postgresql/contrib/pg_prewarm/pg_prewarm.c
Peter Eisentraut e7128e8dbb Create function prototype as part of PG_FUNCTION_INFO_V1 macro
Because of gcc -Wmissing-prototypes, all functions in dynamically
loadable modules must have a separate prototype declaration.  This is
meant to detect global functions that are not declared in header files,
but in cases where the function is called via dfmgr, this is redundant.
Besides filling up space with boilerplate, this is a frequent source of
compiler warnings in extension modules.

We can fix that by creating the function prototype as part of the
PG_FUNCTION_INFO_V1 macro, which such modules have to use anyway.  That
makes the code of modules cleaner, because there is one less place where
the entry points have to be listed, and creates an additional check that
functions have the right prototype.

Remove now redundant prototypes from contrib and other modules.
2014-04-18 00:03:19 -04:00

204 lines
5.5 KiB
C

/*-------------------------------------------------------------------------
*
* pg_prewarm.c
* prewarming utilities
*
* Copyright (c) 2010-2014, PostgreSQL Global Development Group
*
* IDENTIFICATION
* contrib/pg_prewarm/pg_prewarm.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <sys/stat.h>
#include <unistd.h>
#include "access/heapam.h"
#include "catalog/catalog.h"
#include "fmgr.h"
#include "miscadmin.h"
#include "storage/bufmgr.h"
#include "storage/smgr.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/rel.h"
PG_MODULE_MAGIC;
PG_FUNCTION_INFO_V1(pg_prewarm);
typedef enum
{
PREWARM_PREFETCH,
PREWARM_READ,
PREWARM_BUFFER
} PrewarmType;
static char blockbuffer[BLCKSZ];
/*
* pg_prewarm(regclass, mode text, fork text,
* first_block int8, last_block int8)
*
* The first argument is the relation to be prewarmed; the second controls
* how prewarming is done; legal options are 'prefetch', 'read', and 'buffer'.
* The third is the name of the relation fork to be prewarmed. The fourth
* and fifth arguments specify the first and last block to be prewarmed.
* If the fourth argument is NULL, it will be taken as 0; if the fifth argument
* is NULL, it will be taken as the number of blocks in the relation. The
* return value is the number of blocks successfully prewarmed.
*/
Datum
pg_prewarm(PG_FUNCTION_ARGS)
{
Oid relOid;
text *forkName;
text *type;
int64 first_block;
int64 last_block;
int64 nblocks;
int64 blocks_done = 0;
int64 block;
Relation rel;
ForkNumber forkNumber;
char *forkString;
char *ttype;
PrewarmType ptype;
AclResult aclresult;
/* Basic sanity checking. */
if (PG_ARGISNULL(0))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("relation cannot be null")));
relOid = PG_GETARG_OID(0);
if (PG_ARGISNULL(1))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
(errmsg("prewarm type cannot be null"))));
type = PG_GETARG_TEXT_P(1);
ttype = text_to_cstring(type);
if (strcmp(ttype, "prefetch") == 0)
ptype = PREWARM_PREFETCH;
else if (strcmp(ttype, "read") == 0)
ptype = PREWARM_READ;
else if (strcmp(ttype, "buffer") == 0)
ptype = PREWARM_BUFFER;
else
{
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid prewarm type"),
errhint("Valid prewarm types are \"prefetch\", \"read\", and \"buffer\".")));
PG_RETURN_INT64(0); /* Placate compiler. */
}
if (PG_ARGISNULL(2))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
(errmsg("relation fork cannot be null"))));
forkName = PG_GETARG_TEXT_P(2);
forkString = text_to_cstring(forkName);
forkNumber = forkname_to_number(forkString);
/* Open relation and check privileges. */
rel = relation_open(relOid, AccessShareLock);
aclresult = pg_class_aclcheck(relOid, GetUserId(), ACL_SELECT);
if (aclresult != ACLCHECK_OK)
aclcheck_error(aclresult, ACL_KIND_CLASS, get_rel_name(relOid));
/* Check that the fork exists. */
RelationOpenSmgr(rel);
if (!smgrexists(rel->rd_smgr, forkNumber))
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("fork \"%s\" does not exist for this relation",
forkString)));
/* Validate block numbers, or handle nulls. */
nblocks = RelationGetNumberOfBlocksInFork(rel, forkNumber);
if (PG_ARGISNULL(3))
first_block = 0;
else
{
first_block = PG_GETARG_INT64(3);
if (first_block < 0 || first_block >= nblocks)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("starting block number must be between 0 and " INT64_FORMAT,
nblocks - 1)));
}
if (PG_ARGISNULL(4))
last_block = nblocks - 1;
else
{
last_block = PG_GETARG_INT64(4);
if (last_block < 0 || last_block >= nblocks)
ereport(ERROR,
(errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("ending block number must be between 0 and " INT64_FORMAT,
nblocks - 1)));
}
/* Now we're ready to do the real work. */
if (ptype == PREWARM_PREFETCH)
{
#ifdef USE_PREFETCH
/*
* In prefetch mode, we just hint the OS to read the blocks, but we
* don't know whether it really does it, and we don't wait for it to
* finish.
*
* It would probably be better to pass our prefetch requests in chunks
* of a megabyte or maybe even a whole segment at a time, but there's
* no practical way to do that at present without a gross modularity
* violation, so we just do this.
*/
for (block = first_block; block <= last_block; ++block)
{
PrefetchBuffer(rel, forkNumber, block);
++blocks_done;
}
#else
ereport(ERROR,
(errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
errmsg("prefetch is not supported by this build")));
#endif
}
else if (ptype == PREWARM_READ)
{
/*
* In read mode, we actually read the blocks, but not into shared
* buffers. This is more portable than prefetch mode (it works
* everywhere) and is synchronous.
*/
for (block = first_block; block <= last_block; ++block)
{
smgrread(rel->rd_smgr, forkNumber, block, blockbuffer);
++blocks_done;
}
}
else if (ptype == PREWARM_BUFFER)
{
/*
* In buffer mode, we actually pull the data into shared_buffers.
*/
for (block = first_block; block <= last_block; ++block)
{
Buffer buf;
buf = ReadBufferExtended(rel, forkNumber, block, RBM_NORMAL, NULL);
ReleaseBuffer(buf);
++blocks_done;
}
}
/* Close relation, release lock. */
relation_close(rel, AccessShareLock);
PG_RETURN_INT64(blocks_done);
}