postgresql/contrib/tsm_system_time/tsm_system_time.c
Tom Lane dd7a8f66ed Redesign tablesample method API, and do extensive code review.
The original implementation of TABLESAMPLE modeled the tablesample method
API on index access methods, which wasn't a good choice because, without
specialized DDL commands, there's no way to build an extension that can
implement a TSM.  (Raw inserts into system catalogs are not an acceptable
thing to do, because we can't undo them during DROP EXTENSION, nor will
pg_upgrade behave sanely.)  Instead adopt an API more like procedural
language handlers or foreign data wrappers, wherein the only SQL-level
support object needed is a single handler function identified by having
a special return type.  This lets us get rid of the supporting catalog
altogether, so that no custom DDL support is needed for the feature.

Adjust the API so that it can support non-constant tablesample arguments
(the original coding assumed we could evaluate the argument expressions at
ExecInitSampleScan time, which is undesirable even if it weren't outright
unsafe), and discourage sampling methods from looking at invisible tuples.
Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable
within and across queries, as required by the SQL standard, and deal more
honestly with methods that can't support that requirement.

Make a full code-review pass over the tablesample additions, and fix
assorted bugs, omissions, infelicities, and cosmetic issues (such as
failure to put the added code stanzas in a consistent ordering).
Improve EXPLAIN's output of tablesample plans, too.

Back-patch to 9.5 so that we don't have to support the original API
in production.
2015-07-25 14:39:00 -04:00

359 lines
9.8 KiB
C

/*-------------------------------------------------------------------------
*
* tsm_system_time.c
* support routines for SYSTEM_TIME tablesample method
*
* The desire here is to produce a random sample with as many rows as possible
* in no more than the specified amount of time. We use a block-sampling
* approach. To ensure that the whole relation will be visited if necessary,
* we start at a randomly chosen block and then advance with a stride that
* is randomly chosen but is relatively prime to the relation's nblocks.
*
* Because of the time dependence, this method is necessarily unrepeatable.
* However, we do what we can to reduce surprising behavior by selecting
* the sampling pattern just once per query, much as in tsm_system_rows.
*
* Portions Copyright (c) 1996-2015, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* contrib/tsm_system_time/tsm_system_time.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#ifdef _MSC_VER
#include <float.h> /* for _isnan */
#endif
#include <math.h>
#include "access/relscan.h"
#include "access/tsmapi.h"
#include "catalog/pg_type.h"
#include "miscadmin.h"
#include "optimizer/clauses.h"
#include "optimizer/cost.h"
#include "utils/sampling.h"
#include "utils/spccache.h"
PG_MODULE_MAGIC;
PG_FUNCTION_INFO_V1(tsm_system_time_handler);
/* Private state */
typedef struct
{
uint32 seed; /* random seed */
double millis; /* time limit for sampling */
instr_time start_time; /* scan start time */
OffsetNumber lt; /* last tuple returned from current block */
BlockNumber doneblocks; /* number of already-scanned blocks */
BlockNumber lb; /* last block visited */
/* these three values are not changed during a rescan: */
BlockNumber nblocks; /* number of blocks in relation */
BlockNumber firstblock; /* first block to sample from */
BlockNumber step; /* step size, or 0 if not set yet */
} SystemTimeSamplerData;
static void system_time_samplescangetsamplesize(PlannerInfo *root,
RelOptInfo *baserel,
List *paramexprs,
BlockNumber *pages,
double *tuples);
static void system_time_initsamplescan(SampleScanState *node,
int eflags);
static void system_time_beginsamplescan(SampleScanState *node,
Datum *params,
int nparams,
uint32 seed);
static BlockNumber system_time_nextsampleblock(SampleScanState *node);
static OffsetNumber system_time_nextsampletuple(SampleScanState *node,
BlockNumber blockno,
OffsetNumber maxoffset);
static uint32 random_relative_prime(uint32 n, SamplerRandomState randstate);
/*
* Create a TsmRoutine descriptor for the SYSTEM_TIME method.
*/
Datum
tsm_system_time_handler(PG_FUNCTION_ARGS)
{
TsmRoutine *tsm = makeNode(TsmRoutine);
tsm->parameterTypes = list_make1_oid(FLOAT8OID);
/* See notes at head of file */
tsm->repeatable_across_queries = false;
tsm->repeatable_across_scans = false;
tsm->SampleScanGetSampleSize = system_time_samplescangetsamplesize;
tsm->InitSampleScan = system_time_initsamplescan;
tsm->BeginSampleScan = system_time_beginsamplescan;
tsm->NextSampleBlock = system_time_nextsampleblock;
tsm->NextSampleTuple = system_time_nextsampletuple;
tsm->EndSampleScan = NULL;
PG_RETURN_POINTER(tsm);
}
/*
* Sample size estimation.
*/
static void
system_time_samplescangetsamplesize(PlannerInfo *root,
RelOptInfo *baserel,
List *paramexprs,
BlockNumber *pages,
double *tuples)
{
Node *limitnode;
double millis;
double spc_random_page_cost;
double npages;
double ntuples;
/* Try to extract an estimate for the limit time spec */
limitnode = (Node *) linitial(paramexprs);
limitnode = estimate_expression_value(root, limitnode);
if (IsA(limitnode, Const) &&
!((Const *) limitnode)->constisnull)
{
millis = DatumGetFloat8(((Const *) limitnode)->constvalue);
if (millis < 0 || isnan(millis))
{
/* Default millis if the value is bogus */
millis = 1000;
}
}
else
{
/* Default millis if we didn't obtain a non-null Const */
millis = 1000;
}
/* Get the planner's idea of cost per page read */
get_tablespace_page_costs(baserel->reltablespace,
&spc_random_page_cost,
NULL);
/*
* Estimate the number of pages we can read by assuming that the cost
* figure is expressed in milliseconds. This is completely, unmistakably
* bogus, but we have to do something to produce an estimate and there's
* no better answer.
*/
if (spc_random_page_cost > 0)
npages = millis / spc_random_page_cost;
else
npages = millis; /* even more bogus, but whatcha gonna do? */
/* Clamp to sane value */
npages = clamp_row_est(Min((double) baserel->pages, npages));
if (baserel->tuples > 0 && baserel->pages > 0)
{
/* Estimate number of tuples returned based on tuple density */
double density = baserel->tuples / (double) baserel->pages;
ntuples = npages * density;
}
else
{
/* For lack of data, assume one tuple per page */
ntuples = npages;
}
/* Clamp to the estimated relation size */
ntuples = clamp_row_est(Min(baserel->tuples, ntuples));
*pages = npages;
*tuples = ntuples;
}
/*
* Initialize during executor setup.
*/
static void
system_time_initsamplescan(SampleScanState *node, int eflags)
{
node->tsm_state = palloc0(sizeof(SystemTimeSamplerData));
/* Note the above leaves tsm_state->step equal to zero */
}
/*
* Examine parameters and prepare for a sample scan.
*/
static void
system_time_beginsamplescan(SampleScanState *node,
Datum *params,
int nparams,
uint32 seed)
{
SystemTimeSamplerData *sampler = (SystemTimeSamplerData *) node->tsm_state;
double millis = DatumGetFloat8(params[0]);
if (millis < 0 || isnan(millis))
ereport(ERROR,
(errcode(ERRCODE_INVALID_TABLESAMPLE_ARGUMENT),
errmsg("sample collection time must not be negative")));
sampler->seed = seed;
sampler->millis = millis;
sampler->lt = InvalidOffsetNumber;
sampler->doneblocks = 0;
/* start_time, lb will be initialized during first NextSampleBlock call */
/* we intentionally do not change nblocks/firstblock/step here */
}
/*
* Select next block to sample.
*
* Uses linear probing algorithm for picking next block.
*/
static BlockNumber
system_time_nextsampleblock(SampleScanState *node)
{
SystemTimeSamplerData *sampler = (SystemTimeSamplerData *) node->tsm_state;
HeapScanDesc scan = node->ss.ss_currentScanDesc;
instr_time cur_time;
/* First call within scan? */
if (sampler->doneblocks == 0)
{
/* First scan within query? */
if (sampler->step == 0)
{
/* Initialize now that we have scan descriptor */
SamplerRandomState randstate;
/* If relation is empty, there's nothing to scan */
if (scan->rs_nblocks == 0)
return InvalidBlockNumber;
/* We only need an RNG during this setup step */
sampler_random_init_state(sampler->seed, randstate);
/* Compute nblocks/firstblock/step only once per query */
sampler->nblocks = scan->rs_nblocks;
/* Choose random starting block within the relation */
/* (Actually this is the predecessor of the first block visited) */
sampler->firstblock = sampler_random_fract(randstate) *
sampler->nblocks;
/* Find relative prime as step size for linear probing */
sampler->step = random_relative_prime(sampler->nblocks, randstate);
}
/* Reinitialize lb and start_time */
sampler->lb = sampler->firstblock;
INSTR_TIME_SET_CURRENT(sampler->start_time);
}
/* If we've read all blocks in relation, we're done */
if (++sampler->doneblocks > sampler->nblocks)
return InvalidBlockNumber;
/* If we've used up all the allotted time, we're done */
INSTR_TIME_SET_CURRENT(cur_time);
INSTR_TIME_SUBTRACT(cur_time, sampler->start_time);
if (INSTR_TIME_GET_MILLISEC(cur_time) >= sampler->millis)
return InvalidBlockNumber;
/*
* It's probably impossible for scan->rs_nblocks to decrease between scans
* within a query; but just in case, loop until we select a block number
* less than scan->rs_nblocks. We don't care if scan->rs_nblocks has
* increased since the first scan.
*/
do
{
/* Advance lb, using uint64 arithmetic to forestall overflow */
sampler->lb = ((uint64) sampler->lb + sampler->step) % sampler->nblocks;
} while (sampler->lb >= scan->rs_nblocks);
return sampler->lb;
}
/*
* Select next sampled tuple in current block.
*
* In block sampling, we just want to sample all the tuples in each selected
* block.
*
* When we reach end of the block, return InvalidOffsetNumber which tells
* SampleScan to go to next block.
*/
static OffsetNumber
system_time_nextsampletuple(SampleScanState *node,
BlockNumber blockno,
OffsetNumber maxoffset)
{
SystemTimeSamplerData *sampler = (SystemTimeSamplerData *) node->tsm_state;
OffsetNumber tupoffset = sampler->lt;
/* Advance to next possible offset on page */
if (tupoffset == InvalidOffsetNumber)
tupoffset = FirstOffsetNumber;
else
tupoffset++;
/* Done? */
if (tupoffset > maxoffset)
tupoffset = InvalidOffsetNumber;
sampler->lt = tupoffset;
return tupoffset;
}
/*
* Compute greatest common divisor of two uint32's.
*/
static uint32
gcd(uint32 a, uint32 b)
{
uint32 c;
while (a != 0)
{
c = a;
a = b % a;
b = c;
}
return b;
}
/*
* Pick a random value less than and relatively prime to n, if possible
* (else return 1).
*/
static uint32
random_relative_prime(uint32 n, SamplerRandomState randstate)
{
uint32 r;
/* Safety check to avoid infinite loop or zero result for small n. */
if (n <= 1)
return 1;
/*
* This should only take 2 or 3 iterations as the probability of 2 numbers
* being relatively prime is ~61%; but just in case, we'll include a
* CHECK_FOR_INTERRUPTS in the loop.
*/
do
{
CHECK_FOR_INTERRUPTS();
r = (uint32) (sampler_random_fract(randstate) * n);
} while (r == 0 || gcd(r, n) > 1);
return r;
}