postgresql/src/test/regress/sql/join.sql
Tom Lane dcc2334736 Consider a clause to be outerjoin_delayed if it references the nullable side
of any lower outer join, even if it also references the non-nullable side and
so could not get pushed below the outer join anyway.  We need this in case
the clause is an OR clause: if it doesn't get marked outerjoin_delayed,
create_or_index_quals() could pull an indexable restriction for the nullable
side out of it, leading to wrong results as demonstrated by today's bug
report from toruvinn.  (See added regression test case for an example.)

In principle this has been wrong for quite a while.  In practice I don't
think any branch before 8.3 can really show the failure, because
create_or_index_quals() will only pull out indexable conditions, and before
8.3 those were always strict.  So though we might have improperly generated
null-extended rows in the outer join, they'd get discarded from the result
anyway.  The gating factor that makes the failure visible is that 8.3
considers "col IS NULL" to be indexable.  Hence I'm not going to risk
back-patching further than 8.3.
2008-06-27 20:54:37 +00:00

498 lines
12 KiB
SQL

--
-- JOIN
-- Test JOIN clauses
--
CREATE TABLE J1_TBL (
i integer,
j integer,
t text
);
CREATE TABLE J2_TBL (
i integer,
k integer
);
INSERT INTO J1_TBL VALUES (1, 4, 'one');
INSERT INTO J1_TBL VALUES (2, 3, 'two');
INSERT INTO J1_TBL VALUES (3, 2, 'three');
INSERT INTO J1_TBL VALUES (4, 1, 'four');
INSERT INTO J1_TBL VALUES (5, 0, 'five');
INSERT INTO J1_TBL VALUES (6, 6, 'six');
INSERT INTO J1_TBL VALUES (7, 7, 'seven');
INSERT INTO J1_TBL VALUES (8, 8, 'eight');
INSERT INTO J1_TBL VALUES (0, NULL, 'zero');
INSERT INTO J1_TBL VALUES (NULL, NULL, 'null');
INSERT INTO J1_TBL VALUES (NULL, 0, 'zero');
INSERT INTO J2_TBL VALUES (1, -1);
INSERT INTO J2_TBL VALUES (2, 2);
INSERT INTO J2_TBL VALUES (3, -3);
INSERT INTO J2_TBL VALUES (2, 4);
INSERT INTO J2_TBL VALUES (5, -5);
INSERT INTO J2_TBL VALUES (5, -5);
INSERT INTO J2_TBL VALUES (0, NULL);
INSERT INTO J2_TBL VALUES (NULL, NULL);
INSERT INTO J2_TBL VALUES (NULL, 0);
--
-- CORRELATION NAMES
-- Make sure that table/column aliases are supported
-- before diving into more complex join syntax.
--
SELECT '' AS "xxx", *
FROM J1_TBL AS tx;
SELECT '' AS "xxx", *
FROM J1_TBL tx;
SELECT '' AS "xxx", *
FROM J1_TBL AS t1 (a, b, c);
SELECT '' AS "xxx", *
FROM J1_TBL t1 (a, b, c);
SELECT '' AS "xxx", *
FROM J1_TBL t1 (a, b, c), J2_TBL t2 (d, e);
SELECT '' AS "xxx", t1.a, t2.e
FROM J1_TBL t1 (a, b, c), J2_TBL t2 (d, e)
WHERE t1.a = t2.d;
--
-- CROSS JOIN
-- Qualifications are not allowed on cross joins,
-- which degenerate into a standard unqualified inner join.
--
SELECT '' AS "xxx", *
FROM J1_TBL CROSS JOIN J2_TBL;
-- ambiguous column
SELECT '' AS "xxx", i, k, t
FROM J1_TBL CROSS JOIN J2_TBL;
-- resolve previous ambiguity by specifying the table name
SELECT '' AS "xxx", t1.i, k, t
FROM J1_TBL t1 CROSS JOIN J2_TBL t2;
SELECT '' AS "xxx", ii, tt, kk
FROM (J1_TBL CROSS JOIN J2_TBL)
AS tx (ii, jj, tt, ii2, kk);
SELECT '' AS "xxx", tx.ii, tx.jj, tx.kk
FROM (J1_TBL t1 (a, b, c) CROSS JOIN J2_TBL t2 (d, e))
AS tx (ii, jj, tt, ii2, kk);
SELECT '' AS "xxx", *
FROM J1_TBL CROSS JOIN J2_TBL a CROSS JOIN J2_TBL b;
--
--
-- Inner joins (equi-joins)
--
--
--
-- Inner joins (equi-joins) with USING clause
-- The USING syntax changes the shape of the resulting table
-- by including a column in the USING clause only once in the result.
--
-- Inner equi-join on specified column
SELECT '' AS "xxx", *
FROM J1_TBL INNER JOIN J2_TBL USING (i);
-- Same as above, slightly different syntax
SELECT '' AS "xxx", *
FROM J1_TBL JOIN J2_TBL USING (i);
SELECT '' AS "xxx", *
FROM J1_TBL t1 (a, b, c) JOIN J2_TBL t2 (a, d) USING (a)
ORDER BY a, d;
SELECT '' AS "xxx", *
FROM J1_TBL t1 (a, b, c) JOIN J2_TBL t2 (a, b) USING (b)
ORDER BY b, t1.a;
--
-- NATURAL JOIN
-- Inner equi-join on all columns with the same name
--
SELECT '' AS "xxx", *
FROM J1_TBL NATURAL JOIN J2_TBL;
SELECT '' AS "xxx", *
FROM J1_TBL t1 (a, b, c) NATURAL JOIN J2_TBL t2 (a, d);
SELECT '' AS "xxx", *
FROM J1_TBL t1 (a, b, c) NATURAL JOIN J2_TBL t2 (d, a);
-- mismatch number of columns
-- currently, Postgres will fill in with underlying names
SELECT '' AS "xxx", *
FROM J1_TBL t1 (a, b) NATURAL JOIN J2_TBL t2 (a);
--
-- Inner joins (equi-joins)
--
SELECT '' AS "xxx", *
FROM J1_TBL JOIN J2_TBL ON (J1_TBL.i = J2_TBL.i);
SELECT '' AS "xxx", *
FROM J1_TBL JOIN J2_TBL ON (J1_TBL.i = J2_TBL.k);
--
-- Non-equi-joins
--
SELECT '' AS "xxx", *
FROM J1_TBL JOIN J2_TBL ON (J1_TBL.i <= J2_TBL.k);
--
-- Outer joins
-- Note that OUTER is a noise word
--
SELECT '' AS "xxx", *
FROM J1_TBL LEFT OUTER JOIN J2_TBL USING (i)
ORDER BY i, k, t;
SELECT '' AS "xxx", *
FROM J1_TBL LEFT JOIN J2_TBL USING (i)
ORDER BY i, k, t;
SELECT '' AS "xxx", *
FROM J1_TBL RIGHT OUTER JOIN J2_TBL USING (i);
SELECT '' AS "xxx", *
FROM J1_TBL RIGHT JOIN J2_TBL USING (i);
SELECT '' AS "xxx", *
FROM J1_TBL FULL OUTER JOIN J2_TBL USING (i)
ORDER BY i, k, t;
SELECT '' AS "xxx", *
FROM J1_TBL FULL JOIN J2_TBL USING (i)
ORDER BY i, k, t;
SELECT '' AS "xxx", *
FROM J1_TBL LEFT JOIN J2_TBL USING (i) WHERE (k = 1);
SELECT '' AS "xxx", *
FROM J1_TBL LEFT JOIN J2_TBL USING (i) WHERE (i = 1);
--
-- More complicated constructs
--
--
-- Multiway full join
--
CREATE TABLE t1 (name TEXT, n INTEGER);
CREATE TABLE t2 (name TEXT, n INTEGER);
CREATE TABLE t3 (name TEXT, n INTEGER);
INSERT INTO t1 VALUES ( 'aa', 11 );
INSERT INTO t2 VALUES ( 'aa', 12 );
INSERT INTO t2 VALUES ( 'bb', 22 );
INSERT INTO t2 VALUES ( 'dd', 42 );
INSERT INTO t3 VALUES ( 'aa', 13 );
INSERT INTO t3 VALUES ( 'bb', 23 );
INSERT INTO t3 VALUES ( 'cc', 33 );
SELECT * FROM t1 FULL JOIN t2 USING (name) FULL JOIN t3 USING (name);
--
-- Test interactions of join syntax and subqueries
--
-- Basic cases (we expect planner to pull up the subquery here)
SELECT * FROM
(SELECT * FROM t2) as s2
INNER JOIN
(SELECT * FROM t3) s3
USING (name);
SELECT * FROM
(SELECT * FROM t2) as s2
LEFT JOIN
(SELECT * FROM t3) s3
USING (name);
SELECT * FROM
(SELECT * FROM t2) as s2
FULL JOIN
(SELECT * FROM t3) s3
USING (name);
-- Cases with non-nullable expressions in subquery results;
-- make sure these go to null as expected
SELECT * FROM
(SELECT name, n as s2_n, 2 as s2_2 FROM t2) as s2
NATURAL INNER JOIN
(SELECT name, n as s3_n, 3 as s3_2 FROM t3) s3;
SELECT * FROM
(SELECT name, n as s2_n, 2 as s2_2 FROM t2) as s2
NATURAL LEFT JOIN
(SELECT name, n as s3_n, 3 as s3_2 FROM t3) s3;
SELECT * FROM
(SELECT name, n as s2_n, 2 as s2_2 FROM t2) as s2
NATURAL FULL JOIN
(SELECT name, n as s3_n, 3 as s3_2 FROM t3) s3;
SELECT * FROM
(SELECT name, n as s1_n, 1 as s1_1 FROM t1) as s1
NATURAL INNER JOIN
(SELECT name, n as s2_n, 2 as s2_2 FROM t2) as s2
NATURAL INNER JOIN
(SELECT name, n as s3_n, 3 as s3_2 FROM t3) s3;
SELECT * FROM
(SELECT name, n as s1_n, 1 as s1_1 FROM t1) as s1
NATURAL FULL JOIN
(SELECT name, n as s2_n, 2 as s2_2 FROM t2) as s2
NATURAL FULL JOIN
(SELECT name, n as s3_n, 3 as s3_2 FROM t3) s3;
SELECT * FROM
(SELECT name, n as s1_n FROM t1) as s1
NATURAL FULL JOIN
(SELECT * FROM
(SELECT name, n as s2_n FROM t2) as s2
NATURAL FULL JOIN
(SELECT name, n as s3_n FROM t3) as s3
) ss2;
SELECT * FROM
(SELECT name, n as s1_n FROM t1) as s1
NATURAL FULL JOIN
(SELECT * FROM
(SELECT name, n as s2_n, 2 as s2_2 FROM t2) as s2
NATURAL FULL JOIN
(SELECT name, n as s3_n FROM t3) as s3
) ss2;
-- Test for propagation of nullability constraints into sub-joins
create temp table x (x1 int, x2 int);
insert into x values (1,11);
insert into x values (2,22);
insert into x values (3,null);
insert into x values (4,44);
insert into x values (5,null);
create temp table y (y1 int, y2 int);
insert into y values (1,111);
insert into y values (2,222);
insert into y values (3,333);
insert into y values (4,null);
select * from x;
select * from y;
select * from x left join y on (x1 = y1 and x2 is not null);
select * from x left join y on (x1 = y1 and y2 is not null);
select * from (x left join y on (x1 = y1)) left join x xx(xx1,xx2)
on (x1 = xx1);
select * from (x left join y on (x1 = y1)) left join x xx(xx1,xx2)
on (x1 = xx1 and x2 is not null);
select * from (x left join y on (x1 = y1)) left join x xx(xx1,xx2)
on (x1 = xx1 and y2 is not null);
select * from (x left join y on (x1 = y1)) left join x xx(xx1,xx2)
on (x1 = xx1 and xx2 is not null);
-- these should NOT give the same answers as above
select * from (x left join y on (x1 = y1)) left join x xx(xx1,xx2)
on (x1 = xx1) where (x2 is not null);
select * from (x left join y on (x1 = y1)) left join x xx(xx1,xx2)
on (x1 = xx1) where (y2 is not null);
select * from (x left join y on (x1 = y1)) left join x xx(xx1,xx2)
on (x1 = xx1) where (xx2 is not null);
--
-- regression test: check for bug with propagation of implied equality
-- to outside an IN
--
select count(*) from tenk1 a where unique1 in
(select unique1 from tenk1 b join tenk1 c using (unique1)
where b.unique2 = 42);
--
-- regression test: check for failure to generate a plan with multiple
-- degenerate IN clauses
--
select count(*) from tenk1 x where
x.unique1 in (select a.f1 from int4_tbl a,float8_tbl b where a.f1=b.f1) and
x.unique1 = 0 and
x.unique1 in (select aa.f1 from int4_tbl aa,float8_tbl bb where aa.f1=bb.f1);
--
-- Clean up
--
DROP TABLE t1;
DROP TABLE t2;
DROP TABLE t3;
DROP TABLE J1_TBL;
DROP TABLE J2_TBL;
-- Both DELETE and UPDATE allow the specification of additional tables
-- to "join" against to determine which rows should be modified.
CREATE TEMP TABLE t1 (a int, b int);
CREATE TEMP TABLE t2 (a int, b int);
CREATE TEMP TABLE t3 (x int, y int);
INSERT INTO t1 VALUES (5, 10);
INSERT INTO t1 VALUES (15, 20);
INSERT INTO t1 VALUES (100, 100);
INSERT INTO t1 VALUES (200, 1000);
INSERT INTO t2 VALUES (200, 2000);
INSERT INTO t3 VALUES (5, 20);
INSERT INTO t3 VALUES (6, 7);
INSERT INTO t3 VALUES (7, 8);
INSERT INTO t3 VALUES (500, 100);
DELETE FROM t3 USING t1 table1 WHERE t3.x = table1.a;
SELECT * FROM t3;
DELETE FROM t3 USING t1 JOIN t2 USING (a) WHERE t3.x > t1.a;
SELECT * FROM t3;
DELETE FROM t3 USING t3 t3_other WHERE t3.x = t3_other.x AND t3.y = t3_other.y;
SELECT * FROM t3;
--
-- regression test for 8.1 merge right join bug
--
CREATE TEMP TABLE tt1 ( tt1_id int4, joincol int4 );
INSERT INTO tt1 VALUES (1, 11);
INSERT INTO tt1 VALUES (2, NULL);
CREATE TEMP TABLE tt2 ( tt2_id int4, joincol int4 );
INSERT INTO tt2 VALUES (21, 11);
INSERT INTO tt2 VALUES (22, 11);
set enable_hashjoin to off;
set enable_nestloop to off;
-- these should give the same results
select tt1.*, tt2.* from tt1 left join tt2 on tt1.joincol = tt2.joincol;
select tt1.*, tt2.* from tt2 right join tt1 on tt1.joincol = tt2.joincol;
reset enable_hashjoin;
reset enable_nestloop;
--
-- regression test for 8.2 bug with improper re-ordering of left joins
--
create temp table tt3(f1 int, f2 text);
insert into tt3 select x, repeat('xyzzy', 100) from generate_series(1,10000) x;
create index tt3i on tt3(f1);
analyze tt3;
create temp table tt4(f1 int);
insert into tt4 values (0),(1),(9999);
analyze tt4;
SELECT a.f1
FROM tt4 a
LEFT JOIN (
SELECT b.f1
FROM tt3 b LEFT JOIN tt3 c ON (b.f1 = c.f1)
WHERE c.f1 IS NULL
) AS d ON (a.f1 = d.f1)
WHERE d.f1 IS NULL;
--
-- regression test for problems of the sort depicted in bug #3494
--
create temp table tt5(f1 int, f2 int);
create temp table tt6(f1 int, f2 int);
insert into tt5 values(1, 10);
insert into tt5 values(1, 11);
insert into tt6 values(1, 9);
insert into tt6 values(1, 2);
insert into tt6 values(2, 9);
select * from tt5,tt6 where tt5.f1 = tt6.f1 and tt5.f1 = tt5.f2 - tt6.f2;
--
-- regression test for problems of the sort depicted in bug #3588
--
create temp table xx (pkxx int);
create temp table yy (pkyy int, pkxx int);
insert into xx values (1);
insert into xx values (2);
insert into xx values (3);
insert into yy values (101, 1);
insert into yy values (201, 2);
insert into yy values (301, NULL);
select yy.pkyy as yy_pkyy, yy.pkxx as yy_pkxx, yya.pkyy as yya_pkyy,
xxa.pkxx as xxa_pkxx, xxb.pkxx as xxb_pkxx
from yy
left join (SELECT * FROM yy where pkyy = 101) as yya ON yy.pkyy = yya.pkyy
left join xx xxa on yya.pkxx = xxa.pkxx
left join xx xxb on coalesce (xxa.pkxx, 1) = xxb.pkxx;
--
-- regression test for improper pushing of constants across outer-join clauses
-- (as seen in early 8.2.x releases)
--
create temp table zt1 (f1 int primary key);
create temp table zt2 (f2 int primary key);
create temp table zt3 (f3 int primary key);
insert into zt1 values(53);
insert into zt2 values(53);
select * from
zt2 left join zt3 on (f2 = f3)
left join zt1 on (f3 = f1)
where f2 = 53;
create temp view zv1 as select *,'dummy'::text AS junk from zt1;
select * from
zt2 left join zt3 on (f2 = f3)
left join zv1 on (f3 = f1)
where f2 = 53;
--
-- regression test for improper extraction of OR indexqual conditions
-- (as seen in early 8.3.x releases)
--
select a.unique2, a.ten, b.tenthous, b.unique2, b.hundred
from tenk1 a left join tenk1 b on a.unique2 = b.tenthous
where a.unique1 = 42 and
((b.unique2 is null and a.ten = 2) or b.hundred = 3);