postgresql/src/backend/access/transam/multixact.c

1921 lines
56 KiB
C

/*-------------------------------------------------------------------------
*
* multixact.c
* PostgreSQL multi-transaction-log manager
*
* The pg_multixact manager is a pg_clog-like manager that stores an array
* of TransactionIds for each MultiXactId. It is a fundamental part of the
* shared-row-lock implementation. A share-locked tuple stores a
* MultiXactId in its Xmax, and a transaction that needs to wait for the
* tuple to be unlocked can sleep on the potentially-several TransactionIds
* that compose the MultiXactId.
*
* We use two SLRU areas, one for storing the offsets at which the data
* starts for each MultiXactId in the other one. This trick allows us to
* store variable length arrays of TransactionIds. (We could alternatively
* use one area containing counts and TransactionIds, with valid MultiXactId
* values pointing at slots containing counts; but that way seems less robust
* since it would get completely confused if someone inquired about a bogus
* MultiXactId that pointed to an intermediate slot containing an XID.)
*
* XLOG interactions: this module generates an XLOG record whenever a new
* OFFSETs or MEMBERs page is initialized to zeroes, as well as an XLOG record
* whenever a new MultiXactId is defined. This allows us to completely
* rebuild the data entered since the last checkpoint during XLOG replay.
* Because this is possible, we need not follow the normal rule of
* "write WAL before data"; the only correctness guarantee needed is that
* we flush and sync all dirty OFFSETs and MEMBERs pages to disk before a
* checkpoint is considered complete. If a page does make it to disk ahead
* of corresponding WAL records, it will be forcibly zeroed before use anyway.
* Therefore, we don't need to mark our pages with LSN information; we have
* enough synchronization already.
*
* Like clog.c, and unlike subtrans.c, we have to preserve state across
* crashes and ensure that MXID and offset numbering increases monotonically
* across a crash. We do this in the same way as it's done for transaction
* IDs: the WAL record is guaranteed to contain evidence of every MXID we
* could need to worry about, and we just make sure that at the end of
* replay, the next-MXID and next-offset counters are at least as large as
* anything we saw during replay.
*
*
* Portions Copyright (c) 1996-2006, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* $PostgreSQL: pgsql/src/backend/access/transam/multixact.c,v 1.16 2006/03/05 15:58:21 momjian Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/multixact.h"
#include "access/slru.h"
#include "access/xact.h"
#include "miscadmin.h"
#include "utils/memutils.h"
#include "storage/backendid.h"
#include "storage/lmgr.h"
#include "storage/procarray.h"
/*
* Defines for MultiXactOffset page sizes. A page is the same BLCKSZ as is
* used everywhere else in Postgres.
*
* Note: because both MultiXactOffsets and TransactionIds are 32 bits and
* wrap around at 0xFFFFFFFF, MultiXact page numbering also wraps around at
* 0xFFFFFFFF/MULTIXACT_*_PER_PAGE, and segment numbering at
* 0xFFFFFFFF/MULTIXACT_*_PER_PAGE/SLRU_SEGMENTS_PER_PAGE. We need take no
* explicit notice of that fact in this module, except when comparing segment
* and page numbers in TruncateMultiXact
* (see MultiXact{Offset,Member}PagePrecedes).
*/
/* We need four bytes per offset and also four bytes per member */
#define MULTIXACT_OFFSETS_PER_PAGE (BLCKSZ / sizeof(MultiXactOffset))
#define MULTIXACT_MEMBERS_PER_PAGE (BLCKSZ / sizeof(TransactionId))
#define MultiXactIdToOffsetPage(xid) \
((xid) / (MultiXactOffset) MULTIXACT_OFFSETS_PER_PAGE)
#define MultiXactIdToOffsetEntry(xid) \
((xid) % (MultiXactOffset) MULTIXACT_OFFSETS_PER_PAGE)
#define MXOffsetToMemberPage(xid) \
((xid) / (TransactionId) MULTIXACT_MEMBERS_PER_PAGE)
#define MXOffsetToMemberEntry(xid) \
((xid) % (TransactionId) MULTIXACT_MEMBERS_PER_PAGE)
/*
* Links to shared-memory data structures for MultiXact control
*/
static SlruCtlData MultiXactOffsetCtlData;
static SlruCtlData MultiXactMemberCtlData;
#define MultiXactOffsetCtl (&MultiXactOffsetCtlData)
#define MultiXactMemberCtl (&MultiXactMemberCtlData)
/*
* MultiXact state shared across all backends. All this state is protected
* by MultiXactGenLock. (We also use MultiXactOffsetControlLock and
* MultiXactMemberControlLock to guard accesses to the two sets of SLRU
* buffers. For concurrency's sake, we avoid holding more than one of these
* locks at a time.)
*/
typedef struct MultiXactStateData
{
/* next-to-be-assigned MultiXactId */
MultiXactId nextMXact;
/* next-to-be-assigned offset */
MultiXactOffset nextOffset;
/* the Offset SLRU area was last truncated at this MultiXactId */
MultiXactId lastTruncationPoint;
/*
* Per-backend data starts here. We have two arrays stored in the area
* immediately following the MultiXactStateData struct. Each is indexed by
* BackendId. (Note: valid BackendIds run from 1 to MaxBackends; element
* zero of each array is never used.)
*
* OldestMemberMXactId[k] is the oldest MultiXactId each backend's current
* transaction(s) could possibly be a member of, or InvalidMultiXactId
* when the backend has no live transaction that could possibly be a
* member of a MultiXact. Each backend sets its entry to the current
* nextMXact counter just before first acquiring a shared lock in a given
* transaction, and clears it at transaction end. (This works because only
* during or after acquiring a shared lock could an XID possibly become a
* member of a MultiXact, and that MultiXact would have to be created
* during or after the lock acquisition.)
*
* OldestVisibleMXactId[k] is the oldest MultiXactId each backend's
* current transaction(s) think is potentially live, or InvalidMultiXactId
* when not in a transaction or not in a transaction that's paid any
* attention to MultiXacts yet. This is computed when first needed in a
* given transaction, and cleared at transaction end. We can compute it
* as the minimum of the valid OldestMemberMXactId[] entries at the time
* we compute it (using nextMXact if none are valid). Each backend is
* required not to attempt to access any SLRU data for MultiXactIds older
* than its own OldestVisibleMXactId[] setting; this is necessary because
* the checkpointer could truncate away such data at any instant.
*
* The checkpointer can compute the safe truncation point as the oldest
* valid value among all the OldestMemberMXactId[] and
* OldestVisibleMXactId[] entries, or nextMXact if none are valid.
* Clearly, it is not possible for any later-computed OldestVisibleMXactId
* value to be older than this, and so there is no risk of truncating data
* that is still needed.
*/
MultiXactId perBackendXactIds[1]; /* VARIABLE LENGTH ARRAY */
} MultiXactStateData;
/* Pointers to the state data in shared memory */
static MultiXactStateData *MultiXactState;
static MultiXactId *OldestMemberMXactId;
static MultiXactId *OldestVisibleMXactId;
/*
* Definitions for the backend-local MultiXactId cache.
*
* We use this cache to store known MultiXacts, so we don't need to go to
* SLRU areas everytime.
*
* The cache lasts for the duration of a single transaction, the rationale
* for this being that most entries will contain our own TransactionId and
* so they will be uninteresting by the time our next transaction starts.
* (XXX not clear that this is correct --- other members of the MultiXact
* could hang around longer than we did. However, it's not clear what a
* better policy for flushing old cache entries would be.)
*
* We allocate the cache entries in a memory context that is deleted at
* transaction end, so we don't need to do retail freeing of entries.
*/
typedef struct mXactCacheEnt
{
struct mXactCacheEnt *next;
MultiXactId multi;
int nxids;
TransactionId xids[1]; /* VARIABLE LENGTH ARRAY */
} mXactCacheEnt;
static mXactCacheEnt *MXactCache = NULL;
static MemoryContext MXactContext = NULL;
#ifdef MULTIXACT_DEBUG
#define debug_elog2(a,b) elog(a,b)
#define debug_elog3(a,b,c) elog(a,b,c)
#define debug_elog4(a,b,c,d) elog(a,b,c,d)
#define debug_elog5(a,b,c,d,e) elog(a,b,c,d,e)
#else
#define debug_elog2(a,b)
#define debug_elog3(a,b,c)
#define debug_elog4(a,b,c,d)
#define debug_elog5(a,b,c,d,e)
#endif
/* internal MultiXactId management */
static void MultiXactIdSetOldestVisible(void);
static MultiXactId CreateMultiXactId(int nxids, TransactionId *xids);
static void RecordNewMultiXact(MultiXactId multi, MultiXactOffset offset,
int nxids, TransactionId *xids);
static MultiXactId GetNewMultiXactId(int nxids, MultiXactOffset *offset);
/* MultiXact cache management */
static MultiXactId mXactCacheGetBySet(int nxids, TransactionId *xids);
static int mXactCacheGetById(MultiXactId multi, TransactionId **xids);
static void mXactCachePut(MultiXactId multi, int nxids, TransactionId *xids);
static int xidComparator(const void *arg1, const void *arg2);
#ifdef MULTIXACT_DEBUG
static char *mxid_to_string(MultiXactId multi, int nxids, TransactionId *xids);
#endif
/* management of SLRU infrastructure */
static int ZeroMultiXactOffsetPage(int pageno, bool writeXlog);
static int ZeroMultiXactMemberPage(int pageno, bool writeXlog);
static bool MultiXactOffsetPagePrecedes(int page1, int page2);
static bool MultiXactMemberPagePrecedes(int page1, int page2);
static bool MultiXactIdPrecedes(MultiXactId multi1, MultiXactId multi2);
static bool MultiXactOffsetPrecedes(MultiXactOffset offset1,
MultiXactOffset offset2);
static void ExtendMultiXactOffset(MultiXactId multi);
static void ExtendMultiXactMember(MultiXactOffset offset, int nmembers);
static void TruncateMultiXact(void);
static void WriteMZeroPageXlogRec(int pageno, uint8 info);
/*
* MultiXactIdCreate
* Construct a MultiXactId representing two TransactionIds.
*
* The two XIDs must be different.
*
* NB - we don't worry about our local MultiXactId cache here, because that
* is handled by the lower-level routines.
*/
MultiXactId
MultiXactIdCreate(TransactionId xid1, TransactionId xid2)
{
MultiXactId newMulti;
TransactionId xids[2];
AssertArg(TransactionIdIsValid(xid1));
AssertArg(TransactionIdIsValid(xid2));
Assert(!TransactionIdEquals(xid1, xid2));
/*
* Note: unlike MultiXactIdExpand, we don't bother to check that both XIDs
* are still running. In typical usage, xid2 will be our own XID and the
* caller just did a check on xid1, so it'd be wasted effort.
*/
xids[0] = xid1;
xids[1] = xid2;
newMulti = CreateMultiXactId(2, xids);
debug_elog5(DEBUG2, "Create: returning %u for %u, %u",
newMulti, xid1, xid2);
return newMulti;
}
/*
* MultiXactIdExpand
* Add a TransactionId to a pre-existing MultiXactId.
*
* If the TransactionId is already a member of the passed MultiXactId,
* just return it as-is.
*
* Note that we do NOT actually modify the membership of a pre-existing
* MultiXactId; instead we create a new one. This is necessary to avoid
* a race condition against MultiXactIdWait (see notes there).
*
* NB - we don't worry about our local MultiXactId cache here, because that
* is handled by the lower-level routines.
*/
MultiXactId
MultiXactIdExpand(MultiXactId multi, TransactionId xid)
{
MultiXactId newMulti;
TransactionId *members;
TransactionId *newMembers;
int nmembers;
int i;
int j;
AssertArg(MultiXactIdIsValid(multi));
AssertArg(TransactionIdIsValid(xid));
debug_elog4(DEBUG2, "Expand: received multi %u, xid %u",
multi, xid);
nmembers = GetMultiXactIdMembers(multi, &members);
if (nmembers < 0)
{
/*
* The MultiXactId is obsolete. This can only happen if all the
* MultiXactId members stop running between the caller checking and
* passing it to us. It would be better to return that fact to the
* caller, but it would complicate the API and it's unlikely to happen
* too often, so just deal with it by creating a singleton MultiXact.
*/
newMulti = CreateMultiXactId(1, &xid);
debug_elog4(DEBUG2, "Expand: %u has no members, create singleton %u",
multi, newMulti);
return newMulti;
}
/*
* If the TransactionId is already a member of the MultiXactId, just
* return the existing MultiXactId.
*/
for (i = 0; i < nmembers; i++)
{
if (TransactionIdEquals(members[i], xid))
{
debug_elog4(DEBUG2, "Expand: %u is already a member of %u",
xid, multi);
pfree(members);
return multi;
}
}
/*
* Determine which of the members of the MultiXactId are still running,
* and use them to create a new one. (Removing dead members is just an
* optimization, but a useful one. Note we have the same race condition
* here as above: j could be 0 at the end of the loop.)
*/
newMembers = (TransactionId *)
palloc(sizeof(TransactionId) * (nmembers + 1));
for (i = 0, j = 0; i < nmembers; i++)
{
if (TransactionIdIsInProgress(members[i]))
newMembers[j++] = members[i];
}
newMembers[j++] = xid;
newMulti = CreateMultiXactId(j, newMembers);
pfree(members);
pfree(newMembers);
debug_elog3(DEBUG2, "Expand: returning new multi %u", newMulti);
return newMulti;
}
/*
* MultiXactIdIsRunning
* Returns whether a MultiXactId is "running".
*
* We return true if at least one member of the given MultiXactId is still
* running. Note that a "false" result is certain not to change,
* because it is not legal to add members to an existing MultiXactId.
*/
bool
MultiXactIdIsRunning(MultiXactId multi)
{
TransactionId *members;
TransactionId myXid;
int nmembers;
int i;
debug_elog3(DEBUG2, "IsRunning %u?", multi);
nmembers = GetMultiXactIdMembers(multi, &members);
if (nmembers < 0)
{
debug_elog2(DEBUG2, "IsRunning: no members");
return false;
}
/* checking for myself is cheap */
myXid = GetTopTransactionId();
for (i = 0; i < nmembers; i++)
{
if (TransactionIdEquals(members[i], myXid))
{
debug_elog3(DEBUG2, "IsRunning: I (%d) am running!", i);
pfree(members);
return true;
}
}
/*
* This could be made faster by having another entry point in procarray.c,
* walking the PGPROC array only once for all the members. But in most
* cases nmembers should be small enough that it doesn't much matter.
*/
for (i = 0; i < nmembers; i++)
{
if (TransactionIdIsInProgress(members[i]))
{
debug_elog4(DEBUG2, "IsRunning: member %d (%u) is running",
i, members[i]);
pfree(members);
return true;
}
}
pfree(members);
debug_elog3(DEBUG2, "IsRunning: %u is not running", multi);
return false;
}
/*
* MultiXactIdSetOldestMember
* Save the oldest MultiXactId this transaction could be a member of.
*
* We set the OldestMemberMXactId for a given transaction the first time
* it's going to acquire a shared lock. We need to do this even if we end
* up using a TransactionId instead of a MultiXactId, because there is a
* chance that another transaction would add our XID to a MultiXactId.
*
* The value to set is the next-to-be-assigned MultiXactId, so this is meant
* to be called just before acquiring a shared lock.
*/
void
MultiXactIdSetOldestMember(void)
{
if (!MultiXactIdIsValid(OldestMemberMXactId[MyBackendId]))
{
MultiXactId nextMXact;
/*
* You might think we don't need to acquire a lock here, since
* fetching and storing of TransactionIds is probably atomic, but in
* fact we do: suppose we pick up nextMXact and then lose the CPU for
* a long time. Someone else could advance nextMXact, and then
* another someone else could compute an OldestVisibleMXactId that
* would be after the value we are going to store when we get control
* back. Which would be wrong.
*/
LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
/*
* We have to beware of the possibility that nextMXact is in the
* wrapped-around state. We don't fix the counter itself here, but we
* must be sure to store a valid value in our array entry.
*/
nextMXact = MultiXactState->nextMXact;
if (nextMXact < FirstMultiXactId)
nextMXact = FirstMultiXactId;
OldestMemberMXactId[MyBackendId] = nextMXact;
LWLockRelease(MultiXactGenLock);
debug_elog4(DEBUG2, "MultiXact: setting OldestMember[%d] = %u",
MyBackendId, nextMXact);
}
}
/*
* MultiXactIdSetOldestVisible
* Save the oldest MultiXactId this transaction considers possibly live.
*
* We set the OldestVisibleMXactId for a given transaction the first time
* it's going to inspect any MultiXactId. Once we have set this, we are
* guaranteed that the checkpointer won't truncate off SLRU data for
* MultiXactIds at or after our OldestVisibleMXactId.
*
* The value to set is the oldest of nextMXact and all the valid per-backend
* OldestMemberMXactId[] entries. Because of the locking we do, we can be
* certain that no subsequent call to MultiXactIdSetOldestMember can set
* an OldestMemberMXactId[] entry older than what we compute here. Therefore
* there is no live transaction, now or later, that can be a member of any
* MultiXactId older than the OldestVisibleMXactId we compute here.
*/
static void
MultiXactIdSetOldestVisible(void)
{
if (!MultiXactIdIsValid(OldestVisibleMXactId[MyBackendId]))
{
MultiXactId oldestMXact;
int i;
LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
/*
* We have to beware of the possibility that nextMXact is in the
* wrapped-around state. We don't fix the counter itself here, but we
* must be sure to store a valid value in our array entry.
*/
oldestMXact = MultiXactState->nextMXact;
if (oldestMXact < FirstMultiXactId)
oldestMXact = FirstMultiXactId;
for (i = 1; i <= MaxBackends; i++)
{
MultiXactId thisoldest = OldestMemberMXactId[i];
if (MultiXactIdIsValid(thisoldest) &&
MultiXactIdPrecedes(thisoldest, oldestMXact))
oldestMXact = thisoldest;
}
OldestVisibleMXactId[MyBackendId] = oldestMXact;
LWLockRelease(MultiXactGenLock);
debug_elog4(DEBUG2, "MultiXact: setting OldestVisible[%d] = %u",
MyBackendId, oldestMXact);
}
}
/*
* MultiXactIdWait
* Sleep on a MultiXactId.
*
* We do this by sleeping on each member using XactLockTableWait. Any
* members that belong to the current backend are *not* waited for, however;
* this would not merely be useless but would lead to Assert failure inside
* XactLockTableWait. By the time this returns, it is certain that all
* transactions *of other backends* that were members of the MultiXactId
* are dead (and no new ones can have been added, since it is not legal
* to add members to an existing MultiXactId).
*
* But by the time we finish sleeping, someone else may have changed the Xmax
* of the containing tuple, so the caller needs to iterate on us somehow.
*/
void
MultiXactIdWait(MultiXactId multi)
{
TransactionId *members;
int nmembers;
nmembers = GetMultiXactIdMembers(multi, &members);
if (nmembers >= 0)
{
int i;
for (i = 0; i < nmembers; i++)
{
TransactionId member = members[i];
debug_elog4(DEBUG2, "MultiXactIdWait: waiting for %d (%u)",
i, member);
if (!TransactionIdIsCurrentTransactionId(member))
XactLockTableWait(member);
}
pfree(members);
}
}
/*
* ConditionalMultiXactIdWait
* As above, but only lock if we can get the lock without blocking.
*/
bool
ConditionalMultiXactIdWait(MultiXactId multi)
{
bool result = true;
TransactionId *members;
int nmembers;
nmembers = GetMultiXactIdMembers(multi, &members);
if (nmembers >= 0)
{
int i;
for (i = 0; i < nmembers; i++)
{
TransactionId member = members[i];
debug_elog4(DEBUG2, "ConditionalMultiXactIdWait: trying %d (%u)",
i, member);
if (!TransactionIdIsCurrentTransactionId(member))
{
result = ConditionalXactLockTableWait(member);
if (!result)
break;
}
}
pfree(members);
}
return result;
}
/*
* CreateMultiXactId
* Make a new MultiXactId
*
* Make XLOG, SLRU and cache entries for a new MultiXactId, recording the
* given TransactionIds as members. Returns the newly created MultiXactId.
*
* NB: the passed xids[] array will be sorted in-place.
*/
static MultiXactId
CreateMultiXactId(int nxids, TransactionId *xids)
{
MultiXactId multi;
MultiXactOffset offset;
XLogRecData rdata[2];
xl_multixact_create xlrec;
debug_elog3(DEBUG2, "Create: %s",
mxid_to_string(InvalidMultiXactId, nxids, xids));
/*
* See if the same set of XIDs already exists in our cache; if so, just
* re-use that MultiXactId. (Note: it might seem that looking in our
* cache is insufficient, and we ought to search disk to see if a
* duplicate definition already exists. But since we only ever create
* MultiXacts containing our own XID, in most cases any such MultiXacts
* were in fact created by us, and so will be in our cache. There are
* corner cases where someone else added us to a MultiXact without our
* knowledge, but it's not worth checking for.)
*/
multi = mXactCacheGetBySet(nxids, xids);
if (MultiXactIdIsValid(multi))
{
debug_elog2(DEBUG2, "Create: in cache!");
return multi;
}
/*
* Assign the MXID and offsets range to use, and make sure there is space
* in the OFFSETs and MEMBERs files. NB: this routine does
* START_CRIT_SECTION().
*/
multi = GetNewMultiXactId(nxids, &offset);
/*
* Make an XLOG entry describing the new MXID.
*
* Note: we need not flush this XLOG entry to disk before proceeding. The
* only way for the MXID to be referenced from any data page is for
* heap_lock_tuple() to have put it there, and heap_lock_tuple() generates
* an XLOG record that must follow ours. The normal LSN interlock between
* the data page and that XLOG record will ensure that our XLOG record
* reaches disk first. If the SLRU members/offsets data reaches disk
* sooner than the XLOG record, we do not care because we'll overwrite it
* with zeroes unless the XLOG record is there too; see notes at top of
* this file.
*/
xlrec.mid = multi;
xlrec.moff = offset;
xlrec.nxids = nxids;
rdata[0].data = (char *) (&xlrec);
rdata[0].len = MinSizeOfMultiXactCreate;
rdata[0].buffer = InvalidBuffer;
rdata[0].next = &(rdata[1]);
rdata[1].data = (char *) xids;
rdata[1].len = nxids * sizeof(TransactionId);
rdata[1].buffer = InvalidBuffer;
rdata[1].next = NULL;
(void) XLogInsert(RM_MULTIXACT_ID, XLOG_MULTIXACT_CREATE_ID, rdata);
/* Now enter the information into the OFFSETs and MEMBERs logs */
RecordNewMultiXact(multi, offset, nxids, xids);
/* Done with critical section */
END_CRIT_SECTION();
/* Store the new MultiXactId in the local cache, too */
mXactCachePut(multi, nxids, xids);
debug_elog2(DEBUG2, "Create: all done");
return multi;
}
/*
* RecordNewMultiXact
* Write info about a new multixact into the offsets and members files
*
* This is broken out of CreateMultiXactId so that xlog replay can use it.
*/
static void
RecordNewMultiXact(MultiXactId multi, MultiXactOffset offset,
int nxids, TransactionId *xids)
{
int pageno;
int prev_pageno;
int entryno;
int slotno;
MultiXactOffset *offptr;
int i;
LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
pageno = MultiXactIdToOffsetPage(multi);
entryno = MultiXactIdToOffsetEntry(multi);
/*
* Note: we pass the MultiXactId to SimpleLruReadPage as the "transaction"
* to complain about if there's any I/O error. This is kinda bogus, but
* since the errors will always give the full pathname, it should be clear
* enough that a MultiXactId is really involved. Perhaps someday we'll
* take the trouble to generalize the slru.c error reporting code.
*/
slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, multi);
offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
offptr += entryno;
*offptr = offset;
MultiXactOffsetCtl->shared->page_dirty[slotno] = true;
/* Exchange our lock */
LWLockRelease(MultiXactOffsetControlLock);
LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
prev_pageno = -1;
for (i = 0; i < nxids; i++, offset++)
{
TransactionId *memberptr;
pageno = MXOffsetToMemberPage(offset);
entryno = MXOffsetToMemberEntry(offset);
if (pageno != prev_pageno)
{
slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, multi);
prev_pageno = pageno;
}
memberptr = (TransactionId *)
MultiXactMemberCtl->shared->page_buffer[slotno];
memberptr += entryno;
*memberptr = xids[i];
MultiXactMemberCtl->shared->page_dirty[slotno] = true;
}
LWLockRelease(MultiXactMemberControlLock);
}
/*
* GetNewMultiXactId
* Get the next MultiXactId.
*
* Also, reserve the needed amount of space in the "members" area. The
* starting offset of the reserved space is returned in *offset.
*
* This may generate XLOG records for expansion of the offsets and/or members
* files. Unfortunately, we have to do that while holding MultiXactGenLock
* to avoid race conditions --- the XLOG record for zeroing a page must appear
* before any backend can possibly try to store data in that page!
*
* We start a critical section before advancing the shared counters. The
* caller must end the critical section after writing SLRU data.
*/
static MultiXactId
GetNewMultiXactId(int nxids, MultiXactOffset *offset)
{
MultiXactId result;
MultiXactOffset nextOffset;
debug_elog3(DEBUG2, "GetNew: for %d xids", nxids);
/* MultiXactIdSetOldestMember() must have been called already */
Assert(MultiXactIdIsValid(OldestMemberMXactId[MyBackendId]));
LWLockAcquire(MultiXactGenLock, LW_EXCLUSIVE);
/* Handle wraparound of the nextMXact counter */
if (MultiXactState->nextMXact < FirstMultiXactId)
MultiXactState->nextMXact = FirstMultiXactId;
/*
* Assign the MXID, and make sure there is room for it in the file.
*/
result = MultiXactState->nextMXact;
ExtendMultiXactOffset(result);
/*
* Reserve the members space, similarly to above. Also, be careful not to
* return zero as the starting offset for any multixact. See
* GetMultiXactIdMembers() for motivation.
*/
nextOffset = MultiXactState->nextOffset;
if (nextOffset == 0)
{
*offset = 1;
nxids++; /* allocate member slot 0 too */
}
else
*offset = nextOffset;
ExtendMultiXactMember(nextOffset, nxids);
/*
* Critical section from here until caller has written the data into the
* just-reserved SLRU space; we don't want to error out with a partly
* written MultiXact structure. (In particular, failing to write our
* start offset after advancing nextMXact would effectively corrupt the
* previous MultiXact.)
*/
START_CRIT_SECTION();
/*
* Advance counters. As in GetNewTransactionId(), this must not happen
* until after file extension has succeeded!
*
* We don't care about MultiXactId wraparound here; it will be handled by
* the next iteration. But note that nextMXact may be InvalidMultiXactId
* after this routine exits, so anyone else looking at the variable must
* be prepared to deal with that. Similarly, nextOffset may be zero, but
* we won't use that as the actual start offset of the next multixact.
*/
(MultiXactState->nextMXact)++;
MultiXactState->nextOffset += nxids;
LWLockRelease(MultiXactGenLock);
debug_elog4(DEBUG2, "GetNew: returning %u offset %u", result, *offset);
return result;
}
/*
* GetMultiXactIdMembers
* Returns the set of TransactionIds that make up a MultiXactId
*
* We return -1 if the MultiXactId is too old to possibly have any members
* still running; in that case we have not actually looked them up, and
* *xids is not set.
*/
int
GetMultiXactIdMembers(MultiXactId multi, TransactionId **xids)
{
int pageno;
int prev_pageno;
int entryno;
int slotno;
MultiXactOffset *offptr;
MultiXactOffset offset;
int length;
int truelength;
int i;
MultiXactId nextMXact;
MultiXactId tmpMXact;
MultiXactOffset nextOffset;
TransactionId *ptr;
debug_elog3(DEBUG2, "GetMembers: asked for %u", multi);
Assert(MultiXactIdIsValid(multi));
/* See if the MultiXactId is in the local cache */
length = mXactCacheGetById(multi, xids);
if (length >= 0)
{
debug_elog3(DEBUG2, "GetMembers: found %s in the cache",
mxid_to_string(multi, length, *xids));
return length;
}
/* Set our OldestVisibleMXactId[] entry if we didn't already */
MultiXactIdSetOldestVisible();
/*
* We check known limits on MultiXact before resorting to the SLRU area.
*
* An ID older than our OldestVisibleMXactId[] entry can't possibly still
* be running, and we'd run the risk of trying to read already-truncated
* SLRU data if we did try to examine it.
*
* Conversely, an ID >= nextMXact shouldn't ever be seen here; if it is
* seen, it implies undetected ID wraparound has occurred. We just
* silently assume that such an ID is no longer running.
*
* Shared lock is enough here since we aren't modifying any global state.
* Also, we can examine our own OldestVisibleMXactId without the lock,
* since no one else is allowed to change it.
*/
if (MultiXactIdPrecedes(multi, OldestVisibleMXactId[MyBackendId]))
{
debug_elog2(DEBUG2, "GetMembers: it's too old");
*xids = NULL;
return -1;
}
/*
* Acquire the shared lock just long enough to grab the current counter
* values. We may need both nextMXact and nextOffset; see below.
*/
LWLockAcquire(MultiXactGenLock, LW_SHARED);
nextMXact = MultiXactState->nextMXact;
nextOffset = MultiXactState->nextOffset;
LWLockRelease(MultiXactGenLock);
if (!MultiXactIdPrecedes(multi, nextMXact))
{
debug_elog2(DEBUG2, "GetMembers: it's too new!");
*xids = NULL;
return -1;
}
/*
* Find out the offset at which we need to start reading MultiXactMembers
* and the number of members in the multixact. We determine the latter as
* the difference between this multixact's starting offset and the next
* one's. However, there are some corner cases to worry about:
*
* 1. This multixact may be the latest one created, in which case there is
* no next one to look at. In this case the nextOffset value we just
* saved is the correct endpoint.
*
* 2. The next multixact may still be in process of being filled in: that
* is, another process may have done GetNewMultiXactId but not yet written
* the offset entry for that ID. In that scenario, it is guaranteed that
* the offset entry for that multixact exists (because GetNewMultiXactId
* won't release MultiXactGenLock until it does) but contains zero
* (because we are careful to pre-zero offset pages). Because
* GetNewMultiXactId will never return zero as the starting offset for a
* multixact, when we read zero as the next multixact's offset, we know we
* have this case. We sleep for a bit and try again.
*
* 3. Because GetNewMultiXactId increments offset zero to offset one to
* handle case #2, there is an ambiguity near the point of offset
* wraparound. If we see next multixact's offset is one, is that our
* multixact's actual endpoint, or did it end at zero with a subsequent
* increment? We handle this using the knowledge that if the zero'th
* member slot wasn't filled, it'll contain zero, and zero isn't a valid
* transaction ID so it can't be a multixact member. Therefore, if we
* read a zero from the members array, just ignore it.
*
* This is all pretty messy, but the mess occurs only in infrequent corner
* cases, so it seems better than holding the MultiXactGenLock for a long
* time on every multixact creation.
*/
retry:
LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
pageno = MultiXactIdToOffsetPage(multi);
entryno = MultiXactIdToOffsetEntry(multi);
slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, multi);
offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
offptr += entryno;
offset = *offptr;
Assert(offset != 0);
/*
* Use the same increment rule as GetNewMultiXactId(), that is, don't
* handle wraparound explicitly until needed.
*/
tmpMXact = multi + 1;
if (nextMXact == tmpMXact)
{
/* Corner case 1: there is no next multixact */
length = nextOffset - offset;
}
else
{
MultiXactOffset nextMXOffset;
/* handle wraparound if needed */
if (tmpMXact < FirstMultiXactId)
tmpMXact = FirstMultiXactId;
prev_pageno = pageno;
pageno = MultiXactIdToOffsetPage(tmpMXact);
entryno = MultiXactIdToOffsetEntry(tmpMXact);
if (pageno != prev_pageno)
slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, tmpMXact);
offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
offptr += entryno;
nextMXOffset = *offptr;
if (nextMXOffset == 0)
{
/* Corner case 2: next multixact is still being filled in */
LWLockRelease(MultiXactOffsetControlLock);
pg_usleep(1000L);
goto retry;
}
length = nextMXOffset - offset;
}
LWLockRelease(MultiXactOffsetControlLock);
ptr = (TransactionId *) palloc(length * sizeof(TransactionId));
*xids = ptr;
/* Now get the members themselves. */
LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
truelength = 0;
prev_pageno = -1;
for (i = 0; i < length; i++, offset++)
{
TransactionId *xactptr;
pageno = MXOffsetToMemberPage(offset);
entryno = MXOffsetToMemberEntry(offset);
if (pageno != prev_pageno)
{
slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, multi);
prev_pageno = pageno;
}
xactptr = (TransactionId *)
MultiXactMemberCtl->shared->page_buffer[slotno];
xactptr += entryno;
if (!TransactionIdIsValid(*xactptr))
{
/* Corner case 3: we must be looking at unused slot zero */
Assert(offset == 0);
continue;
}
ptr[truelength++] = *xactptr;
}
LWLockRelease(MultiXactMemberControlLock);
/*
* Copy the result into the local cache.
*/
mXactCachePut(multi, truelength, ptr);
debug_elog3(DEBUG2, "GetMembers: no cache for %s",
mxid_to_string(multi, truelength, ptr));
return truelength;
}
/*
* mXactCacheGetBySet
* returns a MultiXactId from the cache based on the set of
* TransactionIds that compose it, or InvalidMultiXactId if
* none matches.
*
* This is helpful, for example, if two transactions want to lock a huge
* table. By using the cache, the second will use the same MultiXactId
* for the majority of tuples, thus keeping MultiXactId usage low (saving
* both I/O and wraparound issues).
*
* NB: the passed xids[] array will be sorted in-place.
*/
static MultiXactId
mXactCacheGetBySet(int nxids, TransactionId *xids)
{
mXactCacheEnt *entry;
debug_elog3(DEBUG2, "CacheGet: looking for %s",
mxid_to_string(InvalidMultiXactId, nxids, xids));
/* sort the array so comparison is easy */
qsort(xids, nxids, sizeof(TransactionId), xidComparator);
for (entry = MXactCache; entry != NULL; entry = entry->next)
{
if (entry->nxids != nxids)
continue;
/* We assume the cache entries are sorted */
if (memcmp(xids, entry->xids, nxids * sizeof(TransactionId)) == 0)
{
debug_elog3(DEBUG2, "CacheGet: found %u", entry->multi);
return entry->multi;
}
}
debug_elog2(DEBUG2, "CacheGet: not found :-(");
return InvalidMultiXactId;
}
/*
* mXactCacheGetById
* returns the composing TransactionId set from the cache for a
* given MultiXactId, if present.
*
* If successful, *xids is set to the address of a palloc'd copy of the
* TransactionId set. Return value is number of members, or -1 on failure.
*/
static int
mXactCacheGetById(MultiXactId multi, TransactionId **xids)
{
mXactCacheEnt *entry;
debug_elog3(DEBUG2, "CacheGet: looking for %u", multi);
for (entry = MXactCache; entry != NULL; entry = entry->next)
{
if (entry->multi == multi)
{
TransactionId *ptr;
Size size;
size = sizeof(TransactionId) * entry->nxids;
ptr = (TransactionId *) palloc(size);
*xids = ptr;
memcpy(ptr, entry->xids, size);
debug_elog3(DEBUG2, "CacheGet: found %s",
mxid_to_string(multi, entry->nxids, entry->xids));
return entry->nxids;
}
}
debug_elog2(DEBUG2, "CacheGet: not found");
return -1;
}
/*
* mXactCachePut
* Add a new MultiXactId and its composing set into the local cache.
*/
static void
mXactCachePut(MultiXactId multi, int nxids, TransactionId *xids)
{
mXactCacheEnt *entry;
debug_elog3(DEBUG2, "CachePut: storing %s",
mxid_to_string(multi, nxids, xids));
if (MXactContext == NULL)
{
/* The cache only lives as long as the current transaction */
debug_elog2(DEBUG2, "CachePut: initializing memory context");
MXactContext = AllocSetContextCreate(TopTransactionContext,
"MultiXact Cache Context",
ALLOCSET_SMALL_MINSIZE,
ALLOCSET_SMALL_INITSIZE,
ALLOCSET_SMALL_MAXSIZE);
}
entry = (mXactCacheEnt *)
MemoryContextAlloc(MXactContext,
offsetof(mXactCacheEnt, xids) +
nxids * sizeof(TransactionId));
entry->multi = multi;
entry->nxids = nxids;
memcpy(entry->xids, xids, nxids * sizeof(TransactionId));
/* mXactCacheGetBySet assumes the entries are sorted, so sort them */
qsort(entry->xids, nxids, sizeof(TransactionId), xidComparator);
entry->next = MXactCache;
MXactCache = entry;
}
/*
* xidComparator
* qsort comparison function for XIDs
*
* We don't need to use wraparound comparison for XIDs, and indeed must
* not do so since that does not respect the triangle inequality! Any
* old sort order will do.
*/
static int
xidComparator(const void *arg1, const void *arg2)
{
TransactionId xid1 = *(const TransactionId *) arg1;
TransactionId xid2 = *(const TransactionId *) arg2;
if (xid1 > xid2)
return 1;
if (xid1 < xid2)
return -1;
return 0;
}
#ifdef MULTIXACT_DEBUG
static char *
mxid_to_string(MultiXactId multi, int nxids, TransactionId *xids)
{
char *str = palloc(15 * (nxids + 1) + 4);
int i;
snprintf(str, 47, "%u %d[%u", multi, nxids, xids[0]);
for (i = 1; i < nxids; i++)
snprintf(str + strlen(str), 17, ", %u", xids[i]);
strcat(str, "]");
return str;
}
#endif
/*
* AtEOXact_MultiXact
* Handle transaction end for MultiXact
*
* This is called at top transaction commit or abort (we don't care which).
*/
void
AtEOXact_MultiXact(void)
{
/*
* Reset our OldestMemberMXactId and OldestVisibleMXactId values, both of
* which should only be valid while within a transaction.
*
* We assume that storing a MultiXactId is atomic and so we need not take
* MultiXactGenLock to do this.
*/
OldestMemberMXactId[MyBackendId] = InvalidMultiXactId;
OldestVisibleMXactId[MyBackendId] = InvalidMultiXactId;
/*
* Discard the local MultiXactId cache. Since MXactContext was created as
* a child of TopTransactionContext, we needn't delete it explicitly.
*/
MXactContext = NULL;
MXactCache = NULL;
}
/*
* Initialization of shared memory for MultiXact. We use two SLRU areas,
* thus double memory. Also, reserve space for the shared MultiXactState
* struct and the per-backend MultiXactId arrays (two of those, too).
*/
Size
MultiXactShmemSize(void)
{
Size size;
#define SHARED_MULTIXACT_STATE_SIZE \
add_size(sizeof(MultiXactStateData), \
mul_size(sizeof(MultiXactId) * 2, MaxBackends))
size = SHARED_MULTIXACT_STATE_SIZE;
size = add_size(size, SimpleLruShmemSize(NUM_MXACTOFFSET_BUFFERS));
size = add_size(size, SimpleLruShmemSize(NUM_MXACTMEMBER_BUFFERS));
return size;
}
void
MultiXactShmemInit(void)
{
bool found;
debug_elog2(DEBUG2, "Shared Memory Init for MultiXact");
MultiXactOffsetCtl->PagePrecedes = MultiXactOffsetPagePrecedes;
MultiXactMemberCtl->PagePrecedes = MultiXactMemberPagePrecedes;
SimpleLruInit(MultiXactOffsetCtl,
"MultiXactOffset Ctl", NUM_MXACTOFFSET_BUFFERS,
MultiXactOffsetControlLock, "pg_multixact/offsets");
SimpleLruInit(MultiXactMemberCtl,
"MultiXactMember Ctl", NUM_MXACTMEMBER_BUFFERS,
MultiXactMemberControlLock, "pg_multixact/members");
/* Initialize our shared state struct */
MultiXactState = ShmemInitStruct("Shared MultiXact State",
SHARED_MULTIXACT_STATE_SIZE,
&found);
if (!IsUnderPostmaster)
{
Assert(!found);
/* Make sure we zero out the per-backend state */
MemSet(MultiXactState, 0, SHARED_MULTIXACT_STATE_SIZE);
}
else
Assert(found);
/*
* Set up array pointers. Note that perBackendXactIds[0] is wasted space
* since we only use indexes 1..MaxBackends in each array.
*/
OldestMemberMXactId = MultiXactState->perBackendXactIds;
OldestVisibleMXactId = OldestMemberMXactId + MaxBackends;
}
/*
* This func must be called ONCE on system install. It creates the initial
* MultiXact segments. (The MultiXacts directories are assumed to have been
* created by initdb, and MultiXactShmemInit must have been called already.)
*/
void
BootStrapMultiXact(void)
{
int slotno;
LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
/* Create and zero the first page of the offsets log */
slotno = ZeroMultiXactOffsetPage(0, false);
/* Make sure it's written out */
SimpleLruWritePage(MultiXactOffsetCtl, slotno, NULL);
Assert(!MultiXactOffsetCtl->shared->page_dirty[slotno]);
LWLockRelease(MultiXactOffsetControlLock);
LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
/* Create and zero the first page of the members log */
slotno = ZeroMultiXactMemberPage(0, false);
/* Make sure it's written out */
SimpleLruWritePage(MultiXactMemberCtl, slotno, NULL);
Assert(!MultiXactMemberCtl->shared->page_dirty[slotno]);
LWLockRelease(MultiXactMemberControlLock);
}
/*
* Initialize (or reinitialize) a page of MultiXactOffset to zeroes.
* If writeXlog is TRUE, also emit an XLOG record saying we did this.
*
* The page is not actually written, just set up in shared memory.
* The slot number of the new page is returned.
*
* Control lock must be held at entry, and will be held at exit.
*/
static int
ZeroMultiXactOffsetPage(int pageno, bool writeXlog)
{
int slotno;
slotno = SimpleLruZeroPage(MultiXactOffsetCtl, pageno);
if (writeXlog)
WriteMZeroPageXlogRec(pageno, XLOG_MULTIXACT_ZERO_OFF_PAGE);
return slotno;
}
/*
* Ditto, for MultiXactMember
*/
static int
ZeroMultiXactMemberPage(int pageno, bool writeXlog)
{
int slotno;
slotno = SimpleLruZeroPage(MultiXactMemberCtl, pageno);
if (writeXlog)
WriteMZeroPageXlogRec(pageno, XLOG_MULTIXACT_ZERO_MEM_PAGE);
return slotno;
}
/*
* This must be called ONCE during postmaster or standalone-backend startup.
*
* StartupXLOG has already established nextMXact/nextOffset by calling
* MultiXactSetNextMXact and/or MultiXactAdvanceNextMXact. Note that we
* may already have replayed WAL data into the SLRU files.
*
* We don't need any locks here, really; the SLRU locks are taken
* only because slru.c expects to be called with locks held.
*/
void
StartupMultiXact(void)
{
MultiXactId multi = MultiXactState->nextMXact;
MultiXactOffset offset = MultiXactState->nextOffset;
int pageno;
int entryno;
/* Clean up offsets state */
LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
/*
* Initialize our idea of the latest page number.
*/
pageno = MultiXactIdToOffsetPage(multi);
MultiXactOffsetCtl->shared->latest_page_number = pageno;
/*
* Zero out the remainder of the current offsets page. See notes in
* StartupCLOG() for motivation.
*/
entryno = MultiXactIdToOffsetEntry(multi);
if (entryno != 0)
{
int slotno;
MultiXactOffset *offptr;
slotno = SimpleLruReadPage(MultiXactOffsetCtl, pageno, multi);
offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
offptr += entryno;
MemSet(offptr, 0, BLCKSZ - (entryno * sizeof(MultiXactOffset)));
MultiXactOffsetCtl->shared->page_dirty[slotno] = true;
}
LWLockRelease(MultiXactOffsetControlLock);
/* And the same for members */
LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
/*
* Initialize our idea of the latest page number.
*/
pageno = MXOffsetToMemberPage(offset);
MultiXactMemberCtl->shared->latest_page_number = pageno;
/*
* Zero out the remainder of the current members page. See notes in
* StartupCLOG() for motivation.
*/
entryno = MXOffsetToMemberEntry(offset);
if (entryno != 0)
{
int slotno;
TransactionId *xidptr;
slotno = SimpleLruReadPage(MultiXactMemberCtl, pageno, offset);
xidptr = (TransactionId *) MultiXactMemberCtl->shared->page_buffer[slotno];
xidptr += entryno;
MemSet(xidptr, 0, BLCKSZ - (entryno * sizeof(TransactionId)));
MultiXactMemberCtl->shared->page_dirty[slotno] = true;
}
LWLockRelease(MultiXactMemberControlLock);
/*
* Initialize lastTruncationPoint to invalid, ensuring that the first
* checkpoint will try to do truncation.
*/
MultiXactState->lastTruncationPoint = InvalidMultiXactId;
}
/*
* This must be called ONCE during postmaster or standalone-backend shutdown
*/
void
ShutdownMultiXact(void)
{
/* Flush dirty MultiXact pages to disk */
SimpleLruFlush(MultiXactOffsetCtl, false);
SimpleLruFlush(MultiXactMemberCtl, false);
}
/*
* Get the next MultiXactId and offset to save in a checkpoint record
*/
void
MultiXactGetCheckptMulti(bool is_shutdown,
MultiXactId *nextMulti,
MultiXactOffset *nextMultiOffset)
{
LWLockAcquire(MultiXactGenLock, LW_SHARED);
*nextMulti = MultiXactState->nextMXact;
*nextMultiOffset = MultiXactState->nextOffset;
LWLockRelease(MultiXactGenLock);
debug_elog4(DEBUG2, "MultiXact: checkpoint is nextMulti %u, nextOffset %u",
*nextMulti, *nextMultiOffset);
}
/*
* Perform a checkpoint --- either during shutdown, or on-the-fly
*/
void
CheckPointMultiXact(void)
{
/* Flush dirty MultiXact pages to disk */
SimpleLruFlush(MultiXactOffsetCtl, true);
SimpleLruFlush(MultiXactMemberCtl, true);
/*
* Truncate the SLRU files. This could be done at any time, but
* checkpoint seems a reasonable place for it.
*/
TruncateMultiXact();
}
/*
* Set the next-to-be-assigned MultiXactId and offset
*
* This is used when we can determine the correct next ID/offset exactly
* from a checkpoint record. We need no locking since it is only called
* during bootstrap and XLog replay.
*/
void
MultiXactSetNextMXact(MultiXactId nextMulti,
MultiXactOffset nextMultiOffset)
{
debug_elog4(DEBUG2, "MultiXact: setting next multi to %u offset %u",
nextMulti, nextMultiOffset);
MultiXactState->nextMXact = nextMulti;
MultiXactState->nextOffset = nextMultiOffset;
}
/*
* Ensure the next-to-be-assigned MultiXactId is at least minMulti,
* and similarly nextOffset is at least minMultiOffset
*
* This is used when we can determine minimum safe values from an XLog
* record (either an on-line checkpoint or an mxact creation log entry).
* We need no locking since it is only called during XLog replay.
*/
void
MultiXactAdvanceNextMXact(MultiXactId minMulti,
MultiXactOffset minMultiOffset)
{
if (MultiXactIdPrecedes(MultiXactState->nextMXact, minMulti))
{
debug_elog3(DEBUG2, "MultiXact: setting next multi to %u", minMulti);
MultiXactState->nextMXact = minMulti;
}
if (MultiXactOffsetPrecedes(MultiXactState->nextOffset, minMultiOffset))
{
debug_elog3(DEBUG2, "MultiXact: setting next offset to %u",
minMultiOffset);
MultiXactState->nextOffset = minMultiOffset;
}
}
/*
* Make sure that MultiXactOffset has room for a newly-allocated MultiXactId.
*
* NB: this is called while holding MultiXactGenLock. We want it to be very
* fast most of the time; even when it's not so fast, no actual I/O need
* happen unless we're forced to write out a dirty log or xlog page to make
* room in shared memory.
*/
static void
ExtendMultiXactOffset(MultiXactId multi)
{
int pageno;
/*
* No work except at first MultiXactId of a page. But beware: just after
* wraparound, the first MultiXactId of page zero is FirstMultiXactId.
*/
if (MultiXactIdToOffsetEntry(multi) != 0 &&
multi != FirstMultiXactId)
return;
pageno = MultiXactIdToOffsetPage(multi);
LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
/* Zero the page and make an XLOG entry about it */
ZeroMultiXactOffsetPage(pageno, true);
LWLockRelease(MultiXactOffsetControlLock);
}
/*
* Make sure that MultiXactMember has room for the members of a newly-
* allocated MultiXactId.
*
* Like the above routine, this is called while holding MultiXactGenLock;
* same comments apply.
*/
static void
ExtendMultiXactMember(MultiXactOffset offset, int nmembers)
{
/*
* It's possible that the members span more than one page of the members
* file, so we loop to ensure we consider each page. The coding is not
* optimal if the members span several pages, but that seems unusual
* enough to not worry much about.
*/
while (nmembers > 0)
{
int entryno;
/*
* Only zero when at first entry of a page.
*/
entryno = MXOffsetToMemberEntry(offset);
if (entryno == 0)
{
int pageno;
pageno = MXOffsetToMemberPage(offset);
LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
/* Zero the page and make an XLOG entry about it */
ZeroMultiXactMemberPage(pageno, true);
LWLockRelease(MultiXactMemberControlLock);
}
/* Advance to next page (OK if nmembers goes negative) */
offset += (MULTIXACT_MEMBERS_PER_PAGE - entryno);
nmembers -= (MULTIXACT_MEMBERS_PER_PAGE - entryno);
}
}
/*
* Remove all MultiXactOffset and MultiXactMember segments before the oldest
* ones still of interest.
*
* This is called only during checkpoints. We assume no more than one
* backend does this at a time.
*
* XXX do we have any issues with needing to checkpoint here?
*/
static void
TruncateMultiXact(void)
{
MultiXactId nextMXact;
MultiXactOffset nextOffset;
MultiXactId oldestMXact;
MultiXactOffset oldestOffset;
int cutoffPage;
int i;
/*
* First, compute where we can safely truncate. Per notes above, this is
* the oldest valid value among all the OldestMemberMXactId[] and
* OldestVisibleMXactId[] entries, or nextMXact if none are valid.
*/
LWLockAcquire(MultiXactGenLock, LW_SHARED);
/*
* We have to beware of the possibility that nextMXact is in the
* wrapped-around state. We don't fix the counter itself here, but we
* must be sure to use a valid value in our calculation.
*/
nextMXact = MultiXactState->nextMXact;
if (nextMXact < FirstMultiXactId)
nextMXact = FirstMultiXactId;
oldestMXact = nextMXact;
for (i = 1; i <= MaxBackends; i++)
{
MultiXactId thisoldest;
thisoldest = OldestMemberMXactId[i];
if (MultiXactIdIsValid(thisoldest) &&
MultiXactIdPrecedes(thisoldest, oldestMXact))
oldestMXact = thisoldest;
thisoldest = OldestVisibleMXactId[i];
if (MultiXactIdIsValid(thisoldest) &&
MultiXactIdPrecedes(thisoldest, oldestMXact))
oldestMXact = thisoldest;
}
/* Save the current nextOffset too */
nextOffset = MultiXactState->nextOffset;
LWLockRelease(MultiXactGenLock);
debug_elog3(DEBUG2, "MultiXact: truncation point = %u", oldestMXact);
/*
* If we already truncated at this point, do nothing. This saves time
* when no MultiXacts are getting used, which is probably not uncommon.
*/
if (MultiXactState->lastTruncationPoint == oldestMXact)
return;
/*
* We need to determine where to truncate MultiXactMember. If we found a
* valid oldest MultiXactId, read its starting offset; otherwise we use
* the nextOffset value we saved above.
*/
if (oldestMXact == nextMXact)
oldestOffset = nextOffset;
else
{
int pageno;
int slotno;
int entryno;
MultiXactOffset *offptr;
/* lock is acquired by SimpleLruReadPage_ReadOnly */
pageno = MultiXactIdToOffsetPage(oldestMXact);
entryno = MultiXactIdToOffsetEntry(oldestMXact);
slotno = SimpleLruReadPage_ReadOnly(MultiXactOffsetCtl, pageno, oldestMXact);
offptr = (MultiXactOffset *) MultiXactOffsetCtl->shared->page_buffer[slotno];
offptr += entryno;
oldestOffset = *offptr;
LWLockRelease(MultiXactOffsetControlLock);
}
/*
* The cutoff point is the start of the segment containing oldestMXact. We
* pass the *page* containing oldestMXact to SimpleLruTruncate.
*/
cutoffPage = MultiXactIdToOffsetPage(oldestMXact);
SimpleLruTruncate(MultiXactOffsetCtl, cutoffPage);
/*
* Also truncate MultiXactMember at the previously determined offset.
*/
cutoffPage = MXOffsetToMemberPage(oldestOffset);
SimpleLruTruncate(MultiXactMemberCtl, cutoffPage);
/*
* Set the last known truncation point. We don't need a lock for this
* since only one backend does checkpoints at a time.
*/
MultiXactState->lastTruncationPoint = oldestMXact;
}
/*
* Decide which of two MultiXactOffset page numbers is "older" for truncation
* purposes.
*
* We need to use comparison of MultiXactId here in order to do the right
* thing with wraparound. However, if we are asked about page number zero, we
* don't want to hand InvalidMultiXactId to MultiXactIdPrecedes: it'll get
* weird. So, offset both multis by FirstMultiXactId to avoid that.
* (Actually, the current implementation doesn't do anything weird with
* InvalidMultiXactId, but there's no harm in leaving this code like this.)
*/
static bool
MultiXactOffsetPagePrecedes(int page1, int page2)
{
MultiXactId multi1;
MultiXactId multi2;
multi1 = ((MultiXactId) page1) * MULTIXACT_OFFSETS_PER_PAGE;
multi1 += FirstMultiXactId;
multi2 = ((MultiXactId) page2) * MULTIXACT_OFFSETS_PER_PAGE;
multi2 += FirstMultiXactId;
return MultiXactIdPrecedes(multi1, multi2);
}
/*
* Decide which of two MultiXactMember page numbers is "older" for truncation
* purposes. There is no "invalid offset number" so use the numbers verbatim.
*/
static bool
MultiXactMemberPagePrecedes(int page1, int page2)
{
MultiXactOffset offset1;
MultiXactOffset offset2;
offset1 = ((MultiXactOffset) page1) * MULTIXACT_MEMBERS_PER_PAGE;
offset2 = ((MultiXactOffset) page2) * MULTIXACT_MEMBERS_PER_PAGE;
return MultiXactOffsetPrecedes(offset1, offset2);
}
/*
* Decide which of two MultiXactIds is earlier.
*
* XXX do we need to do something special for InvalidMultiXactId?
* (Doesn't look like it.)
*/
static bool
MultiXactIdPrecedes(MultiXactId multi1, MultiXactId multi2)
{
int32 diff = (int32) (multi1 - multi2);
return (diff < 0);
}
/*
* Decide which of two offsets is earlier.
*/
static bool
MultiXactOffsetPrecedes(MultiXactOffset offset1, MultiXactOffset offset2)
{
int32 diff = (int32) (offset1 - offset2);
return (diff < 0);
}
/*
* Write an xlog record reflecting the zeroing of either a MEMBERs or
* OFFSETs page (info shows which)
*
* Note: xlog record is marked as outside transaction control, since we
* want it to be redone whether the invoking transaction commits or not.
*/
static void
WriteMZeroPageXlogRec(int pageno, uint8 info)
{
XLogRecData rdata;
rdata.data = (char *) (&pageno);
rdata.len = sizeof(int);
rdata.buffer = InvalidBuffer;
rdata.next = NULL;
(void) XLogInsert(RM_MULTIXACT_ID, info | XLOG_NO_TRAN, &rdata);
}
/*
* MULTIXACT resource manager's routines
*/
void
multixact_redo(XLogRecPtr lsn, XLogRecord *record)
{
uint8 info = record->xl_info & ~XLR_INFO_MASK;
if (info == XLOG_MULTIXACT_ZERO_OFF_PAGE)
{
int pageno;
int slotno;
memcpy(&pageno, XLogRecGetData(record), sizeof(int));
LWLockAcquire(MultiXactOffsetControlLock, LW_EXCLUSIVE);
slotno = ZeroMultiXactOffsetPage(pageno, false);
SimpleLruWritePage(MultiXactOffsetCtl, slotno, NULL);
Assert(!MultiXactOffsetCtl->shared->page_dirty[slotno]);
LWLockRelease(MultiXactOffsetControlLock);
}
else if (info == XLOG_MULTIXACT_ZERO_MEM_PAGE)
{
int pageno;
int slotno;
memcpy(&pageno, XLogRecGetData(record), sizeof(int));
LWLockAcquire(MultiXactMemberControlLock, LW_EXCLUSIVE);
slotno = ZeroMultiXactMemberPage(pageno, false);
SimpleLruWritePage(MultiXactMemberCtl, slotno, NULL);
Assert(!MultiXactMemberCtl->shared->page_dirty[slotno]);
LWLockRelease(MultiXactMemberControlLock);
}
else if (info == XLOG_MULTIXACT_CREATE_ID)
{
xl_multixact_create *xlrec = (xl_multixact_create *) XLogRecGetData(record);
TransactionId *xids = xlrec->xids;
TransactionId max_xid;
int i;
/* Store the data back into the SLRU files */
RecordNewMultiXact(xlrec->mid, xlrec->moff, xlrec->nxids, xids);
/* Make sure nextMXact/nextOffset are beyond what this record has */
MultiXactAdvanceNextMXact(xlrec->mid + 1, xlrec->moff + xlrec->nxids);
/*
* Make sure nextXid is beyond any XID mentioned in the record. This
* should be unnecessary, since any XID found here ought to have other
* evidence in the XLOG, but let's be safe.
*/
max_xid = record->xl_xid;
for (i = 0; i < xlrec->nxids; i++)
{
if (TransactionIdPrecedes(max_xid, xids[i]))
max_xid = xids[i];
}
if (TransactionIdFollowsOrEquals(max_xid,
ShmemVariableCache->nextXid))
{
ShmemVariableCache->nextXid = max_xid;
TransactionIdAdvance(ShmemVariableCache->nextXid);
}
}
else
elog(PANIC, "multixact_redo: unknown op code %u", info);
}
void
multixact_desc(char *buf, uint8 xl_info, char *rec)
{
uint8 info = xl_info & ~XLR_INFO_MASK;
if (info == XLOG_MULTIXACT_ZERO_OFF_PAGE)
{
int pageno;
memcpy(&pageno, rec, sizeof(int));
sprintf(buf + strlen(buf), "zero offsets page: %d", pageno);
}
else if (info == XLOG_MULTIXACT_ZERO_MEM_PAGE)
{
int pageno;
memcpy(&pageno, rec, sizeof(int));
sprintf(buf + strlen(buf), "zero members page: %d", pageno);
}
else if (info == XLOG_MULTIXACT_CREATE_ID)
{
xl_multixact_create *xlrec = (xl_multixact_create *) rec;
int i;
sprintf(buf + strlen(buf), "create multixact %u offset %u:",
xlrec->mid, xlrec->moff);
for (i = 0; i < xlrec->nxids; i++)
sprintf(buf + strlen(buf), " %u", xlrec->xids[i]);
}
else
strcat(buf, "UNKNOWN");
}