTargetList, because we may no longer have access to the
* individual Vars in them.
*
* Another key difference from make_subplanTargetList is that we don't flatten
* Aggref expressions, since those are to be computed below the window
* functions and just referenced like Vars above that.
*
* 'tlist' is the query's final target list.
* 'activeWindows' is the list of active windows previously identified by
* select_active_windows.
*
* The result is the targetlist to be computed by the plan node immediately
* below the first WindowAgg node.
*/
static List *
make_windowInputTargetList(PlannerInfo *root,
List *tlist,
List *activeWindows)
{
Query *parse = root->parse;
Bitmapset *sgrefs;
List *new_tlist;
List *flattenable_cols;
List *flattenable_vars;
ListCell *lc;
Assert(parse->hasWindowFuncs);
/*
* Collect the sortgroupref numbers of window PARTITION/ORDER BY clauses
* into a bitmapset for convenient reference below.
*/
sgrefs = NULL;
foreach(lc, activeWindows)
{
WindowClause *wc = (WindowClause *) lfirst(lc);
ListCell *lc2;
foreach(lc2, wc->partitionClause)
{
SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);
sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
}
foreach(lc2, wc->orderClause)
{
SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc2);
sgrefs = bms_add_member(sgrefs, sortcl->tleSortGroupRef);
}
}
/* Add in sortgroupref numbers of GROUP BY clauses, too */
foreach(lc, parse->groupClause)
{
SortGroupClause *grpcl = (SortGroupClause *) lfirst(lc);
sgrefs = bms_add_member(sgrefs, grpcl->tleSortGroupRef);
}
/*
* Construct a tlist containing all the non-flattenable tlist items, and
* save aside the others for a moment.
*/
new_tlist = NIL;
flattenable_cols = NIL;
foreach(lc, tlist)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
/*
* Don't want to deconstruct window clauses or GROUP BY items. (Note
* that such items can't contain window functions, so it's okay to
* compute them below the WindowAgg nodes.)
*/
if (tle->ressortgroupref != 0 &&
bms_is_member(tle->ressortgroupref, sgrefs))
{
/* Don't want to deconstruct this value, so add to new_tlist */
TargetEntry *newtle;
newtle = makeTargetEntry(tle->expr,
list_length(new_tlist) + 1,
NULL,
false);
/* Preserve its sortgroupref marking, in case it's volatile */
newtle->ressortgroupref = tle->ressortgroupref;
new_tlist = lappend(new_tlist, newtle);
}
else
{
/*
* Column is to be flattened, so just remember the expression for
* later call to pull_var_clause. There's no need for
* pull_var_clause to examine the TargetEntry node itself.
*/
flattenable_cols = lappend(flattenable_cols, tle->expr);
}
}
/*
* Pull out all the Vars and Aggrefs mentioned in flattenable columns, and
* add them to the result tlist if not already present. (Some might be
* there already because they're used directly as window/group clauses.)
*
* Note: it's essential to use PVC_INCLUDE_AGGREGATES here, so that the
* Aggrefs are placed in the Agg node's tlist and not left to be computed
* at higher levels.
*/
flattenable_vars = pull_var_clause((Node *) flattenable_cols,
PVC_INCLUDE_AGGREGATES,
PVC_INCLUDE_PLACEHOLDERS);
new_tlist = add_to_flat_tlist(new_tlist, flattenable_vars);
/* clean up cruft */
list_free(flattenable_vars);
list_free(flattenable_cols);
return new_tlist;
}
/*
* make_pathkeys_for_window
* Create a pathkeys list describing the required input ordering
* for the given WindowClause.
*
* The required ordering is first the PARTITION keys, then the ORDER keys.
* In the future we might try to implement windowing using hashing, in which
* case the ordering could be relaxed, but for now we always sort.
*/
static List *
make_pathkeys_for_window(PlannerInfo *root, WindowClause *wc,
List *tlist)
{
List *window_pathkeys;
List *window_sortclauses;
/* Throw error if can't sort */
if (!grouping_is_sortable(wc->partitionClause))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("could not implement window PARTITION BY"),
errdetail("Window partitioning columns must be of sortable datatypes.")));
if (!grouping_is_sortable(wc->orderClause))
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("could not implement window ORDER BY"),
errdetail("Window ordering columns must be of sortable datatypes.")));
/* Okay, make the combined pathkeys */
window_sortclauses = list_concat(list_copy(wc->partitionClause),
list_copy(wc->orderClause));
window_pathkeys = make_pathkeys_for_sortclauses(root,
window_sortclauses,
tlist);
list_free(window_sortclauses);
return window_pathkeys;
}
/*----------
* get_column_info_for_window
* Get the partitioning/ordering column numbers and equality operators
* for a WindowAgg node.
*
* This depends on the behavior of make_pathkeys_for_window()!
*
* We are given the target WindowClause and an array of the input column
* numbers associated with the resulting pathkeys. In the easy case, there
* are the same number of pathkey columns as partitioning + ordering columns
* and we just have to copy some data around. However, it's possible that
* some of the original partitioning + ordering columns were eliminated as
* redundant during the transformation to pathkeys. (This can happen even
* though the parser gets rid of obvious duplicates. A typical scenario is a
* window specification "PARTITION BY x ORDER BY y" coupled with a clause
* "WHERE x = y" that causes the two sort columns to be recognized as
* redundant.) In that unusual case, we have to work a lot harder to
* determine which keys are significant.
*
* The method used here is a bit brute-force: add the sort columns to a list
* one at a time and note when the resulting pathkey list gets longer. But
* it's a sufficiently uncommon case that a faster way doesn't seem worth
* the amount of code refactoring that'd be needed.
*----------
*/
static void
get_column_info_for_window(PlannerInfo *root, WindowClause *wc, List *tlist,
int numSortCols, AttrNumber *sortColIdx,
int *partNumCols,
AttrNumber **partColIdx,
Oid **partOperators,
int *ordNumCols,
AttrNumber **ordColIdx,
Oid **ordOperators)
{
int numPart = list_length(wc->partitionClause);
int numOrder = list_length(wc->orderClause);
if (numSortCols == numPart + numOrder)
{
/* easy case */
*partNumCols = numPart;
*partColIdx = sortColIdx;
*partOperators = extract_grouping_ops(wc->partitionClause);
*ordNumCols = numOrder;
*ordColIdx = sortColIdx + numPart;
*ordOperators = extract_grouping_ops(wc->orderClause);
}
else
{
List *sortclauses;
List *pathkeys;
int scidx;
ListCell *lc;
/* first, allocate what's certainly enough space for the arrays */
*partNumCols = 0;
*partColIdx = (AttrNumber *) palloc(numPart * sizeof(AttrNumber));
*partOperators = (Oid *) palloc(numPart * sizeof(Oid));
*ordNumCols = 0;
*ordColIdx = (AttrNumber *) palloc(numOrder * sizeof(AttrNumber));
*ordOperators = (Oid *) palloc(numOrder * sizeof(Oid));
sortclauses = NIL;
pathkeys = NIL;
scidx = 0;
foreach(lc, wc->partitionClause)
{
SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
List *new_pathkeys;
sortclauses = lappend(sortclauses, sgc);
new_pathkeys = make_pathkeys_for_sortclauses(root,
sortclauses,
tlist);
if (list_length(new_pathkeys) > list_length(pathkeys))
{
/* this sort clause is actually significant */
(*partColIdx)[*partNumCols] = sortColIdx[scidx++];
(*partOperators)[*partNumCols] = sgc->eqop;
(*partNumCols)++;
pathkeys = new_pathkeys;
}
}
foreach(lc, wc->orderClause)
{
SortGroupClause *sgc = (SortGroupClause *) lfirst(lc);
List *new_pathkeys;
sortclauses = lappend(sortclauses, sgc);
new_pathkeys = make_pathkeys_for_sortclauses(root,
sortclauses,
tlist);
if (list_length(new_pathkeys) > list_length(pathkeys))
{
/* this sort clause is actually significant */
(*ordColIdx)[*ordNumCols] = sortColIdx[scidx++];
(*ordOperators)[*ordNumCols] = sgc->eqop;
(*ordNumCols)++;
pathkeys = new_pathkeys;
}
}
/* complain if we didn't eat exactly the right number of sort cols */
if (scidx != numSortCols)
elog(ERROR, "failed to deconstruct sort operators into partitioning/ordering operators");
}
}
/*
* expression_planner
* Perform planner's transformations on a standalone expression.
*
* Various utility commands need to evaluate expressions that are not part
* of a plannable query. They can do so using the executor's regular
* expression-execution machinery, but first the expression has to be fed
* through here to transform it from parser output to something executable.
*
* Currently, we disallow sublinks in standalone expressions, so there's no
* real "planning" involved here. (That might not always be true though.)
* What we must do is run eval_const_expressions to ensure that any function
* calls are converted to positional notation and function default arguments
* get inserted. The fact that constant subexpressions get simplified is a
* side-effect that is useful when the expression will get evaluated more than
* once. Also, we must fix operator function IDs.
*
* Note: this must not make any damaging changes to the passed-in expression
* tree. (It would actually be okay to apply fix_opfuncids to it, but since
* we first do an expression_tree_mutator-based walk, what is returned will
* be a new node tree.)
*/
Expr *
expression_planner(Expr *expr)
{
Node *result;
/*
* Convert named-argument function calls, insert default arguments and
* simplify constant subexprs
*/
result = eval_const_expressions(NULL, (Node *) expr);
/* Fill in opfuncid values if missing */
fix_opfuncids(result);
return (Expr *) result;
}
/*
* plan_cluster_use_sort
* Use the planner to decide how CLUSTER should implement sorting
*
* tableOid is the OID of a table to be clustered on its index indexOid
* (which is already known to be a btree index). Decide whether it's
* cheaper to do an indexscan or a seqscan-plus-sort to execute the CLUSTER.
* Return TRUE to use sorting, FALSE to use an indexscan.
*
* Note: caller had better already hold some type of lock on the table.
*/
bool
plan_cluster_use_sort(Oid tableOid, Oid indexOid)
{
PlannerInfo *root;
Query *query;
PlannerGlobal *glob;
RangeTblEntry *rte;
RelOptInfo *rel;
IndexOptInfo *indexInfo;
QualCost indexExprCost;
Cost comparisonCost;
Path *seqScanPath;
Path seqScanAndSortPath;
IndexPath *indexScanPath;
ListCell *lc;
/* Set up mostly-dummy planner state */
query = makeNode(Query);
query->commandType = CMD_SELECT;
glob = makeNode(PlannerGlobal);
root = makeNode(PlannerInfo);
root->parse = query;
root->glob = glob;
root->query_level = 1;
root->planner_cxt = CurrentMemoryContext;
root->wt_param_id = -1;
/* Build a minimal RTE for the rel */
rte = makeNode(RangeTblEntry);
rte->rtekind = RTE_RELATION;
rte->relid = tableOid;
rte->relkind = RELKIND_RELATION; /* Don't be too picky. */
rte->lateral = false;
rte->inh = false;
rte->inFromCl = true;
query->rtable = list_make1(rte);
/* Set up RTE/RelOptInfo arrays */
setup_simple_rel_arrays(root);
/* Build RelOptInfo */
rel = build_simple_rel(root, 1, RELOPT_BASEREL);
/* Locate IndexOptInfo for the target index */
indexInfo = NULL;
foreach(lc, rel->indexlist)
{
indexInfo = (IndexOptInfo *) lfirst(lc);
if (indexInfo->indexoid == indexOid)
break;
}
/*
* It's possible that get_relation_info did not generate an IndexOptInfo
* for the desired index; this could happen if it's not yet reached its
* indcheckxmin usability horizon, or if it's a system index and we're
* ignoring system indexes. In such cases we should tell CLUSTER to not
* trust the index contents but use seqscan-and-sort.
*/
if (lc == NULL) /* not in the list? */
return true; /* use sort */
/*
* Rather than doing all the pushups that would be needed to use
* set_baserel_size_estimates, just do a quick hack for rows and width.
*/
rel->rows = rel->tuples;
rel->width = get_relation_data_width(tableOid, NULL);
root->total_table_pages = rel->pages;
/*
* Determine eval cost of the index expressions, if any. We need to
* charge twice that amount for each tuple comparison that happens during
* the sort, since tuplesort.c will have to re-evaluate the index
* expressions each time. (XXX that's pretty inefficient...)
*/
cost_qual_eval(&indexExprCost, indexInfo->indexprs, root);
comparisonCost = 2.0 * (indexExprCost.startup + indexExprCost.per_tuple);
/* Estimate the cost of seq scan + sort */
seqScanPath = create_seqscan_path(root, rel, NULL);
cost_sort(&seqScanAndSortPath, root, NIL,
seqScanPath->total_cost, rel->tuples, rel->width,
comparisonCost, maintenance_work_mem, -1.0);
/* Estimate the cost of index scan */
indexScanPath = create_index_path(root, indexInfo,
NIL, NIL, NIL, NIL, NIL,
ForwardScanDirection, false,
NULL, 1.0);
return (seqScanAndSortPath.total_cost < indexScanPath->path.total_cost);
}