postgresql/src/backend/executor/nodeAgg.c
Robert Haas e26c539e9f Wrap calls to SearchSysCache and related functions using macros.
The purpose of this change is to eliminate the need for every caller
of SearchSysCache, SearchSysCacheCopy, SearchSysCacheExists,
GetSysCacheOid, and SearchSysCacheList to know the maximum number
of allowable keys for a syscache entry (currently 4).  This will
make it far easier to increase the maximum number of keys in a
future release should we choose to do so, and it makes the code
shorter, too.

Design and review by Tom Lane.
2010-02-14 18:42:19 +00:00

2027 lines
61 KiB
C

/*-------------------------------------------------------------------------
*
* nodeAgg.c
* Routines to handle aggregate nodes.
*
* ExecAgg evaluates each aggregate in the following steps:
*
* transvalue = initcond
* foreach input_tuple do
* transvalue = transfunc(transvalue, input_value(s))
* result = finalfunc(transvalue)
*
* If a finalfunc is not supplied then the result is just the ending
* value of transvalue.
*
* If an aggregate call specifies DISTINCT or ORDER BY, we sort the input
* tuples and eliminate duplicates (if required) before performing the
* above-depicted process.
*
* If transfunc is marked "strict" in pg_proc and initcond is NULL,
* then the first non-NULL input_value is assigned directly to transvalue,
* and transfunc isn't applied until the second non-NULL input_value.
* The agg's first input type and transtype must be the same in this case!
*
* If transfunc is marked "strict" then NULL input_values are skipped,
* keeping the previous transvalue. If transfunc is not strict then it
* is called for every input tuple and must deal with NULL initcond
* or NULL input_values for itself.
*
* If finalfunc is marked "strict" then it is not called when the
* ending transvalue is NULL, instead a NULL result is created
* automatically (this is just the usual handling of strict functions,
* of course). A non-strict finalfunc can make its own choice of
* what to return for a NULL ending transvalue.
*
* We compute aggregate input expressions and run the transition functions
* in a temporary econtext (aggstate->tmpcontext). This is reset at
* least once per input tuple, so when the transvalue datatype is
* pass-by-reference, we have to be careful to copy it into a longer-lived
* memory context, and free the prior value to avoid memory leakage.
* We store transvalues in the memory context aggstate->aggcontext,
* which is also used for the hashtable structures in AGG_HASHED mode.
* The node's regular econtext (aggstate->csstate.cstate.cs_ExprContext)
* is used to run finalize functions and compute the output tuple;
* this context can be reset once per output tuple.
*
* The executor's AggState node is passed as the fmgr "context" value in
* all transfunc and finalfunc calls. It is not recommended that the
* transition functions look at the AggState node directly, but they can
* use AggCheckCallContext() to verify that they are being called by
* nodeAgg.c (and not as ordinary SQL functions). The main reason a
* transition function might want to know this is so that it can avoid
* palloc'ing a fixed-size pass-by-ref transition value on every call:
* it can instead just scribble on and return its left input. Ordinarily
* it is completely forbidden for functions to modify pass-by-ref inputs,
* but in the aggregate case we know the left input is either the initial
* transition value or a previous function result, and in either case its
* value need not be preserved. See int8inc() for an example. Notice that
* advance_transition_function() is coded to avoid a data copy step when
* the previous transition value pointer is returned. Also, some
* transition functions want to store working state in addition to the
* nominal transition value; they can use the memory context returned by
* AggCheckCallContext() to do that.
*
* Note: AggCheckCallContext() is available as of PostgreSQL 9.0. The
* AggState is available as context in earlier releases (back to 8.1),
* but direct examination of the node is needed to use it before 9.0.
*
*
* Portions Copyright (c) 1996-2010, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/executor/nodeAgg.c,v 1.174 2010/02/14 18:42:14 rhaas Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "catalog/pg_aggregate.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"
#include "executor/executor.h"
#include "executor/nodeAgg.h"
#include "miscadmin.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/tlist.h"
#include "parser/parse_agg.h"
#include "parser/parse_coerce.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/syscache.h"
#include "utils/tuplesort.h"
#include "utils/datum.h"
/*
* AggStatePerAggData - per-aggregate working state for the Agg scan
*/
typedef struct AggStatePerAggData
{
/*
* These values are set up during ExecInitAgg() and do not change
* thereafter:
*/
/* Links to Aggref expr and state nodes this working state is for */
AggrefExprState *aggrefstate;
Aggref *aggref;
/* number of input arguments for aggregate function proper */
int numArguments;
/* number of inputs including ORDER BY expressions */
int numInputs;
/* Oids of transfer functions */
Oid transfn_oid;
Oid finalfn_oid; /* may be InvalidOid */
/*
* fmgr lookup data for transfer functions --- only valid when
* corresponding oid is not InvalidOid. Note in particular that fn_strict
* flags are kept here.
*/
FmgrInfo transfn;
FmgrInfo finalfn;
/* number of sorting columns */
int numSortCols;
/* number of sorting columns to consider in DISTINCT comparisons */
/* (this is either zero or the same as numSortCols) */
int numDistinctCols;
/* deconstructed sorting information (arrays of length numSortCols) */
AttrNumber *sortColIdx;
Oid *sortOperators;
bool *sortNullsFirst;
/*
* fmgr lookup data for input columns' equality operators --- only
* set/used when aggregate has DISTINCT flag. Note that these are in
* order of sort column index, not parameter index.
*/
FmgrInfo *equalfns; /* array of length numDistinctCols */
/*
* initial value from pg_aggregate entry
*/
Datum initValue;
bool initValueIsNull;
/*
* We need the len and byval info for the agg's input, result, and
* transition data types in order to know how to copy/delete values.
*
* Note that the info for the input type is used only when handling
* DISTINCT aggs with just one argument, so there is only one input type.
*/
int16 inputtypeLen,
resulttypeLen,
transtypeLen;
bool inputtypeByVal,
resulttypeByVal,
transtypeByVal;
/*
* Stuff for evaluation of inputs. We used to just use ExecEvalExpr, but
* with the addition of ORDER BY we now need at least a slot for passing
* data to the sort object, which requires a tupledesc, so we might as
* well go whole hog and use ExecProject too.
*/
TupleDesc evaldesc; /* descriptor of input tuples */
ProjectionInfo *evalproj; /* projection machinery */
/*
* Slots for holding the evaluated input arguments. These are set up
* during ExecInitAgg() and then used for each input row.
*/
TupleTableSlot *evalslot; /* current input tuple */
TupleTableSlot *uniqslot; /* used for multi-column DISTINCT */
/*
* These values are working state that is initialized at the start of an
* input tuple group and updated for each input tuple.
*
* For a simple (non DISTINCT/ORDER BY) aggregate, we just feed the input
* values straight to the transition function. If it's DISTINCT or
* requires ORDER BY, we pass the input values into a Tuplesort object;
* then at completion of the input tuple group, we scan the sorted values,
* eliminate duplicates if needed, and run the transition function on the
* rest.
*/
Tuplesortstate *sortstate; /* sort object, if DISTINCT or ORDER BY */
} AggStatePerAggData;
/*
* AggStatePerGroupData - per-aggregate-per-group working state
*
* These values are working state that is initialized at the start of
* an input tuple group and updated for each input tuple.
*
* In AGG_PLAIN and AGG_SORTED modes, we have a single array of these
* structs (pointed to by aggstate->pergroup); we re-use the array for
* each input group, if it's AGG_SORTED mode. In AGG_HASHED mode, the
* hash table contains an array of these structs for each tuple group.
*
* Logically, the sortstate field belongs in this struct, but we do not
* keep it here for space reasons: we don't support DISTINCT aggregates
* in AGG_HASHED mode, so there's no reason to use up a pointer field
* in every entry of the hashtable.
*/
typedef struct AggStatePerGroupData
{
Datum transValue; /* current transition value */
bool transValueIsNull;
bool noTransValue; /* true if transValue not set yet */
/*
* Note: noTransValue initially has the same value as transValueIsNull,
* and if true both are cleared to false at the same time. They are not
* the same though: if transfn later returns a NULL, we want to keep that
* NULL and not auto-replace it with a later input value. Only the first
* non-NULL input will be auto-substituted.
*/
} AggStatePerGroupData;
/*
* To implement hashed aggregation, we need a hashtable that stores a
* representative tuple and an array of AggStatePerGroup structs for each
* distinct set of GROUP BY column values. We compute the hash key from
* the GROUP BY columns.
*/
typedef struct AggHashEntryData *AggHashEntry;
typedef struct AggHashEntryData
{
TupleHashEntryData shared; /* common header for hash table entries */
/* per-aggregate transition status array - must be last! */
AggStatePerGroupData pergroup[1]; /* VARIABLE LENGTH ARRAY */
} AggHashEntryData; /* VARIABLE LENGTH STRUCT */
static void initialize_aggregates(AggState *aggstate,
AggStatePerAgg peragg,
AggStatePerGroup pergroup);
static void advance_transition_function(AggState *aggstate,
AggStatePerAgg peraggstate,
AggStatePerGroup pergroupstate,
FunctionCallInfoData *fcinfo);
static void advance_aggregates(AggState *aggstate, AggStatePerGroup pergroup);
static void process_ordered_aggregate_single(AggState *aggstate,
AggStatePerAgg peraggstate,
AggStatePerGroup pergroupstate);
static void process_ordered_aggregate_multi(AggState *aggstate,
AggStatePerAgg peraggstate,
AggStatePerGroup pergroupstate);
static void finalize_aggregate(AggState *aggstate,
AggStatePerAgg peraggstate,
AggStatePerGroup pergroupstate,
Datum *resultVal, bool *resultIsNull);
static Bitmapset *find_unaggregated_cols(AggState *aggstate);
static bool find_unaggregated_cols_walker(Node *node, Bitmapset **colnos);
static void build_hash_table(AggState *aggstate);
static AggHashEntry lookup_hash_entry(AggState *aggstate,
TupleTableSlot *inputslot);
static TupleTableSlot *agg_retrieve_direct(AggState *aggstate);
static void agg_fill_hash_table(AggState *aggstate);
static TupleTableSlot *agg_retrieve_hash_table(AggState *aggstate);
static Datum GetAggInitVal(Datum textInitVal, Oid transtype);
/*
* Initialize all aggregates for a new group of input values.
*
* When called, CurrentMemoryContext should be the per-query context.
*/
static void
initialize_aggregates(AggState *aggstate,
AggStatePerAgg peragg,
AggStatePerGroup pergroup)
{
int aggno;
for (aggno = 0; aggno < aggstate->numaggs; aggno++)
{
AggStatePerAgg peraggstate = &peragg[aggno];
AggStatePerGroup pergroupstate = &pergroup[aggno];
/*
* Start a fresh sort operation for each DISTINCT/ORDER BY aggregate.
*/
if (peraggstate->numSortCols > 0)
{
/*
* In case of rescan, maybe there could be an uncompleted sort
* operation? Clean it up if so.
*/
if (peraggstate->sortstate)
tuplesort_end(peraggstate->sortstate);
/*
* We use a plain Datum sorter when there's a single input
* column; otherwise sort the full tuple. (See comments for
* process_ordered_aggregate_single.)
*/
peraggstate->sortstate =
(peraggstate->numInputs == 1) ?
tuplesort_begin_datum(peraggstate->evaldesc->attrs[0]->atttypid,
peraggstate->sortOperators[0],
peraggstate->sortNullsFirst[0],
work_mem, false) :
tuplesort_begin_heap(peraggstate->evaldesc,
peraggstate->numSortCols,
peraggstate->sortColIdx,
peraggstate->sortOperators,
peraggstate->sortNullsFirst,
work_mem, false);
}
/*
* (Re)set transValue to the initial value.
*
* Note that when the initial value is pass-by-ref, we must copy it
* (into the aggcontext) since we will pfree the transValue later.
*/
if (peraggstate->initValueIsNull)
pergroupstate->transValue = peraggstate->initValue;
else
{
MemoryContext oldContext;
oldContext = MemoryContextSwitchTo(aggstate->aggcontext);
pergroupstate->transValue = datumCopy(peraggstate->initValue,
peraggstate->transtypeByVal,
peraggstate->transtypeLen);
MemoryContextSwitchTo(oldContext);
}
pergroupstate->transValueIsNull = peraggstate->initValueIsNull;
/*
* If the initial value for the transition state doesn't exist in the
* pg_aggregate table then we will let the first non-NULL value
* returned from the outer procNode become the initial value. (This is
* useful for aggregates like max() and min().) The noTransValue flag
* signals that we still need to do this.
*/
pergroupstate->noTransValue = peraggstate->initValueIsNull;
}
}
/*
* Given new input value(s), advance the transition function of an aggregate.
*
* The new values (and null flags) have been preloaded into argument positions
* 1 and up in fcinfo, so that we needn't copy them again to pass to the
* transition function. No other fields of fcinfo are assumed valid.
*
* It doesn't matter which memory context this is called in.
*/
static void
advance_transition_function(AggState *aggstate,
AggStatePerAgg peraggstate,
AggStatePerGroup pergroupstate,
FunctionCallInfoData *fcinfo)
{
int numArguments = peraggstate->numArguments;
MemoryContext oldContext;
Datum newVal;
int i;
if (peraggstate->transfn.fn_strict)
{
/*
* For a strict transfn, nothing happens when there's a NULL input; we
* just keep the prior transValue.
*/
for (i = 1; i <= numArguments; i++)
{
if (fcinfo->argnull[i])
return;
}
if (pergroupstate->noTransValue)
{
/*
* transValue has not been initialized. This is the first non-NULL
* input value. We use it as the initial value for transValue. (We
* already checked that the agg's input type is binary-compatible
* with its transtype, so straight copy here is OK.)
*
* We must copy the datum into aggcontext if it is pass-by-ref. We
* do not need to pfree the old transValue, since it's NULL.
*/
oldContext = MemoryContextSwitchTo(aggstate->aggcontext);
pergroupstate->transValue = datumCopy(fcinfo->arg[1],
peraggstate->transtypeByVal,
peraggstate->transtypeLen);
pergroupstate->transValueIsNull = false;
pergroupstate->noTransValue = false;
MemoryContextSwitchTo(oldContext);
return;
}
if (pergroupstate->transValueIsNull)
{
/*
* Don't call a strict function with NULL inputs. Note it is
* possible to get here despite the above tests, if the transfn is
* strict *and* returned a NULL on a prior cycle. If that happens
* we will propagate the NULL all the way to the end.
*/
return;
}
}
/* We run the transition functions in per-input-tuple memory context */
oldContext = MemoryContextSwitchTo(aggstate->tmpcontext->ecxt_per_tuple_memory);
/*
* OK to call the transition function
*/
InitFunctionCallInfoData(*fcinfo, &(peraggstate->transfn),
numArguments + 1,
(void *) aggstate, NULL);
fcinfo->arg[0] = pergroupstate->transValue;
fcinfo->argnull[0] = pergroupstate->transValueIsNull;
newVal = FunctionCallInvoke(fcinfo);
/*
* If pass-by-ref datatype, must copy the new value into aggcontext and
* pfree the prior transValue. But if transfn returned a pointer to its
* first input, we don't need to do anything.
*/
if (!peraggstate->transtypeByVal &&
DatumGetPointer(newVal) != DatumGetPointer(pergroupstate->transValue))
{
if (!fcinfo->isnull)
{
MemoryContextSwitchTo(aggstate->aggcontext);
newVal = datumCopy(newVal,
peraggstate->transtypeByVal,
peraggstate->transtypeLen);
}
if (!pergroupstate->transValueIsNull)
pfree(DatumGetPointer(pergroupstate->transValue));
}
pergroupstate->transValue = newVal;
pergroupstate->transValueIsNull = fcinfo->isnull;
MemoryContextSwitchTo(oldContext);
}
/*
* Advance all the aggregates for one input tuple. The input tuple
* has been stored in tmpcontext->ecxt_outertuple, so that it is accessible
* to ExecEvalExpr. pergroup is the array of per-group structs to use
* (this might be in a hashtable entry).
*
* When called, CurrentMemoryContext should be the per-query context.
*/
static void
advance_aggregates(AggState *aggstate, AggStatePerGroup pergroup)
{
int aggno;
for (aggno = 0; aggno < aggstate->numaggs; aggno++)
{
AggStatePerAgg peraggstate = &aggstate->peragg[aggno];
AggStatePerGroup pergroupstate = &pergroup[aggno];
int nargs = peraggstate->numArguments;
int i;
TupleTableSlot *slot;
/* Evaluate the current input expressions for this aggregate */
slot = ExecProject(peraggstate->evalproj, NULL);
if (peraggstate->numSortCols > 0)
{
/* DISTINCT and/or ORDER BY case */
Assert(slot->tts_nvalid == peraggstate->numInputs);
/*
* If the transfn is strict, we want to check for nullity
* before storing the row in the sorter, to save space if
* there are a lot of nulls. Note that we must only check
* numArguments columns, not numInputs, since nullity in
* columns used only for sorting is not relevant here.
*/
if (peraggstate->transfn.fn_strict)
{
for (i = 0; i < nargs; i++)
{
if (slot->tts_isnull[i])
break;
}
if (i < nargs)
continue;
}
/* OK, put the tuple into the tuplesort object */
if (peraggstate->numInputs == 1)
tuplesort_putdatum(peraggstate->sortstate,
slot->tts_values[0],
slot->tts_isnull[0]);
else
tuplesort_puttupleslot(peraggstate->sortstate, slot);
}
else
{
/* We can apply the transition function immediately */
FunctionCallInfoData fcinfo;
/* Load values into fcinfo */
/* Start from 1, since the 0th arg will be the transition value */
Assert(slot->tts_nvalid >= nargs);
for (i = 0; i < nargs; i++)
{
fcinfo.arg[i + 1] = slot->tts_values[i];
fcinfo.argnull[i + 1] = slot->tts_isnull[i];
}
advance_transition_function(aggstate, peraggstate, pergroupstate,
&fcinfo);
}
}
}
/*
* Run the transition function for a DISTINCT or ORDER BY aggregate
* with only one input. This is called after we have completed
* entering all the input values into the sort object. We complete the
* sort, read out the values in sorted order, and run the transition
* function on each value (applying DISTINCT if appropriate).
*
* Note that the strictness of the transition function was checked when
* entering the values into the sort, so we don't check it again here;
* we just apply standard SQL DISTINCT logic.
*
* The one-input case is handled separately from the multi-input case
* for performance reasons: for single by-value inputs, such as the
* common case of count(distinct id), the tuplesort_getdatum code path
* is around 300% faster. (The speedup for by-reference types is less
* but still noticeable.)
*
* When called, CurrentMemoryContext should be the per-query context.
*/
static void
process_ordered_aggregate_single(AggState *aggstate,
AggStatePerAgg peraggstate,
AggStatePerGroup pergroupstate)
{
Datum oldVal = (Datum) 0;
bool oldIsNull = true;
bool haveOldVal = false;
MemoryContext workcontext = aggstate->tmpcontext->ecxt_per_tuple_memory;
MemoryContext oldContext;
bool isDistinct = (peraggstate->numDistinctCols > 0);
Datum *newVal;
bool *isNull;
FunctionCallInfoData fcinfo;
Assert(peraggstate->numDistinctCols < 2);
tuplesort_performsort(peraggstate->sortstate);
/* Load the column into argument 1 (arg 0 will be transition value) */
newVal = fcinfo.arg + 1;
isNull = fcinfo.argnull + 1;
/*
* Note: if input type is pass-by-ref, the datums returned by the sort are
* freshly palloc'd in the per-query context, so we must be careful to
* pfree them when they are no longer needed.
*/
while (tuplesort_getdatum(peraggstate->sortstate, true,
newVal, isNull))
{
/*
* Clear and select the working context for evaluation of the equality
* function and transition function.
*/
MemoryContextReset(workcontext);
oldContext = MemoryContextSwitchTo(workcontext);
/*
* If DISTINCT mode, and not distinct from prior, skip it.
*/
if (isDistinct &&
haveOldVal &&
((oldIsNull && *isNull) ||
(!oldIsNull && !*isNull &&
DatumGetBool(FunctionCall2(&peraggstate->equalfns[0],
oldVal, *newVal)))))
{
/* equal to prior, so forget this one */
if (!peraggstate->inputtypeByVal && !*isNull)
pfree(DatumGetPointer(*newVal));
}
else
{
advance_transition_function(aggstate, peraggstate, pergroupstate,
&fcinfo);
/* forget the old value, if any */
if (!oldIsNull && !peraggstate->inputtypeByVal)
pfree(DatumGetPointer(oldVal));
/* and remember the new one for subsequent equality checks */
oldVal = *newVal;
oldIsNull = *isNull;
haveOldVal = true;
}
MemoryContextSwitchTo(oldContext);
}
if (!oldIsNull && !peraggstate->inputtypeByVal)
pfree(DatumGetPointer(oldVal));
tuplesort_end(peraggstate->sortstate);
peraggstate->sortstate = NULL;
}
/*
* Run the transition function for a DISTINCT or ORDER BY aggregate
* with more than one input. This is called after we have completed
* entering all the input values into the sort object. We complete the
* sort, read out the values in sorted order, and run the transition
* function on each value (applying DISTINCT if appropriate).
*
* When called, CurrentMemoryContext should be the per-query context.
*/
static void
process_ordered_aggregate_multi(AggState *aggstate,
AggStatePerAgg peraggstate,
AggStatePerGroup pergroupstate)
{
MemoryContext workcontext = aggstate->tmpcontext->ecxt_per_tuple_memory;
FunctionCallInfoData fcinfo;
TupleTableSlot *slot1 = peraggstate->evalslot;
TupleTableSlot *slot2 = peraggstate->uniqslot;
int numArguments = peraggstate->numArguments;
int numDistinctCols = peraggstate->numDistinctCols;
bool haveOldValue = false;
int i;
tuplesort_performsort(peraggstate->sortstate);
ExecClearTuple(slot1);
if (slot2)
ExecClearTuple(slot2);
while (tuplesort_gettupleslot(peraggstate->sortstate, true, slot1))
{
/*
* Extract the first numArguments as datums to pass to the transfn.
* (This will help execTuplesMatch too, so do it immediately.)
*/
slot_getsomeattrs(slot1, numArguments);
if (numDistinctCols == 0 ||
!haveOldValue ||
!execTuplesMatch(slot1, slot2,
numDistinctCols,
peraggstate->sortColIdx,
peraggstate->equalfns,
workcontext))
{
/* Load values into fcinfo */
/* Start from 1, since the 0th arg will be the transition value */
for (i = 0; i < numArguments; i++)
{
fcinfo.arg[i + 1] = slot1->tts_values[i];
fcinfo.argnull[i + 1] = slot1->tts_isnull[i];
}
advance_transition_function(aggstate, peraggstate, pergroupstate,
&fcinfo);
if (numDistinctCols > 0)
{
/* swap the slot pointers to retain the current tuple */
TupleTableSlot *tmpslot = slot2;
slot2 = slot1;
slot1 = tmpslot;
haveOldValue = true;
}
}
/* Reset context each time, unless execTuplesMatch did it for us */
if (numDistinctCols == 0)
MemoryContextReset(workcontext);
ExecClearTuple(slot1);
}
if (slot2)
ExecClearTuple(slot2);
tuplesort_end(peraggstate->sortstate);
peraggstate->sortstate = NULL;
}
/*
* Compute the final value of one aggregate.
*
* The finalfunction will be run, and the result delivered, in the
* output-tuple context; caller's CurrentMemoryContext does not matter.
*/
static void
finalize_aggregate(AggState *aggstate,
AggStatePerAgg peraggstate,
AggStatePerGroup pergroupstate,
Datum *resultVal, bool *resultIsNull)
{
MemoryContext oldContext;
oldContext = MemoryContextSwitchTo(aggstate->ss.ps.ps_ExprContext->ecxt_per_tuple_memory);
/*
* Apply the agg's finalfn if one is provided, else return transValue.
*/
if (OidIsValid(peraggstate->finalfn_oid))
{
FunctionCallInfoData fcinfo;
InitFunctionCallInfoData(fcinfo, &(peraggstate->finalfn), 1,
(void *) aggstate, NULL);
fcinfo.arg[0] = pergroupstate->transValue;
fcinfo.argnull[0] = pergroupstate->transValueIsNull;
if (fcinfo.flinfo->fn_strict && pergroupstate->transValueIsNull)
{
/* don't call a strict function with NULL inputs */
*resultVal = (Datum) 0;
*resultIsNull = true;
}
else
{
*resultVal = FunctionCallInvoke(&fcinfo);
*resultIsNull = fcinfo.isnull;
}
}
else
{
*resultVal = pergroupstate->transValue;
*resultIsNull = pergroupstate->transValueIsNull;
}
/*
* If result is pass-by-ref, make sure it is in the right context.
*/
if (!peraggstate->resulttypeByVal && !*resultIsNull &&
!MemoryContextContains(CurrentMemoryContext,
DatumGetPointer(*resultVal)))
*resultVal = datumCopy(*resultVal,
peraggstate->resulttypeByVal,
peraggstate->resulttypeLen);
MemoryContextSwitchTo(oldContext);
}
/*
* find_unaggregated_cols
* Construct a bitmapset of the column numbers of un-aggregated Vars
* appearing in our targetlist and qual (HAVING clause)
*/
static Bitmapset *
find_unaggregated_cols(AggState *aggstate)
{
Agg *node = (Agg *) aggstate->ss.ps.plan;
Bitmapset *colnos;
colnos = NULL;
(void) find_unaggregated_cols_walker((Node *) node->plan.targetlist,
&colnos);
(void) find_unaggregated_cols_walker((Node *) node->plan.qual,
&colnos);
return colnos;
}
static bool
find_unaggregated_cols_walker(Node *node, Bitmapset **colnos)
{
if (node == NULL)
return false;
if (IsA(node, Var))
{
Var *var = (Var *) node;
/* setrefs.c should have set the varno to OUTER */
Assert(var->varno == OUTER);
Assert(var->varlevelsup == 0);
*colnos = bms_add_member(*colnos, var->varattno);
return false;
}
if (IsA(node, Aggref)) /* do not descend into aggregate exprs */
return false;
return expression_tree_walker(node, find_unaggregated_cols_walker,
(void *) colnos);
}
/*
* Initialize the hash table to empty.
*
* The hash table always lives in the aggcontext memory context.
*/
static void
build_hash_table(AggState *aggstate)
{
Agg *node = (Agg *) aggstate->ss.ps.plan;
MemoryContext tmpmem = aggstate->tmpcontext->ecxt_per_tuple_memory;
Size entrysize;
Assert(node->aggstrategy == AGG_HASHED);
Assert(node->numGroups > 0);
entrysize = sizeof(AggHashEntryData) +
(aggstate->numaggs - 1) *sizeof(AggStatePerGroupData);
aggstate->hashtable = BuildTupleHashTable(node->numCols,
node->grpColIdx,
aggstate->eqfunctions,
aggstate->hashfunctions,
node->numGroups,
entrysize,
aggstate->aggcontext,
tmpmem);
}
/*
* Create a list of the tuple columns that actually need to be stored in
* hashtable entries. The incoming tuples from the child plan node will
* contain grouping columns, other columns referenced in our targetlist and
* qual, columns used to compute the aggregate functions, and perhaps just
* junk columns we don't use at all. Only columns of the first two types
* need to be stored in the hashtable, and getting rid of the others can
* make the table entries significantly smaller. To avoid messing up Var
* numbering, we keep the same tuple descriptor for hashtable entries as the
* incoming tuples have, but set unwanted columns to NULL in the tuples that
* go into the table.
*
* To eliminate duplicates, we build a bitmapset of the needed columns, then
* convert it to an integer list (cheaper to scan at runtime). The list is
* in decreasing order so that the first entry is the largest;
* lookup_hash_entry depends on this to use slot_getsomeattrs correctly.
* Note that the list is preserved over ExecReScanAgg, so we allocate it in
* the per-query context (unlike the hash table itself).
*
* Note: at present, searching the tlist/qual is not really necessary since
* the parser should disallow any unaggregated references to ungrouped
* columns. However, the search will be needed when we add support for
* SQL99 semantics that allow use of "functionally dependent" columns that
* haven't been explicitly grouped by.
*/
static List *
find_hash_columns(AggState *aggstate)
{
Agg *node = (Agg *) aggstate->ss.ps.plan;
Bitmapset *colnos;
List *collist;
int i;
/* Find Vars that will be needed in tlist and qual */
colnos = find_unaggregated_cols(aggstate);
/* Add in all the grouping columns */
for (i = 0; i < node->numCols; i++)
colnos = bms_add_member(colnos, node->grpColIdx[i]);
/* Convert to list, using lcons so largest element ends up first */
collist = NIL;
while ((i = bms_first_member(colnos)) >= 0)
collist = lcons_int(i, collist);
bms_free(colnos);
return collist;
}
/*
* Estimate per-hash-table-entry overhead for the planner.
*
* Note that the estimate does not include space for pass-by-reference
* transition data values, nor for the representative tuple of each group.
*/
Size
hash_agg_entry_size(int numAggs)
{
Size entrysize;
/* This must match build_hash_table */
entrysize = sizeof(AggHashEntryData) +
(numAggs - 1) *sizeof(AggStatePerGroupData);
entrysize = MAXALIGN(entrysize);
/* Account for hashtable overhead (assuming fill factor = 1) */
entrysize += 3 * sizeof(void *);
return entrysize;
}
/*
* Find or create a hashtable entry for the tuple group containing the
* given tuple.
*
* When called, CurrentMemoryContext should be the per-query context.
*/
static AggHashEntry
lookup_hash_entry(AggState *aggstate, TupleTableSlot *inputslot)
{
TupleTableSlot *hashslot = aggstate->hashslot;
ListCell *l;
AggHashEntry entry;
bool isnew;
/* if first time through, initialize hashslot by cloning input slot */
if (hashslot->tts_tupleDescriptor == NULL)
{
ExecSetSlotDescriptor(hashslot, inputslot->tts_tupleDescriptor);
/* Make sure all unused columns are NULLs */
ExecStoreAllNullTuple(hashslot);
}
/* transfer just the needed columns into hashslot */
slot_getsomeattrs(inputslot, linitial_int(aggstate->hash_needed));
foreach(l, aggstate->hash_needed)
{
int varNumber = lfirst_int(l) - 1;
hashslot->tts_values[varNumber] = inputslot->tts_values[varNumber];
hashslot->tts_isnull[varNumber] = inputslot->tts_isnull[varNumber];
}
/* find or create the hashtable entry using the filtered tuple */
entry = (AggHashEntry) LookupTupleHashEntry(aggstate->hashtable,
hashslot,
&isnew);
if (isnew)
{
/* initialize aggregates for new tuple group */
initialize_aggregates(aggstate, aggstate->peragg, entry->pergroup);
}
return entry;
}
/*
* ExecAgg -
*
* ExecAgg receives tuples from its outer subplan and aggregates over
* the appropriate attribute for each aggregate function use (Aggref
* node) appearing in the targetlist or qual of the node. The number
* of tuples to aggregate over depends on whether grouped or plain
* aggregation is selected. In grouped aggregation, we produce a result
* row for each group; in plain aggregation there's a single result row
* for the whole query. In either case, the value of each aggregate is
* stored in the expression context to be used when ExecProject evaluates
* the result tuple.
*/
TupleTableSlot *
ExecAgg(AggState *node)
{
/*
* Check to see if we're still projecting out tuples from a previous agg
* tuple (because there is a function-returning-set in the projection
* expressions). If so, try to project another one.
*/
if (node->ss.ps.ps_TupFromTlist)
{
TupleTableSlot *result;
ExprDoneCond isDone;
result = ExecProject(node->ss.ps.ps_ProjInfo, &isDone);
if (isDone == ExprMultipleResult)
return result;
/* Done with that source tuple... */
node->ss.ps.ps_TupFromTlist = false;
}
/*
* Exit if nothing left to do. (We must do the ps_TupFromTlist check
* first, because in some cases agg_done gets set before we emit the
* final aggregate tuple, and we have to finish running SRFs for it.)
*/
if (node->agg_done)
return NULL;
/* Dispatch based on strategy */
if (((Agg *) node->ss.ps.plan)->aggstrategy == AGG_HASHED)
{
if (!node->table_filled)
agg_fill_hash_table(node);
return agg_retrieve_hash_table(node);
}
else
return agg_retrieve_direct(node);
}
/*
* ExecAgg for non-hashed case
*/
static TupleTableSlot *
agg_retrieve_direct(AggState *aggstate)
{
Agg *node = (Agg *) aggstate->ss.ps.plan;
PlanState *outerPlan;
ExprContext *econtext;
ExprContext *tmpcontext;
Datum *aggvalues;
bool *aggnulls;
AggStatePerAgg peragg;
AggStatePerGroup pergroup;
TupleTableSlot *outerslot;
TupleTableSlot *firstSlot;
int aggno;
/*
* get state info from node
*/
outerPlan = outerPlanState(aggstate);
/* econtext is the per-output-tuple expression context */
econtext = aggstate->ss.ps.ps_ExprContext;
aggvalues = econtext->ecxt_aggvalues;
aggnulls = econtext->ecxt_aggnulls;
/* tmpcontext is the per-input-tuple expression context */
tmpcontext = aggstate->tmpcontext;
peragg = aggstate->peragg;
pergroup = aggstate->pergroup;
firstSlot = aggstate->ss.ss_ScanTupleSlot;
/*
* We loop retrieving groups until we find one matching
* aggstate->ss.ps.qual
*/
while (!aggstate->agg_done)
{
/*
* If we don't already have the first tuple of the new group, fetch it
* from the outer plan.
*/
if (aggstate->grp_firstTuple == NULL)
{
outerslot = ExecProcNode(outerPlan);
if (!TupIsNull(outerslot))
{
/*
* Make a copy of the first input tuple; we will use this for
* comparisons (in group mode) and for projection.
*/
aggstate->grp_firstTuple = ExecCopySlotTuple(outerslot);
}
else
{
/* outer plan produced no tuples at all */
aggstate->agg_done = true;
/* If we are grouping, we should produce no tuples too */
if (node->aggstrategy != AGG_PLAIN)
return NULL;
}
}
/*
* Clear the per-output-tuple context for each group, as well as
* aggcontext (which contains any pass-by-ref transvalues of the
* old group). We also clear any child contexts of the aggcontext;
* some aggregate functions store working state in such contexts.
*/
ResetExprContext(econtext);
MemoryContextResetAndDeleteChildren(aggstate->aggcontext);
/*
* Initialize working state for a new input tuple group
*/
initialize_aggregates(aggstate, peragg, pergroup);
if (aggstate->grp_firstTuple != NULL)
{
/*
* Store the copied first input tuple in the tuple table slot
* reserved for it. The tuple will be deleted when it is cleared
* from the slot.
*/
ExecStoreTuple(aggstate->grp_firstTuple,
firstSlot,
InvalidBuffer,
true);
aggstate->grp_firstTuple = NULL; /* don't keep two pointers */
/* set up for first advance_aggregates call */
tmpcontext->ecxt_outertuple = firstSlot;
/*
* Process each outer-plan tuple, and then fetch the next one,
* until we exhaust the outer plan or cross a group boundary.
*/
for (;;)
{
advance_aggregates(aggstate, pergroup);
/* Reset per-input-tuple context after each tuple */
ResetExprContext(tmpcontext);
outerslot = ExecProcNode(outerPlan);
if (TupIsNull(outerslot))
{
/* no more outer-plan tuples available */
aggstate->agg_done = true;
break;
}
/* set up for next advance_aggregates call */
tmpcontext->ecxt_outertuple = outerslot;
/*
* If we are grouping, check whether we've crossed a group
* boundary.
*/
if (node->aggstrategy == AGG_SORTED)
{
if (!execTuplesMatch(firstSlot,
outerslot,
node->numCols, node->grpColIdx,
aggstate->eqfunctions,
tmpcontext->ecxt_per_tuple_memory))
{
/*
* Save the first input tuple of the next group.
*/
aggstate->grp_firstTuple = ExecCopySlotTuple(outerslot);
break;
}
}
}
}
/*
* Done scanning input tuple group. Finalize each aggregate
* calculation, and stash results in the per-output-tuple context.
*/
for (aggno = 0; aggno < aggstate->numaggs; aggno++)
{
AggStatePerAgg peraggstate = &peragg[aggno];
AggStatePerGroup pergroupstate = &pergroup[aggno];
if (peraggstate->numSortCols > 0)
{
if (peraggstate->numInputs == 1)
process_ordered_aggregate_single(aggstate,
peraggstate,
pergroupstate);
else
process_ordered_aggregate_multi(aggstate,
peraggstate,
pergroupstate);
}
finalize_aggregate(aggstate, peraggstate, pergroupstate,
&aggvalues[aggno], &aggnulls[aggno]);
}
/*
* Use the representative input tuple for any references to
* non-aggregated input columns in the qual and tlist. (If we are not
* grouping, and there are no input rows at all, we will come here
* with an empty firstSlot ... but if not grouping, there can't be any
* references to non-aggregated input columns, so no problem.)
*/
econtext->ecxt_outertuple = firstSlot;
/*
* Check the qual (HAVING clause); if the group does not match, ignore
* it and loop back to try to process another group.
*/
if (ExecQual(aggstate->ss.ps.qual, econtext, false))
{
/*
* Form and return a projection tuple using the aggregate results
* and the representative input tuple.
*/
TupleTableSlot *result;
ExprDoneCond isDone;
result = ExecProject(aggstate->ss.ps.ps_ProjInfo, &isDone);
if (isDone != ExprEndResult)
{
aggstate->ss.ps.ps_TupFromTlist =
(isDone == ExprMultipleResult);
return result;
}
}
}
/* No more groups */
return NULL;
}
/*
* ExecAgg for hashed case: phase 1, read input and build hash table
*/
static void
agg_fill_hash_table(AggState *aggstate)
{
PlanState *outerPlan;
ExprContext *tmpcontext;
AggHashEntry entry;
TupleTableSlot *outerslot;
/*
* get state info from node
*/
outerPlan = outerPlanState(aggstate);
/* tmpcontext is the per-input-tuple expression context */
tmpcontext = aggstate->tmpcontext;
/*
* Process each outer-plan tuple, and then fetch the next one, until we
* exhaust the outer plan.
*/
for (;;)
{
outerslot = ExecProcNode(outerPlan);
if (TupIsNull(outerslot))
break;
/* set up for advance_aggregates call */
tmpcontext->ecxt_outertuple = outerslot;
/* Find or build hashtable entry for this tuple's group */
entry = lookup_hash_entry(aggstate, outerslot);
/* Advance the aggregates */
advance_aggregates(aggstate, entry->pergroup);
/* Reset per-input-tuple context after each tuple */
ResetExprContext(tmpcontext);
}
aggstate->table_filled = true;
/* Initialize to walk the hash table */
ResetTupleHashIterator(aggstate->hashtable, &aggstate->hashiter);
}
/*
* ExecAgg for hashed case: phase 2, retrieving groups from hash table
*/
static TupleTableSlot *
agg_retrieve_hash_table(AggState *aggstate)
{
ExprContext *econtext;
Datum *aggvalues;
bool *aggnulls;
AggStatePerAgg peragg;
AggStatePerGroup pergroup;
AggHashEntry entry;
TupleTableSlot *firstSlot;
int aggno;
/*
* get state info from node
*/
/* econtext is the per-output-tuple expression context */
econtext = aggstate->ss.ps.ps_ExprContext;
aggvalues = econtext->ecxt_aggvalues;
aggnulls = econtext->ecxt_aggnulls;
peragg = aggstate->peragg;
firstSlot = aggstate->ss.ss_ScanTupleSlot;
/*
* We loop retrieving groups until we find one satisfying
* aggstate->ss.ps.qual
*/
while (!aggstate->agg_done)
{
/*
* Find the next entry in the hash table
*/
entry = (AggHashEntry) ScanTupleHashTable(&aggstate->hashiter);
if (entry == NULL)
{
/* No more entries in hashtable, so done */
aggstate->agg_done = TRUE;
return NULL;
}
/*
* Clear the per-output-tuple context for each group
*/
ResetExprContext(econtext);
/*
* Store the copied first input tuple in the tuple table slot reserved
* for it, so that it can be used in ExecProject.
*/
ExecStoreMinimalTuple(entry->shared.firstTuple,
firstSlot,
false);
pergroup = entry->pergroup;
/*
* Finalize each aggregate calculation, and stash results in the
* per-output-tuple context.
*/
for (aggno = 0; aggno < aggstate->numaggs; aggno++)
{
AggStatePerAgg peraggstate = &peragg[aggno];
AggStatePerGroup pergroupstate = &pergroup[aggno];
Assert(peraggstate->numSortCols == 0);
finalize_aggregate(aggstate, peraggstate, pergroupstate,
&aggvalues[aggno], &aggnulls[aggno]);
}
/*
* Use the representative input tuple for any references to
* non-aggregated input columns in the qual and tlist.
*/
econtext->ecxt_outertuple = firstSlot;
/*
* Check the qual (HAVING clause); if the group does not match, ignore
* it and loop back to try to process another group.
*/
if (ExecQual(aggstate->ss.ps.qual, econtext, false))
{
/*
* Form and return a projection tuple using the aggregate results
* and the representative input tuple.
*/
TupleTableSlot *result;
ExprDoneCond isDone;
result = ExecProject(aggstate->ss.ps.ps_ProjInfo, &isDone);
if (isDone != ExprEndResult)
{
aggstate->ss.ps.ps_TupFromTlist =
(isDone == ExprMultipleResult);
return result;
}
}
}
/* No more groups */
return NULL;
}
/* -----------------
* ExecInitAgg
*
* Creates the run-time information for the agg node produced by the
* planner and initializes its outer subtree
* -----------------
*/
AggState *
ExecInitAgg(Agg *node, EState *estate, int eflags)
{
AggState *aggstate;
AggStatePerAgg peragg;
Plan *outerPlan;
ExprContext *econtext;
int numaggs,
aggno;
ListCell *l;
/* check for unsupported flags */
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
/*
* create state structure
*/
aggstate = makeNode(AggState);
aggstate->ss.ps.plan = (Plan *) node;
aggstate->ss.ps.state = estate;
aggstate->aggs = NIL;
aggstate->numaggs = 0;
aggstate->eqfunctions = NULL;
aggstate->hashfunctions = NULL;
aggstate->peragg = NULL;
aggstate->agg_done = false;
aggstate->pergroup = NULL;
aggstate->grp_firstTuple = NULL;
aggstate->hashtable = NULL;
/*
* Create expression contexts. We need two, one for per-input-tuple
* processing and one for per-output-tuple processing. We cheat a little
* by using ExecAssignExprContext() to build both.
*/
ExecAssignExprContext(estate, &aggstate->ss.ps);
aggstate->tmpcontext = aggstate->ss.ps.ps_ExprContext;
ExecAssignExprContext(estate, &aggstate->ss.ps);
/*
* We also need a long-lived memory context for holding hashtable data
* structures and transition values. NOTE: the details of what is stored
* in aggcontext and what is stored in the regular per-query memory
* context are driven by a simple decision: we want to reset the
* aggcontext at group boundaries (if not hashing) and in ExecReScanAgg
* to recover no-longer-wanted space.
*/
aggstate->aggcontext =
AllocSetContextCreate(CurrentMemoryContext,
"AggContext",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
/*
* tuple table initialization
*/
ExecInitScanTupleSlot(estate, &aggstate->ss);
ExecInitResultTupleSlot(estate, &aggstate->ss.ps);
aggstate->hashslot = ExecInitExtraTupleSlot(estate);
/*
* initialize child expressions
*
* Note: ExecInitExpr finds Aggrefs for us, and also checks that no aggs
* contain other agg calls in their arguments. This would make no sense
* under SQL semantics anyway (and it's forbidden by the spec). Because
* that is true, we don't need to worry about evaluating the aggs in any
* particular order.
*/
aggstate->ss.ps.targetlist = (List *)
ExecInitExpr((Expr *) node->plan.targetlist,
(PlanState *) aggstate);
aggstate->ss.ps.qual = (List *)
ExecInitExpr((Expr *) node->plan.qual,
(PlanState *) aggstate);
/*
* initialize child nodes
*
* If we are doing a hashed aggregation then the child plan does not need
* to handle REWIND efficiently; see ExecReScanAgg.
*/
if (node->aggstrategy == AGG_HASHED)
eflags &= ~EXEC_FLAG_REWIND;
outerPlan = outerPlan(node);
outerPlanState(aggstate) = ExecInitNode(outerPlan, estate, eflags);
/*
* initialize source tuple type.
*/
ExecAssignScanTypeFromOuterPlan(&aggstate->ss);
/*
* Initialize result tuple type and projection info.
*/
ExecAssignResultTypeFromTL(&aggstate->ss.ps);
ExecAssignProjectionInfo(&aggstate->ss.ps, NULL);
aggstate->ss.ps.ps_TupFromTlist = false;
/*
* get the count of aggregates in targetlist and quals
*/
numaggs = aggstate->numaggs;
Assert(numaggs == list_length(aggstate->aggs));
if (numaggs <= 0)
{
/*
* This is not an error condition: we might be using the Agg node just
* to do hash-based grouping. Even in the regular case,
* constant-expression simplification could optimize away all of the
* Aggrefs in the targetlist and qual. So keep going, but force local
* copy of numaggs positive so that palloc()s below don't choke.
*/
numaggs = 1;
}
/*
* If we are grouping, precompute fmgr lookup data for inner loop. We need
* both equality and hashing functions to do it by hashing, but only
* equality if not hashing.
*/
if (node->numCols > 0)
{
if (node->aggstrategy == AGG_HASHED)
execTuplesHashPrepare(node->numCols,
node->grpOperators,
&aggstate->eqfunctions,
&aggstate->hashfunctions);
else
aggstate->eqfunctions =
execTuplesMatchPrepare(node->numCols,
node->grpOperators);
}
/*
* Set up aggregate-result storage in the output expr context, and also
* allocate my private per-agg working storage
*/
econtext = aggstate->ss.ps.ps_ExprContext;
econtext->ecxt_aggvalues = (Datum *) palloc0(sizeof(Datum) * numaggs);
econtext->ecxt_aggnulls = (bool *) palloc0(sizeof(bool) * numaggs);
peragg = (AggStatePerAgg) palloc0(sizeof(AggStatePerAggData) * numaggs);
aggstate->peragg = peragg;
if (node->aggstrategy == AGG_HASHED)
{
build_hash_table(aggstate);
aggstate->table_filled = false;
/* Compute the columns we actually need to hash on */
aggstate->hash_needed = find_hash_columns(aggstate);
}
else
{
AggStatePerGroup pergroup;
pergroup = (AggStatePerGroup) palloc0(sizeof(AggStatePerGroupData) * numaggs);
aggstate->pergroup = pergroup;
}
/*
* Perform lookups of aggregate function info, and initialize the
* unchanging fields of the per-agg data. We also detect duplicate
* aggregates (for example, "SELECT sum(x) ... HAVING sum(x) > 0"). When
* duplicates are detected, we only make an AggStatePerAgg struct for the
* first one. The clones are simply pointed at the same result entry by
* giving them duplicate aggno values.
*/
aggno = -1;
foreach(l, aggstate->aggs)
{
AggrefExprState *aggrefstate = (AggrefExprState *) lfirst(l);
Aggref *aggref = (Aggref *) aggrefstate->xprstate.expr;
AggStatePerAgg peraggstate;
Oid inputTypes[FUNC_MAX_ARGS];
int numArguments;
int numInputs;
int numSortCols;
int numDistinctCols;
List *sortlist;
HeapTuple aggTuple;
Form_pg_aggregate aggform;
Oid aggtranstype;
AclResult aclresult;
Oid transfn_oid,
finalfn_oid;
Expr *transfnexpr,
*finalfnexpr;
Datum textInitVal;
int i;
ListCell *lc;
/* Planner should have assigned aggregate to correct level */
Assert(aggref->agglevelsup == 0);
/* Look for a previous duplicate aggregate */
for (i = 0; i <= aggno; i++)
{
if (equal(aggref, peragg[i].aggref) &&
!contain_volatile_functions((Node *) aggref))
break;
}
if (i <= aggno)
{
/* Found a match to an existing entry, so just mark it */
aggrefstate->aggno = i;
continue;
}
/* Nope, so assign a new PerAgg record */
peraggstate = &peragg[++aggno];
/* Mark Aggref state node with assigned index in the result array */
aggrefstate->aggno = aggno;
/* Fill in the peraggstate data */
peraggstate->aggrefstate = aggrefstate;
peraggstate->aggref = aggref;
numInputs = list_length(aggref->args);
peraggstate->numInputs = numInputs;
peraggstate->sortstate = NULL;
/*
* Get actual datatypes of the inputs. These could be different from
* the agg's declared input types, when the agg accepts ANY or a
* polymorphic type.
*/
numArguments = 0;
foreach(lc, aggref->args)
{
TargetEntry *tle = (TargetEntry *) lfirst(lc);
if (!tle->resjunk)
inputTypes[numArguments++] = exprType((Node *) tle->expr);
}
peraggstate->numArguments = numArguments;
aggTuple = SearchSysCache1(AGGFNOID,
ObjectIdGetDatum(aggref->aggfnoid));
if (!HeapTupleIsValid(aggTuple))
elog(ERROR, "cache lookup failed for aggregate %u",
aggref->aggfnoid);
aggform = (Form_pg_aggregate) GETSTRUCT(aggTuple);
/* Check permission to call aggregate function */
aclresult = pg_proc_aclcheck(aggref->aggfnoid, GetUserId(),
ACL_EXECUTE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_PROC,
get_func_name(aggref->aggfnoid));
peraggstate->transfn_oid = transfn_oid = aggform->aggtransfn;
peraggstate->finalfn_oid = finalfn_oid = aggform->aggfinalfn;
/* Check that aggregate owner has permission to call component fns */
{
HeapTuple procTuple;
Oid aggOwner;
procTuple = SearchSysCache1(PROCOID,
ObjectIdGetDatum(aggref->aggfnoid));
if (!HeapTupleIsValid(procTuple))
elog(ERROR, "cache lookup failed for function %u",
aggref->aggfnoid);
aggOwner = ((Form_pg_proc) GETSTRUCT(procTuple))->proowner;
ReleaseSysCache(procTuple);
aclresult = pg_proc_aclcheck(transfn_oid, aggOwner,
ACL_EXECUTE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_PROC,
get_func_name(transfn_oid));
if (OidIsValid(finalfn_oid))
{
aclresult = pg_proc_aclcheck(finalfn_oid, aggOwner,
ACL_EXECUTE);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_PROC,
get_func_name(finalfn_oid));
}
}
/* resolve actual type of transition state, if polymorphic */
aggtranstype = aggform->aggtranstype;
if (IsPolymorphicType(aggtranstype))
{
/* have to fetch the agg's declared input types... */
Oid *declaredArgTypes;
int agg_nargs;
(void) get_func_signature(aggref->aggfnoid,
&declaredArgTypes, &agg_nargs);
Assert(agg_nargs == numArguments);
aggtranstype = enforce_generic_type_consistency(inputTypes,
declaredArgTypes,
agg_nargs,
aggtranstype,
false);
pfree(declaredArgTypes);
}
/* build expression trees using actual argument & result types */
build_aggregate_fnexprs(inputTypes,
numArguments,
aggtranstype,
aggref->aggtype,
transfn_oid,
finalfn_oid,
&transfnexpr,
&finalfnexpr);
fmgr_info(transfn_oid, &peraggstate->transfn);
peraggstate->transfn.fn_expr = (Node *) transfnexpr;
if (OidIsValid(finalfn_oid))
{
fmgr_info(finalfn_oid, &peraggstate->finalfn);
peraggstate->finalfn.fn_expr = (Node *) finalfnexpr;
}
get_typlenbyval(aggref->aggtype,
&peraggstate->resulttypeLen,
&peraggstate->resulttypeByVal);
get_typlenbyval(aggtranstype,
&peraggstate->transtypeLen,
&peraggstate->transtypeByVal);
/*
* initval is potentially null, so don't try to access it as a struct
* field. Must do it the hard way with SysCacheGetAttr.
*/
textInitVal = SysCacheGetAttr(AGGFNOID, aggTuple,
Anum_pg_aggregate_agginitval,
&peraggstate->initValueIsNull);
if (peraggstate->initValueIsNull)
peraggstate->initValue = (Datum) 0;
else
peraggstate->initValue = GetAggInitVal(textInitVal,
aggtranstype);
/*
* If the transfn is strict and the initval is NULL, make sure input
* type and transtype are the same (or at least binary-compatible), so
* that it's OK to use the first input value as the initial
* transValue. This should have been checked at agg definition time,
* but just in case...
*/
if (peraggstate->transfn.fn_strict && peraggstate->initValueIsNull)
{
if (numArguments < 1 ||
!IsBinaryCoercible(inputTypes[0], aggtranstype))
ereport(ERROR,
(errcode(ERRCODE_INVALID_FUNCTION_DEFINITION),
errmsg("aggregate %u needs to have compatible input type and transition type",
aggref->aggfnoid)));
}
/*
* Get a tupledesc corresponding to the inputs (including sort
* expressions) of the agg.
*/
peraggstate->evaldesc = ExecTypeFromTL(aggref->args, false);
/* Create slot we're going to do argument evaluation in */
peraggstate->evalslot = ExecInitExtraTupleSlot(estate);
ExecSetSlotDescriptor(peraggstate->evalslot, peraggstate->evaldesc);
/* Set up projection info for evaluation */
peraggstate->evalproj = ExecBuildProjectionInfo(aggrefstate->args,
aggstate->tmpcontext,
peraggstate->evalslot,
NULL);
/*
* If we're doing either DISTINCT or ORDER BY, then we have a list
* of SortGroupClause nodes; fish out the data in them and
* stick them into arrays.
*
* Note that by construction, if there is a DISTINCT clause then the
* ORDER BY clause is a prefix of it (see transformDistinctClause).
*/
if (aggref->aggdistinct)
{
sortlist = aggref->aggdistinct;
numSortCols = numDistinctCols = list_length(sortlist);
Assert(numSortCols >= list_length(aggref->aggorder));
}
else
{
sortlist = aggref->aggorder;
numSortCols = list_length(sortlist);
numDistinctCols = 0;
}
peraggstate->numSortCols = numSortCols;
peraggstate->numDistinctCols = numDistinctCols;
if (numSortCols > 0)
{
/*
* We don't implement DISTINCT or ORDER BY aggs in the HASHED case
* (yet)
*/
Assert(node->aggstrategy != AGG_HASHED);
/* If we have only one input, we need its len/byval info. */
if (numInputs == 1)
{
get_typlenbyval(inputTypes[0],
&peraggstate->inputtypeLen,
&peraggstate->inputtypeByVal);
}
else if (numDistinctCols > 0)
{
/* we will need an extra slot to store prior values */
peraggstate->uniqslot = ExecInitExtraTupleSlot(estate);
ExecSetSlotDescriptor(peraggstate->uniqslot,
peraggstate->evaldesc);
}
/* Extract the sort information for use later */
peraggstate->sortColIdx =
(AttrNumber *) palloc(numSortCols * sizeof(AttrNumber));
peraggstate->sortOperators =
(Oid *) palloc(numSortCols * sizeof(Oid));
peraggstate->sortNullsFirst =
(bool *) palloc(numSortCols * sizeof(bool));
i = 0;
foreach(lc, sortlist)
{
SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
TargetEntry *tle = get_sortgroupclause_tle(sortcl,
aggref->args);
/* the parser should have made sure of this */
Assert(OidIsValid(sortcl->sortop));
peraggstate->sortColIdx[i] = tle->resno;
peraggstate->sortOperators[i] = sortcl->sortop;
peraggstate->sortNullsFirst[i] = sortcl->nulls_first;
i++;
}
Assert(i == numSortCols);
}
if (aggref->aggdistinct)
{
Assert(numArguments > 0);
/*
* We need the equal function for each DISTINCT comparison we will
* make.
*/
peraggstate->equalfns =
(FmgrInfo *) palloc(numDistinctCols * sizeof(FmgrInfo));
i = 0;
foreach(lc, aggref->aggdistinct)
{
SortGroupClause *sortcl = (SortGroupClause *) lfirst(lc);
fmgr_info(get_opcode(sortcl->eqop), &peraggstate->equalfns[i]);
i++;
}
Assert(i == numDistinctCols);
}
ReleaseSysCache(aggTuple);
}
/* Update numaggs to match number of unique aggregates found */
aggstate->numaggs = aggno + 1;
return aggstate;
}
static Datum
GetAggInitVal(Datum textInitVal, Oid transtype)
{
Oid typinput,
typioparam;
char *strInitVal;
Datum initVal;
getTypeInputInfo(transtype, &typinput, &typioparam);
strInitVal = TextDatumGetCString(textInitVal);
initVal = OidInputFunctionCall(typinput, strInitVal,
typioparam, -1);
pfree(strInitVal);
return initVal;
}
void
ExecEndAgg(AggState *node)
{
PlanState *outerPlan;
int aggno;
/* Make sure we have closed any open tuplesorts */
for (aggno = 0; aggno < node->numaggs; aggno++)
{
AggStatePerAgg peraggstate = &node->peragg[aggno];
if (peraggstate->sortstate)
tuplesort_end(peraggstate->sortstate);
}
/*
* Free both the expr contexts.
*/
ExecFreeExprContext(&node->ss.ps);
node->ss.ps.ps_ExprContext = node->tmpcontext;
ExecFreeExprContext(&node->ss.ps);
/* clean up tuple table */
ExecClearTuple(node->ss.ss_ScanTupleSlot);
MemoryContextDelete(node->aggcontext);
outerPlan = outerPlanState(node);
ExecEndNode(outerPlan);
}
void
ExecReScanAgg(AggState *node, ExprContext *exprCtxt)
{
ExprContext *econtext = node->ss.ps.ps_ExprContext;
int aggno;
node->agg_done = false;
node->ss.ps.ps_TupFromTlist = false;
if (((Agg *) node->ss.ps.plan)->aggstrategy == AGG_HASHED)
{
/*
* In the hashed case, if we haven't yet built the hash table then we
* can just return; nothing done yet, so nothing to undo. If subnode's
* chgParam is not NULL then it will be re-scanned by ExecProcNode,
* else no reason to re-scan it at all.
*/
if (!node->table_filled)
return;
/*
* If we do have the hash table and the subplan does not have any
* parameter changes, then we can just rescan the existing hash table;
* no need to build it again.
*/
if (((PlanState *) node)->lefttree->chgParam == NULL)
{
ResetTupleHashIterator(node->hashtable, &node->hashiter);
return;
}
}
/* Make sure we have closed any open tuplesorts */
for (aggno = 0; aggno < node->numaggs; aggno++)
{
AggStatePerAgg peraggstate = &node->peragg[aggno];
if (peraggstate->sortstate)
tuplesort_end(peraggstate->sortstate);
peraggstate->sortstate = NULL;
}
/* Release first tuple of group, if we have made a copy */
if (node->grp_firstTuple != NULL)
{
heap_freetuple(node->grp_firstTuple);
node->grp_firstTuple = NULL;
}
/* Forget current agg values */
MemSet(econtext->ecxt_aggvalues, 0, sizeof(Datum) * node->numaggs);
MemSet(econtext->ecxt_aggnulls, 0, sizeof(bool) * node->numaggs);
/*
* Release all temp storage. Note that with AGG_HASHED, the hash table is
* allocated in a sub-context of the aggcontext. We're going to rebuild
* the hash table from scratch, so we need to use
* MemoryContextResetAndDeleteChildren() to avoid leaking the old hash
* table's memory context header.
*/
MemoryContextResetAndDeleteChildren(node->aggcontext);
if (((Agg *) node->ss.ps.plan)->aggstrategy == AGG_HASHED)
{
/* Rebuild an empty hash table */
build_hash_table(node);
node->table_filled = false;
}
else
{
/*
* Reset the per-group state (in particular, mark transvalues null)
*/
MemSet(node->pergroup, 0,
sizeof(AggStatePerGroupData) * node->numaggs);
}
/*
* if chgParam of subnode is not null then plan will be re-scanned by
* first ExecProcNode.
*/
if (((PlanState *) node)->lefttree->chgParam == NULL)
ExecReScan(((PlanState *) node)->lefttree, exprCtxt);
}
/*
* AggCheckCallContext - test if a SQL function is being called as an aggregate
*
* The transition and/or final functions of an aggregate may want to verify
* that they are being called as aggregates, rather than as plain SQL
* functions. They should use this function to do so. The return value
* is nonzero if being called as an aggregate, or zero if not. (Specific
* nonzero values are AGG_CONTEXT_AGGREGATE or AGG_CONTEXT_WINDOW, but more
* values could conceivably appear in future.)
*
* If aggcontext isn't NULL, the function also stores at *aggcontext the
* identity of the memory context that aggregate transition values are
* being stored in.
*/
int
AggCheckCallContext(FunctionCallInfo fcinfo, MemoryContext *aggcontext)
{
if (fcinfo->context && IsA(fcinfo->context, AggState))
{
if (aggcontext)
*aggcontext = ((AggState *) fcinfo->context)->aggcontext;
return AGG_CONTEXT_AGGREGATE;
}
if (fcinfo->context && IsA(fcinfo->context, WindowAggState))
{
if (aggcontext)
*aggcontext = ((WindowAggState *) fcinfo->context)->aggcontext;
return AGG_CONTEXT_WINDOW;
}
/* this is just to prevent "uninitialized variable" warnings */
if (aggcontext)
*aggcontext = NULL;
return 0;
}
/*
* aggregate_dummy - dummy execution routine for aggregate functions
*
* This function is listed as the implementation (prosrc field) of pg_proc
* entries for aggregate functions. Its only purpose is to throw an error
* if someone mistakenly executes such a function in the normal way.
*
* Perhaps someday we could assign real meaning to the prosrc field of
* an aggregate?
*/
Datum
aggregate_dummy(PG_FUNCTION_ARGS)
{
elog(ERROR, "aggregate function %u called as normal function",
fcinfo->flinfo->fn_oid);
return (Datum) 0; /* keep compiler quiet */
}