postgresql/src/backend/executor/execTuples.c

1319 lines
37 KiB
C

/*-------------------------------------------------------------------------
*
* execTuples.c
* Routines dealing with TupleTableSlots. These are used for resource
* management associated with tuples (eg, releasing buffer pins for
* tuples in disk buffers, or freeing the memory occupied by transient
* tuples). Slots also provide access abstraction that lets us implement
* "virtual" tuples to reduce data-copying overhead.
*
* Routines dealing with the type information for tuples. Currently,
* the type information for a tuple is an array of FormData_pg_attribute.
* This information is needed by routines manipulating tuples
* (getattribute, formtuple, etc.).
*
* Portions Copyright (c) 1996-2014, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/execTuples.c
*
*-------------------------------------------------------------------------
*/
/*
* INTERFACE ROUTINES
*
* SLOT CREATION/DESTRUCTION
* MakeTupleTableSlot - create an empty slot
* ExecAllocTableSlot - create a slot within a tuple table
* ExecResetTupleTable - clear and optionally delete a tuple table
* MakeSingleTupleTableSlot - make a standalone slot, set its descriptor
* ExecDropSingleTupleTableSlot - destroy a standalone slot
*
* SLOT ACCESSORS
* ExecSetSlotDescriptor - set a slot's tuple descriptor
* ExecStoreTuple - store a physical tuple in the slot
* ExecStoreMinimalTuple - store a minimal physical tuple in the slot
* ExecClearTuple - clear contents of a slot
* ExecStoreVirtualTuple - mark slot as containing a virtual tuple
* ExecCopySlotTuple - build a physical tuple from a slot
* ExecCopySlotMinimalTuple - build a minimal physical tuple from a slot
* ExecMaterializeSlot - convert virtual to physical storage
* ExecCopySlot - copy one slot's contents to another
*
* CONVENIENCE INITIALIZATION ROUTINES
* ExecInitResultTupleSlot \ convenience routines to initialize
* ExecInitScanTupleSlot \ the various tuple slots for nodes
* ExecInitExtraTupleSlot / which store copies of tuples.
* ExecInitNullTupleSlot /
*
* Routines that probably belong somewhere else:
* ExecTypeFromTL - form a TupleDesc from a target list
*
* EXAMPLE OF HOW TABLE ROUTINES WORK
* Suppose we have a query such as SELECT emp.name FROM emp and we have
* a single SeqScan node in the query plan.
*
* At ExecutorStart()
* ----------------
* - ExecInitSeqScan() calls ExecInitScanTupleSlot() and
* ExecInitResultTupleSlot() to construct TupleTableSlots
* for the tuples returned by the access methods and the
* tuples resulting from performing target list projections.
*
* During ExecutorRun()
* ----------------
* - SeqNext() calls ExecStoreTuple() to place the tuple returned
* by the access methods into the scan tuple slot.
*
* - ExecSeqScan() calls ExecStoreTuple() to take the result
* tuple from ExecProject() and place it into the result tuple slot.
*
* - ExecutePlan() calls the output function.
*
* The important thing to watch in the executor code is how pointers
* to the slots containing tuples are passed instead of the tuples
* themselves. This facilitates the communication of related information
* (such as whether or not a tuple should be pfreed, what buffer contains
* this tuple, the tuple's tuple descriptor, etc). It also allows us
* to avoid physically constructing projection tuples in many cases.
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "access/tuptoaster.h"
#include "funcapi.h"
#include "catalog/pg_type.h"
#include "nodes/nodeFuncs.h"
#include "storage/bufmgr.h"
#include "utils/builtins.h"
#include "utils/lsyscache.h"
#include "utils/typcache.h"
static TupleDesc ExecTypeFromTLInternal(List *targetList,
bool hasoid, bool skipjunk);
/* ----------------------------------------------------------------
* tuple table create/delete functions
* ----------------------------------------------------------------
*/
/* --------------------------------
* MakeTupleTableSlot
*
* Basic routine to make an empty TupleTableSlot.
* --------------------------------
*/
TupleTableSlot *
MakeTupleTableSlot(void)
{
TupleTableSlot *slot = makeNode(TupleTableSlot);
slot->tts_isempty = true;
slot->tts_shouldFree = false;
slot->tts_shouldFreeMin = false;
slot->tts_tuple = NULL;
slot->tts_tupleDescriptor = NULL;
slot->tts_mcxt = CurrentMemoryContext;
slot->tts_buffer = InvalidBuffer;
slot->tts_nvalid = 0;
slot->tts_values = NULL;
slot->tts_isnull = NULL;
slot->tts_mintuple = NULL;
return slot;
}
/* --------------------------------
* ExecAllocTableSlot
*
* Create a tuple table slot within a tuple table (which is just a List).
* --------------------------------
*/
TupleTableSlot *
ExecAllocTableSlot(List **tupleTable)
{
TupleTableSlot *slot = MakeTupleTableSlot();
*tupleTable = lappend(*tupleTable, slot);
return slot;
}
/* --------------------------------
* ExecResetTupleTable
*
* This releases any resources (buffer pins, tupdesc refcounts)
* held by the tuple table, and optionally releases the memory
* occupied by the tuple table data structure.
* It is expected that this routine be called by EndPlan().
* --------------------------------
*/
void
ExecResetTupleTable(List *tupleTable, /* tuple table */
bool shouldFree) /* true if we should free memory */
{
ListCell *lc;
foreach(lc, tupleTable)
{
TupleTableSlot *slot = (TupleTableSlot *) lfirst(lc);
/* Sanity checks */
Assert(IsA(slot, TupleTableSlot));
/* Always release resources and reset the slot to empty */
ExecClearTuple(slot);
if (slot->tts_tupleDescriptor)
{
ReleaseTupleDesc(slot->tts_tupleDescriptor);
slot->tts_tupleDescriptor = NULL;
}
/* If shouldFree, release memory occupied by the slot itself */
if (shouldFree)
{
if (slot->tts_values)
pfree(slot->tts_values);
if (slot->tts_isnull)
pfree(slot->tts_isnull);
pfree(slot);
}
}
/* If shouldFree, release the list structure */
if (shouldFree)
list_free(tupleTable);
}
/* --------------------------------
* MakeSingleTupleTableSlot
*
* This is a convenience routine for operations that need a
* standalone TupleTableSlot not gotten from the main executor
* tuple table. It makes a single slot and initializes it
* to use the given tuple descriptor.
* --------------------------------
*/
TupleTableSlot *
MakeSingleTupleTableSlot(TupleDesc tupdesc)
{
TupleTableSlot *slot = MakeTupleTableSlot();
ExecSetSlotDescriptor(slot, tupdesc);
return slot;
}
/* --------------------------------
* ExecDropSingleTupleTableSlot
*
* Release a TupleTableSlot made with MakeSingleTupleTableSlot.
* DON'T use this on a slot that's part of a tuple table list!
* --------------------------------
*/
void
ExecDropSingleTupleTableSlot(TupleTableSlot *slot)
{
/* This should match ExecResetTupleTable's processing of one slot */
Assert(IsA(slot, TupleTableSlot));
ExecClearTuple(slot);
if (slot->tts_tupleDescriptor)
ReleaseTupleDesc(slot->tts_tupleDescriptor);
if (slot->tts_values)
pfree(slot->tts_values);
if (slot->tts_isnull)
pfree(slot->tts_isnull);
pfree(slot);
}
/* ----------------------------------------------------------------
* tuple table slot accessor functions
* ----------------------------------------------------------------
*/
/* --------------------------------
* ExecSetSlotDescriptor
*
* This function is used to set the tuple descriptor associated
* with the slot's tuple. The passed descriptor must have lifespan
* at least equal to the slot's. If it is a reference-counted descriptor
* then the reference count is incremented for as long as the slot holds
* a reference.
* --------------------------------
*/
void
ExecSetSlotDescriptor(TupleTableSlot *slot, /* slot to change */
TupleDesc tupdesc) /* new tuple descriptor */
{
/* For safety, make sure slot is empty before changing it */
ExecClearTuple(slot);
/*
* Release any old descriptor. Also release old Datum/isnull arrays if
* present (we don't bother to check if they could be re-used).
*/
if (slot->tts_tupleDescriptor)
ReleaseTupleDesc(slot->tts_tupleDescriptor);
if (slot->tts_values)
pfree(slot->tts_values);
if (slot->tts_isnull)
pfree(slot->tts_isnull);
/*
* Install the new descriptor; if it's refcounted, bump its refcount.
*/
slot->tts_tupleDescriptor = tupdesc;
PinTupleDesc(tupdesc);
/*
* Allocate Datum/isnull arrays of the appropriate size. These must have
* the same lifetime as the slot, so allocate in the slot's own context.
*/
slot->tts_values = (Datum *)
MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(Datum));
slot->tts_isnull = (bool *)
MemoryContextAlloc(slot->tts_mcxt, tupdesc->natts * sizeof(bool));
}
/* --------------------------------
* ExecStoreTuple
*
* This function is used to store a physical tuple into a specified
* slot in the tuple table.
*
* tuple: tuple to store
* slot: slot to store it in
* buffer: disk buffer if tuple is in a disk page, else InvalidBuffer
* shouldFree: true if ExecClearTuple should pfree() the tuple
* when done with it
*
* If 'buffer' is not InvalidBuffer, the tuple table code acquires a pin
* on the buffer which is held until the slot is cleared, so that the tuple
* won't go away on us.
*
* shouldFree is normally set 'true' for tuples constructed on-the-fly.
* It must always be 'false' for tuples that are stored in disk pages,
* since we don't want to try to pfree those.
*
* Another case where it is 'false' is when the referenced tuple is held
* in a tuple table slot belonging to a lower-level executor Proc node.
* In this case the lower-level slot retains ownership and responsibility
* for eventually releasing the tuple. When this method is used, we must
* be certain that the upper-level Proc node will lose interest in the tuple
* sooner than the lower-level one does! If you're not certain, copy the
* lower-level tuple with heap_copytuple and let the upper-level table
* slot assume ownership of the copy!
*
* Return value is just the passed-in slot pointer.
*
* NOTE: before PostgreSQL 8.1, this function would accept a NULL tuple
* pointer and effectively behave like ExecClearTuple (though you could
* still specify a buffer to pin, which would be an odd combination).
* This saved a couple lines of code in a few places, but seemed more likely
* to mask logic errors than to be really useful, so it's now disallowed.
* --------------------------------
*/
TupleTableSlot *
ExecStoreTuple(HeapTuple tuple,
TupleTableSlot *slot,
Buffer buffer,
bool shouldFree)
{
/*
* sanity checks
*/
Assert(tuple != NULL);
Assert(slot != NULL);
Assert(slot->tts_tupleDescriptor != NULL);
/* passing shouldFree=true for a tuple on a disk page is not sane */
Assert(BufferIsValid(buffer) ? (!shouldFree) : true);
/*
* Free any old physical tuple belonging to the slot.
*/
if (slot->tts_shouldFree)
heap_freetuple(slot->tts_tuple);
if (slot->tts_shouldFreeMin)
heap_free_minimal_tuple(slot->tts_mintuple);
/*
* Store the new tuple into the specified slot.
*/
slot->tts_isempty = false;
slot->tts_shouldFree = shouldFree;
slot->tts_shouldFreeMin = false;
slot->tts_tuple = tuple;
slot->tts_mintuple = NULL;
/* Mark extracted state invalid */
slot->tts_nvalid = 0;
/*
* If tuple is on a disk page, keep the page pinned as long as we hold a
* pointer into it. We assume the caller already has such a pin.
*
* This is coded to optimize the case where the slot previously held a
* tuple on the same disk page: in that case releasing and re-acquiring
* the pin is a waste of cycles. This is a common situation during
* seqscans, so it's worth troubling over.
*/
if (slot->tts_buffer != buffer)
{
if (BufferIsValid(slot->tts_buffer))
ReleaseBuffer(slot->tts_buffer);
slot->tts_buffer = buffer;
if (BufferIsValid(buffer))
IncrBufferRefCount(buffer);
}
return slot;
}
/* --------------------------------
* ExecStoreMinimalTuple
*
* Like ExecStoreTuple, but insert a "minimal" tuple into the slot.
*
* No 'buffer' parameter since minimal tuples are never stored in relations.
* --------------------------------
*/
TupleTableSlot *
ExecStoreMinimalTuple(MinimalTuple mtup,
TupleTableSlot *slot,
bool shouldFree)
{
/*
* sanity checks
*/
Assert(mtup != NULL);
Assert(slot != NULL);
Assert(slot->tts_tupleDescriptor != NULL);
/*
* Free any old physical tuple belonging to the slot.
*/
if (slot->tts_shouldFree)
heap_freetuple(slot->tts_tuple);
if (slot->tts_shouldFreeMin)
heap_free_minimal_tuple(slot->tts_mintuple);
/*
* Drop the pin on the referenced buffer, if there is one.
*/
if (BufferIsValid(slot->tts_buffer))
ReleaseBuffer(slot->tts_buffer);
slot->tts_buffer = InvalidBuffer;
/*
* Store the new tuple into the specified slot.
*/
slot->tts_isempty = false;
slot->tts_shouldFree = false;
slot->tts_shouldFreeMin = shouldFree;
slot->tts_tuple = &slot->tts_minhdr;
slot->tts_mintuple = mtup;
slot->tts_minhdr.t_len = mtup->t_len + MINIMAL_TUPLE_OFFSET;
slot->tts_minhdr.t_data = (HeapTupleHeader) ((char *) mtup - MINIMAL_TUPLE_OFFSET);
/* no need to set t_self or t_tableOid since we won't allow access */
/* Mark extracted state invalid */
slot->tts_nvalid = 0;
return slot;
}
/* --------------------------------
* ExecClearTuple
*
* This function is used to clear out a slot in the tuple table.
*
* NB: only the tuple is cleared, not the tuple descriptor (if any).
* --------------------------------
*/
TupleTableSlot * /* return: slot passed */
ExecClearTuple(TupleTableSlot *slot) /* slot in which to store tuple */
{
/*
* sanity checks
*/
Assert(slot != NULL);
/*
* Free the old physical tuple if necessary.
*/
if (slot->tts_shouldFree)
heap_freetuple(slot->tts_tuple);
if (slot->tts_shouldFreeMin)
heap_free_minimal_tuple(slot->tts_mintuple);
slot->tts_tuple = NULL;
slot->tts_mintuple = NULL;
slot->tts_shouldFree = false;
slot->tts_shouldFreeMin = false;
/*
* Drop the pin on the referenced buffer, if there is one.
*/
if (BufferIsValid(slot->tts_buffer))
ReleaseBuffer(slot->tts_buffer);
slot->tts_buffer = InvalidBuffer;
/*
* Mark it empty.
*/
slot->tts_isempty = true;
slot->tts_nvalid = 0;
return slot;
}
/* --------------------------------
* ExecStoreVirtualTuple
* Mark a slot as containing a virtual tuple.
*
* The protocol for loading a slot with virtual tuple data is:
* * Call ExecClearTuple to mark the slot empty.
* * Store data into the Datum/isnull arrays.
* * Call ExecStoreVirtualTuple to mark the slot valid.
* This is a bit unclean but it avoids one round of data copying.
* --------------------------------
*/
TupleTableSlot *
ExecStoreVirtualTuple(TupleTableSlot *slot)
{
/*
* sanity checks
*/
Assert(slot != NULL);
Assert(slot->tts_tupleDescriptor != NULL);
Assert(slot->tts_isempty);
slot->tts_isempty = false;
slot->tts_nvalid = slot->tts_tupleDescriptor->natts;
return slot;
}
/* --------------------------------
* ExecStoreAllNullTuple
* Set up the slot to contain a null in every column.
*
* At first glance this might sound just like ExecClearTuple, but it's
* entirely different: the slot ends up full, not empty.
* --------------------------------
*/
TupleTableSlot *
ExecStoreAllNullTuple(TupleTableSlot *slot)
{
/*
* sanity checks
*/
Assert(slot != NULL);
Assert(slot->tts_tupleDescriptor != NULL);
/* Clear any old contents */
ExecClearTuple(slot);
/*
* Fill all the columns of the virtual tuple with nulls
*/
MemSet(slot->tts_values, 0,
slot->tts_tupleDescriptor->natts * sizeof(Datum));
memset(slot->tts_isnull, true,
slot->tts_tupleDescriptor->natts * sizeof(bool));
return ExecStoreVirtualTuple(slot);
}
/* --------------------------------
* ExecCopySlotTuple
* Obtain a copy of a slot's regular physical tuple. The copy is
* palloc'd in the current memory context.
* The slot itself is undisturbed.
*
* This works even if the slot contains a virtual or minimal tuple;
* however the "system columns" of the result will not be meaningful.
* --------------------------------
*/
HeapTuple
ExecCopySlotTuple(TupleTableSlot *slot)
{
/*
* sanity checks
*/
Assert(slot != NULL);
Assert(!slot->tts_isempty);
/*
* If we have a physical tuple (either format) then just copy it.
*/
if (TTS_HAS_PHYSICAL_TUPLE(slot))
return heap_copytuple(slot->tts_tuple);
if (slot->tts_mintuple)
return heap_tuple_from_minimal_tuple(slot->tts_mintuple);
/*
* Otherwise we need to build a tuple from the Datum array.
*/
return heap_form_tuple(slot->tts_tupleDescriptor,
slot->tts_values,
slot->tts_isnull);
}
/* --------------------------------
* ExecCopySlotMinimalTuple
* Obtain a copy of a slot's minimal physical tuple. The copy is
* palloc'd in the current memory context.
* The slot itself is undisturbed.
* --------------------------------
*/
MinimalTuple
ExecCopySlotMinimalTuple(TupleTableSlot *slot)
{
/*
* sanity checks
*/
Assert(slot != NULL);
Assert(!slot->tts_isempty);
/*
* If we have a physical tuple then just copy it. Prefer to copy
* tts_mintuple since that's a tad cheaper.
*/
if (slot->tts_mintuple)
return heap_copy_minimal_tuple(slot->tts_mintuple);
if (slot->tts_tuple)
return minimal_tuple_from_heap_tuple(slot->tts_tuple);
/*
* Otherwise we need to build a tuple from the Datum array.
*/
return heap_form_minimal_tuple(slot->tts_tupleDescriptor,
slot->tts_values,
slot->tts_isnull);
}
/* --------------------------------
* ExecFetchSlotTuple
* Fetch the slot's regular physical tuple.
*
* If the slot contains a virtual tuple, we convert it to physical
* form. The slot retains ownership of the physical tuple.
* If it contains a minimal tuple we convert to regular form and store
* that in addition to the minimal tuple (not instead of, because
* callers may hold pointers to Datums within the minimal tuple).
*
* The main difference between this and ExecMaterializeSlot() is that this
* does not guarantee that the contained tuple is local storage.
* Hence, the result must be treated as read-only.
* --------------------------------
*/
HeapTuple
ExecFetchSlotTuple(TupleTableSlot *slot)
{
/*
* sanity checks
*/
Assert(slot != NULL);
Assert(!slot->tts_isempty);
/*
* If we have a regular physical tuple then just return it.
*/
if (TTS_HAS_PHYSICAL_TUPLE(slot))
return slot->tts_tuple;
/*
* Otherwise materialize the slot...
*/
return ExecMaterializeSlot(slot);
}
/* --------------------------------
* ExecFetchSlotMinimalTuple
* Fetch the slot's minimal physical tuple.
*
* If the slot contains a virtual tuple, we convert it to minimal
* physical form. The slot retains ownership of the minimal tuple.
* If it contains a regular tuple we convert to minimal form and store
* that in addition to the regular tuple (not instead of, because
* callers may hold pointers to Datums within the regular tuple).
*
* As above, the result must be treated as read-only.
* --------------------------------
*/
MinimalTuple
ExecFetchSlotMinimalTuple(TupleTableSlot *slot)
{
MemoryContext oldContext;
/*
* sanity checks
*/
Assert(slot != NULL);
Assert(!slot->tts_isempty);
/*
* If we have a minimal physical tuple (local or not) then just return it.
*/
if (slot->tts_mintuple)
return slot->tts_mintuple;
/*
* Otherwise, copy or build a minimal tuple, and store it into the slot.
*
* We may be called in a context that is shorter-lived than the tuple
* slot, but we have to ensure that the materialized tuple will survive
* anyway.
*/
oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
slot->tts_mintuple = ExecCopySlotMinimalTuple(slot);
slot->tts_shouldFreeMin = true;
MemoryContextSwitchTo(oldContext);
/*
* Note: we may now have a situation where we have a local minimal tuple
* attached to a virtual or non-local physical tuple. There seems no harm
* in that at the moment, but if any materializes, we should change this
* function to force the slot into minimal-tuple-only state.
*/
return slot->tts_mintuple;
}
/* --------------------------------
* ExecFetchSlotTupleDatum
* Fetch the slot's tuple as a composite-type Datum.
*
* The result is always freshly palloc'd in the caller's memory context.
* --------------------------------
*/
Datum
ExecFetchSlotTupleDatum(TupleTableSlot *slot)
{
HeapTuple tup;
TupleDesc tupdesc;
/* Fetch slot's contents in regular-physical-tuple form */
tup = ExecFetchSlotTuple(slot);
tupdesc = slot->tts_tupleDescriptor;
/* Convert to Datum form */
return heap_copy_tuple_as_datum(tup, tupdesc);
}
/* --------------------------------
* ExecMaterializeSlot
* Force a slot into the "materialized" state.
*
* This causes the slot's tuple to be a local copy not dependent on
* any external storage. A pointer to the contained tuple is returned.
*
* A typical use for this operation is to prepare a computed tuple
* for being stored on disk. The original data may or may not be
* virtual, but in any case we need a private copy for heap_insert
* to scribble on.
* --------------------------------
*/
HeapTuple
ExecMaterializeSlot(TupleTableSlot *slot)
{
MemoryContext oldContext;
/*
* sanity checks
*/
Assert(slot != NULL);
Assert(!slot->tts_isempty);
/*
* If we have a regular physical tuple, and it's locally palloc'd, we have
* nothing to do.
*/
if (slot->tts_tuple && slot->tts_shouldFree)
return slot->tts_tuple;
/*
* Otherwise, copy or build a physical tuple, and store it into the slot.
*
* We may be called in a context that is shorter-lived than the tuple
* slot, but we have to ensure that the materialized tuple will survive
* anyway.
*/
oldContext = MemoryContextSwitchTo(slot->tts_mcxt);
slot->tts_tuple = ExecCopySlotTuple(slot);
slot->tts_shouldFree = true;
MemoryContextSwitchTo(oldContext);
/*
* Drop the pin on the referenced buffer, if there is one.
*/
if (BufferIsValid(slot->tts_buffer))
ReleaseBuffer(slot->tts_buffer);
slot->tts_buffer = InvalidBuffer;
/*
* Mark extracted state invalid. This is important because the slot is
* not supposed to depend any more on the previous external data; we
* mustn't leave any dangling pass-by-reference datums in tts_values.
* However, we have not actually invalidated any such datums, if there
* happen to be any previously fetched from the slot. (Note in particular
* that we have not pfree'd tts_mintuple, if there is one.)
*/
slot->tts_nvalid = 0;
/*
* On the same principle of not depending on previous remote storage,
* forget the mintuple if it's not local storage. (If it is local
* storage, we must not pfree it now, since callers might have already
* fetched datum pointers referencing it.)
*/
if (!slot->tts_shouldFreeMin)
slot->tts_mintuple = NULL;
return slot->tts_tuple;
}
/* --------------------------------
* ExecCopySlot
* Copy the source slot's contents into the destination slot.
*
* The destination acquires a private copy that will not go away
* if the source is cleared.
*
* The caller must ensure the slots have compatible tupdescs.
* --------------------------------
*/
TupleTableSlot *
ExecCopySlot(TupleTableSlot *dstslot, TupleTableSlot *srcslot)
{
HeapTuple newTuple;
MemoryContext oldContext;
/*
* There might be ways to optimize this when the source is virtual, but
* for now just always build a physical copy. Make sure it is in the
* right context.
*/
oldContext = MemoryContextSwitchTo(dstslot->tts_mcxt);
newTuple = ExecCopySlotTuple(srcslot);
MemoryContextSwitchTo(oldContext);
return ExecStoreTuple(newTuple, dstslot, InvalidBuffer, true);
}
/* ----------------------------------------------------------------
* convenience initialization routines
* ----------------------------------------------------------------
*/
/* --------------------------------
* ExecInit{Result,Scan,Extra}TupleSlot
*
* These are convenience routines to initialize the specified slot
* in nodes inheriting the appropriate state. ExecInitExtraTupleSlot
* is used for initializing special-purpose slots.
* --------------------------------
*/
/* ----------------
* ExecInitResultTupleSlot
* ----------------
*/
void
ExecInitResultTupleSlot(EState *estate, PlanState *planstate)
{
planstate->ps_ResultTupleSlot = ExecAllocTableSlot(&estate->es_tupleTable);
}
/* ----------------
* ExecInitScanTupleSlot
* ----------------
*/
void
ExecInitScanTupleSlot(EState *estate, ScanState *scanstate)
{
scanstate->ss_ScanTupleSlot = ExecAllocTableSlot(&estate->es_tupleTable);
}
/* ----------------
* ExecInitExtraTupleSlot
* ----------------
*/
TupleTableSlot *
ExecInitExtraTupleSlot(EState *estate)
{
return ExecAllocTableSlot(&estate->es_tupleTable);
}
/* ----------------
* ExecInitNullTupleSlot
*
* Build a slot containing an all-nulls tuple of the given type.
* This is used as a substitute for an input tuple when performing an
* outer join.
* ----------------
*/
TupleTableSlot *
ExecInitNullTupleSlot(EState *estate, TupleDesc tupType)
{
TupleTableSlot *slot = ExecInitExtraTupleSlot(estate);
ExecSetSlotDescriptor(slot, tupType);
return ExecStoreAllNullTuple(slot);
}
/* ----------------------------------------------------------------
* ExecTypeFromTL
*
* Generate a tuple descriptor for the result tuple of a targetlist.
* (A parse/plan tlist must be passed, not an ExprState tlist.)
* Note that resjunk columns, if any, are included in the result.
*
* Currently there are about 4 different places where we create
* TupleDescriptors. They should all be merged, or perhaps
* be rewritten to call BuildDesc().
* ----------------------------------------------------------------
*/
TupleDesc
ExecTypeFromTL(List *targetList, bool hasoid)
{
return ExecTypeFromTLInternal(targetList, hasoid, false);
}
/* ----------------------------------------------------------------
* ExecCleanTypeFromTL
*
* Same as above, but resjunk columns are omitted from the result.
* ----------------------------------------------------------------
*/
TupleDesc
ExecCleanTypeFromTL(List *targetList, bool hasoid)
{
return ExecTypeFromTLInternal(targetList, hasoid, true);
}
static TupleDesc
ExecTypeFromTLInternal(List *targetList, bool hasoid, bool skipjunk)
{
TupleDesc typeInfo;
ListCell *l;
int len;
int cur_resno = 1;
if (skipjunk)
len = ExecCleanTargetListLength(targetList);
else
len = ExecTargetListLength(targetList);
typeInfo = CreateTemplateTupleDesc(len, hasoid);
foreach(l, targetList)
{
TargetEntry *tle = lfirst(l);
if (skipjunk && tle->resjunk)
continue;
TupleDescInitEntry(typeInfo,
cur_resno,
tle->resname,
exprType((Node *) tle->expr),
exprTypmod((Node *) tle->expr),
0);
TupleDescInitEntryCollation(typeInfo,
cur_resno,
exprCollation((Node *) tle->expr));
cur_resno++;
}
return typeInfo;
}
/*
* ExecTypeFromExprList - build a tuple descriptor from a list of Exprs
*
* This is roughly like ExecTypeFromTL, but we work from bare expressions
* not TargetEntrys. No names are attached to the tupledesc's columns.
*/
TupleDesc
ExecTypeFromExprList(List *exprList)
{
TupleDesc typeInfo;
ListCell *lc;
int cur_resno = 1;
typeInfo = CreateTemplateTupleDesc(list_length(exprList), false);
foreach(lc, exprList)
{
Node *e = lfirst(lc);
TupleDescInitEntry(typeInfo,
cur_resno,
NULL,
exprType(e),
exprTypmod(e),
0);
TupleDescInitEntryCollation(typeInfo,
cur_resno,
exprCollation(e));
cur_resno++;
}
return typeInfo;
}
/*
* ExecTypeSetColNames - set column names in a TupleDesc
*
* Column names must be provided as an alias list (list of String nodes).
*
* For some callers, the supplied tupdesc has a named rowtype (not RECORD)
* and it is moderately likely that the alias list matches the column names
* already present in the tupdesc. If we do change any column names then
* we must reset the tupdesc's type to anonymous RECORD; but we avoid doing
* so if no names change.
*/
void
ExecTypeSetColNames(TupleDesc typeInfo, List *namesList)
{
bool modified = false;
int colno = 0;
ListCell *lc;
foreach(lc, namesList)
{
char *cname = strVal(lfirst(lc));
Form_pg_attribute attr;
/* Guard against too-long names list */
if (colno >= typeInfo->natts)
break;
attr = typeInfo->attrs[colno++];
/* Ignore empty aliases (these must be for dropped columns) */
if (cname[0] == '\0')
continue;
/* Change tupdesc only if alias is actually different */
if (strcmp(cname, NameStr(attr->attname)) != 0)
{
namestrcpy(&(attr->attname), cname);
modified = true;
}
}
/* If we modified the tupdesc, it's now a new record type */
if (modified)
{
typeInfo->tdtypeid = RECORDOID;
typeInfo->tdtypmod = -1;
}
}
/*
* BlessTupleDesc - make a completed tuple descriptor useful for SRFs
*
* Rowtype Datums returned by a function must contain valid type information.
* This happens "for free" if the tupdesc came from a relcache entry, but
* not if we have manufactured a tupdesc for a transient RECORD datatype.
* In that case we have to notify typcache.c of the existence of the type.
*/
TupleDesc
BlessTupleDesc(TupleDesc tupdesc)
{
if (tupdesc->tdtypeid == RECORDOID &&
tupdesc->tdtypmod < 0)
assign_record_type_typmod(tupdesc);
return tupdesc; /* just for notational convenience */
}
/*
* TupleDescGetSlot - Initialize a slot based on the supplied tupledesc
*
* Note: this is obsolete; it is sufficient to call BlessTupleDesc on
* the tupdesc. We keep it around just for backwards compatibility with
* existing user-written SRFs.
*/
TupleTableSlot *
TupleDescGetSlot(TupleDesc tupdesc)
{
TupleTableSlot *slot;
/* The useful work is here */
BlessTupleDesc(tupdesc);
/* Make a standalone slot */
slot = MakeSingleTupleTableSlot(tupdesc);
/* Return the slot */
return slot;
}
/*
* TupleDescGetAttInMetadata - Build an AttInMetadata structure based on the
* supplied TupleDesc. AttInMetadata can be used in conjunction with C strings
* to produce a properly formed tuple.
*/
AttInMetadata *
TupleDescGetAttInMetadata(TupleDesc tupdesc)
{
int natts = tupdesc->natts;
int i;
Oid atttypeid;
Oid attinfuncid;
FmgrInfo *attinfuncinfo;
Oid *attioparams;
int32 *atttypmods;
AttInMetadata *attinmeta;
attinmeta = (AttInMetadata *) palloc(sizeof(AttInMetadata));
/* "Bless" the tupledesc so that we can make rowtype datums with it */
attinmeta->tupdesc = BlessTupleDesc(tupdesc);
/*
* Gather info needed later to call the "in" function for each attribute
*/
attinfuncinfo = (FmgrInfo *) palloc0(natts * sizeof(FmgrInfo));
attioparams = (Oid *) palloc0(natts * sizeof(Oid));
atttypmods = (int32 *) palloc0(natts * sizeof(int32));
for (i = 0; i < natts; i++)
{
/* Ignore dropped attributes */
if (!tupdesc->attrs[i]->attisdropped)
{
atttypeid = tupdesc->attrs[i]->atttypid;
getTypeInputInfo(atttypeid, &attinfuncid, &attioparams[i]);
fmgr_info(attinfuncid, &attinfuncinfo[i]);
atttypmods[i] = tupdesc->attrs[i]->atttypmod;
}
}
attinmeta->attinfuncs = attinfuncinfo;
attinmeta->attioparams = attioparams;
attinmeta->atttypmods = atttypmods;
return attinmeta;
}
/*
* BuildTupleFromCStrings - build a HeapTuple given user data in C string form.
* values is an array of C strings, one for each attribute of the return tuple.
* A NULL string pointer indicates we want to create a NULL field.
*/
HeapTuple
BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)
{
TupleDesc tupdesc = attinmeta->tupdesc;
int natts = tupdesc->natts;
Datum *dvalues;
bool *nulls;
int i;
HeapTuple tuple;
dvalues = (Datum *) palloc(natts * sizeof(Datum));
nulls = (bool *) palloc(natts * sizeof(bool));
/* Call the "in" function for each non-dropped attribute */
for (i = 0; i < natts; i++)
{
if (!tupdesc->attrs[i]->attisdropped)
{
/* Non-dropped attributes */
dvalues[i] = InputFunctionCall(&attinmeta->attinfuncs[i],
values[i],
attinmeta->attioparams[i],
attinmeta->atttypmods[i]);
if (values[i] != NULL)
nulls[i] = false;
else
nulls[i] = true;
}
else
{
/* Handle dropped attributes by setting to NULL */
dvalues[i] = (Datum) 0;
nulls[i] = true;
}
}
/*
* Form a tuple
*/
tuple = heap_form_tuple(tupdesc, dvalues, nulls);
/*
* Release locally palloc'd space. XXX would probably be good to pfree
* values of pass-by-reference datums, as well.
*/
pfree(dvalues);
pfree(nulls);
return tuple;
}
/*
* HeapTupleHeaderGetDatum - convert a HeapTupleHeader pointer to a Datum.
*
* This must *not* get applied to an on-disk tuple; the tuple should be
* freshly made by heap_form_tuple or some wrapper routine for it (such as
* BuildTupleFromCStrings). Be sure also that the tupledesc used to build
* the tuple has a properly "blessed" rowtype.
*
* Formerly this was a macro equivalent to PointerGetDatum, relying on the
* fact that heap_form_tuple fills in the appropriate tuple header fields
* for a composite Datum. However, we now require that composite Datums not
* contain any external TOAST pointers. We do not want heap_form_tuple itself
* to enforce that; more specifically, the rule applies only to actual Datums
* and not to HeapTuple structures. Therefore, HeapTupleHeaderGetDatum is
* now a function that detects whether there are externally-toasted fields
* and constructs a new tuple with inlined fields if so. We still need
* heap_form_tuple to insert the Datum header fields, because otherwise this
* code would have no way to obtain a tupledesc for the tuple.
*
* Note that if we do build a new tuple, it's palloc'd in the current
* memory context. Beware of code that changes context between the initial
* heap_form_tuple/etc call and calling HeapTuple(Header)GetDatum.
*
* For performance-critical callers, it could be worthwhile to take extra
* steps to ensure that there aren't TOAST pointers in the output of
* heap_form_tuple to begin with. It's likely however that the costs of the
* typcache lookup and tuple disassembly/reassembly are swamped by TOAST
* dereference costs, so that the benefits of such extra effort would be
* minimal.
*
* XXX it would likely be better to create wrapper functions that produce
* a composite Datum from the field values in one step. However, there's
* enough code using the existing APIs that we couldn't get rid of this
* hack anytime soon.
*/
Datum
HeapTupleHeaderGetDatum(HeapTupleHeader tuple)
{
Datum result;
TupleDesc tupDesc;
/* No work if there are no external TOAST pointers in the tuple */
if (!HeapTupleHeaderHasExternal(tuple))
return PointerGetDatum(tuple);
/* Use the type data saved by heap_form_tuple to look up the rowtype */
tupDesc = lookup_rowtype_tupdesc(HeapTupleHeaderGetTypeId(tuple),
HeapTupleHeaderGetTypMod(tuple));
/* And do the flattening */
result = toast_flatten_tuple_to_datum(tuple,
HeapTupleHeaderGetDatumLength(tuple),
tupDesc);
ReleaseTupleDesc(tupDesc);
return result;
}
/*
* Functions for sending tuples to the frontend (or other specified destination)
* as though it is a SELECT result. These are used by utility commands that
* need to project directly to the destination and don't need or want full
* table function capability. Currently used by EXPLAIN and SHOW ALL.
*/
TupOutputState *
begin_tup_output_tupdesc(DestReceiver *dest, TupleDesc tupdesc)
{
TupOutputState *tstate;
tstate = (TupOutputState *) palloc(sizeof(TupOutputState));
tstate->slot = MakeSingleTupleTableSlot(tupdesc);
tstate->dest = dest;
(*tstate->dest->rStartup) (tstate->dest, (int) CMD_SELECT, tupdesc);
return tstate;
}
/*
* write a single tuple
*/
void
do_tup_output(TupOutputState *tstate, Datum *values, bool *isnull)
{
TupleTableSlot *slot = tstate->slot;
int natts = slot->tts_tupleDescriptor->natts;
/* make sure the slot is clear */
ExecClearTuple(slot);
/* insert data */
memcpy(slot->tts_values, values, natts * sizeof(Datum));
memcpy(slot->tts_isnull, isnull, natts * sizeof(bool));
/* mark slot as containing a virtual tuple */
ExecStoreVirtualTuple(slot);
/* send the tuple to the receiver */
(*tstate->dest->receiveSlot) (slot, tstate->dest);
/* clean up */
ExecClearTuple(slot);
}
/*
* write a chunk of text, breaking at newline characters
*
* Should only be used with a single-TEXT-attribute tupdesc.
*/
void
do_text_output_multiline(TupOutputState *tstate, char *text)
{
Datum values[1];
bool isnull[1] = {false};
while (*text)
{
char *eol;
int len;
eol = strchr(text, '\n');
if (eol)
{
len = eol - text;
eol++;
}
else
{
len = strlen(text);
eol += len;
}
values[0] = PointerGetDatum(cstring_to_text_with_len(text, len));
do_tup_output(tstate, values, isnull);
pfree(DatumGetPointer(values[0]));
text = eol;
}
}
void
end_tup_output(TupOutputState *tstate)
{
(*tstate->dest->rShutdown) (tstate->dest);
/* note that destroying the dest is not ours to do */
ExecDropSingleTupleTableSlot(tstate->slot);
pfree(tstate);
}