postgresql/src/backend/optimizer/path/pathkeys.c

1023 lines
30 KiB
C

/*-------------------------------------------------------------------------
*
* pathkeys.c
* Utilities for matching and building path keys
*
* See src/backend/optimizer/README for a great deal of information about
* the nature and use of path keys.
*
*
* Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/optimizer/path/pathkeys.c,v 1.36 2001/11/11 20:33:53 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "nodes/makefuncs.h"
#include "optimizer/clauses.h"
#include "optimizer/pathnode.h"
#include "optimizer/paths.h"
#include "optimizer/planmain.h"
#include "optimizer/tlist.h"
#include "parser/parsetree.h"
#include "parser/parse_func.h"
#include "utils/lsyscache.h"
static PathKeyItem *makePathKeyItem(Node *key, Oid sortop);
static List *make_canonical_pathkey(Query *root, PathKeyItem *item);
static Var *find_indexkey_var(Query *root, RelOptInfo *rel,
AttrNumber varattno);
/*
* makePathKeyItem
* create a PathKeyItem node
*/
static PathKeyItem *
makePathKeyItem(Node *key, Oid sortop)
{
PathKeyItem *item = makeNode(PathKeyItem);
item->key = key;
item->sortop = sortop;
return item;
}
/*
* add_equijoined_keys
* The given clause has a mergejoinable operator, so its two sides
* can be considered equal after restriction clause application; in
* particular, any pathkey mentioning one side (with the correct sortop)
* can be expanded to include the other as well. Record the vars and
* associated sortops in the query's equi_key_list for future use.
*
* The query's equi_key_list field points to a list of sublists of PathKeyItem
* nodes, where each sublist is a set of two or more vars+sortops that have
* been identified as logically equivalent (and, therefore, we may consider
* any two in a set to be equal). As described above, we will subsequently
* use direct pointers to one of these sublists to represent any pathkey
* that involves an equijoined variable.
*
* This code would actually work fine with expressions more complex than
* a single Var, but currently it won't see any because check_mergejoinable
* won't accept such clauses as mergejoinable.
*/
void
add_equijoined_keys(Query *root, RestrictInfo *restrictinfo)
{
Expr *clause = restrictinfo->clause;
PathKeyItem *item1 = makePathKeyItem((Node *) get_leftop(clause),
restrictinfo->left_sortop);
PathKeyItem *item2 = makePathKeyItem((Node *) get_rightop(clause),
restrictinfo->right_sortop);
List *newset,
*cursetlink;
/* We might see a clause X=X; don't make a single-element list from it */
if (equal(item1, item2))
return;
/*
* Our plan is to make a two-element set, then sweep through the
* existing equijoin sets looking for matches to item1 or item2. When
* we find one, we remove that set from equi_key_list and union it
* into our new set. When done, we add the new set to the front of
* equi_key_list.
*
* It may well be that the two items we're given are already known to be
* equijoin-equivalent, in which case we don't need to change our data
* structure. If we find both of them in the same equivalence set to
* start with, we can quit immediately.
*
* This is a standard UNION-FIND problem, for which there exist better
* data structures than simple lists. If this code ever proves to be
* a bottleneck then it could be sped up --- but for now, simple is
* beautiful.
*/
newset = NIL;
foreach(cursetlink, root->equi_key_list)
{
List *curset = lfirst(cursetlink);
bool item1here = member(item1, curset);
bool item2here = member(item2, curset);
if (item1here || item2here)
{
/*
* If find both in same equivalence set, no need to do any
* more
*/
if (item1here && item2here)
{
/* Better not have seen only one in an earlier set... */
Assert(newset == NIL);
return;
}
/* Build the new set only when we know we must */
if (newset == NIL)
newset = makeList2(item1, item2);
/* Found a set to merge into our new set */
newset = set_union(newset, curset);
/*
* Remove old set from equi_key_list. NOTE this does not
* change lnext(cursetlink), so the foreach loop doesn't
* break.
*/
root->equi_key_list = lremove(curset, root->equi_key_list);
freeList(curset); /* might as well recycle old cons cells */
}
}
/* Build the new set only when we know we must */
if (newset == NIL)
newset = makeList2(item1, item2);
root->equi_key_list = lcons(newset, root->equi_key_list);
}
/*
* generate_implied_equalities
* Scan the completed equi_key_list for the query, and generate explicit
* qualifications (WHERE clauses) for all the pairwise equalities not
* already mentioned in the quals. This is useful because the additional
* clauses help the selectivity-estimation code, and in fact it's
* *necessary* to ensure that sort keys we think are equivalent really
* are (see src/backend/optimizer/README for more info).
*
* This routine just walks the equi_key_list to find all pairwise equalities.
* We call process_implied_equality (in plan/initsplan.c) to determine whether
* each is already known and add it to the proper restrictinfo list if not.
*/
void
generate_implied_equalities(Query *root)
{
List *cursetlink;
foreach(cursetlink, root->equi_key_list)
{
List *curset = lfirst(cursetlink);
List *ptr1;
/*
* A set containing only two items cannot imply any equalities
* beyond the one that created the set, so we can skip it.
*/
if (length(curset) < 3)
continue;
/*
* Match each item in the set with all that appear after it (it's
* sufficient to generate A=B, need not process B=A too).
*/
foreach(ptr1, curset)
{
PathKeyItem *item1 = (PathKeyItem *) lfirst(ptr1);
List *ptr2;
foreach(ptr2, lnext(ptr1))
{
PathKeyItem *item2 = (PathKeyItem *) lfirst(ptr2);
process_implied_equality(root, item1->key, item2->key,
item1->sortop, item2->sortop);
}
}
}
}
/*
* make_canonical_pathkey
* Given a PathKeyItem, find the equi_key_list subset it is a member of,
* if any. If so, return a pointer to that sublist, which is the
* canonical representation (for this query) of that PathKeyItem's
* equivalence set. If it is not found, add a singleton "equivalence set"
* to the equi_key_list and return that --- see compare_pathkeys.
*
* Note that this function must not be used until after we have completed
* scanning the WHERE clause for equijoin operators.
*/
static List *
make_canonical_pathkey(Query *root, PathKeyItem *item)
{
List *cursetlink;
List *newset;
foreach(cursetlink, root->equi_key_list)
{
List *curset = lfirst(cursetlink);
if (member(item, curset))
return curset;
}
newset = makeList1(item);
root->equi_key_list = lcons(newset, root->equi_key_list);
return newset;
}
/*
* canonicalize_pathkeys
* Convert a not-necessarily-canonical pathkeys list to canonical form.
*
* Note that this function must not be used until after we have completed
* scanning the WHERE clause for equijoin operators.
*/
List *
canonicalize_pathkeys(Query *root, List *pathkeys)
{
List *new_pathkeys = NIL;
List *i;
foreach(i, pathkeys)
{
List *pathkey = (List *) lfirst(i);
PathKeyItem *item;
List *cpathkey;
/*
* It's sufficient to look at the first entry in the sublist; if
* there are more entries, they're already part of an equivalence
* set by definition.
*/
Assert(pathkey != NIL);
item = (PathKeyItem *) lfirst(pathkey);
cpathkey = make_canonical_pathkey(root, item);
/*
* Eliminate redundant ordering requests --- ORDER BY A,A is the
* same as ORDER BY A. We want to check this only after we have
* canonicalized the keys, so that equivalent-key knowledge is
* used when deciding if an item is redundant.
*/
if (!ptrMember(cpathkey, new_pathkeys))
new_pathkeys = lappend(new_pathkeys, cpathkey);
}
return new_pathkeys;
}
/****************************************************************************
* PATHKEY COMPARISONS
****************************************************************************/
/*
* compare_pathkeys
* Compare two pathkeys to see if they are equivalent, and if not whether
* one is "better" than the other.
*
* This function may only be applied to canonicalized pathkey lists.
* In the canonical representation, sublists can be checked for equality
* by simple pointer comparison.
*/
PathKeysComparison
compare_pathkeys(List *keys1, List *keys2)
{
List *key1,
*key2;
for (key1 = keys1, key2 = keys2;
key1 != NIL && key2 != NIL;
key1 = lnext(key1), key2 = lnext(key2))
{
List *subkey1 = lfirst(key1);
List *subkey2 = lfirst(key2);
/*
* XXX would like to check that we've been given canonicalized
* input, but query root not accessible here...
*/
#ifdef NOT_USED
Assert(ptrMember(subkey1, root->equi_key_list));
Assert(ptrMember(subkey2, root->equi_key_list));
#endif
/*
* We will never have two subkeys where one is a subset of the
* other, because of the canonicalization process. Either they
* are equal or they ain't. Furthermore, we only need pointer
* comparison to detect equality.
*/
if (subkey1 != subkey2)
return PATHKEYS_DIFFERENT; /* no need to keep looking */
}
/*
* If we reached the end of only one list, the other is longer and
* therefore not a subset. (We assume the additional sublist(s) of
* the other list are not NIL --- no pathkey list should ever have a
* NIL sublist.)
*/
if (key1 == NIL && key2 == NIL)
return PATHKEYS_EQUAL;
if (key1 != NIL)
return PATHKEYS_BETTER1; /* key1 is longer */
return PATHKEYS_BETTER2; /* key2 is longer */
}
/*
* compare_noncanonical_pathkeys
* Compare two pathkeys to see if they are equivalent, and if not whether
* one is "better" than the other. This is used when we must compare
* non-canonicalized pathkeys.
*
* A pathkey can be considered better than another if it is a superset:
* it contains all the keys of the other plus more. For example, either
* ((A) (B)) or ((A B)) is better than ((A)).
*
* Currently, the only user of this routine is grouping_planner(),
* and it will only pass single-element sublists (from
* make_pathkeys_for_sortclauses). Therefore we don't have to do the
* full two-way-subset-inclusion test on each pair of sublists that is
* implied by the above statement. Instead we just verify they are
* singleton lists and then do an equal(). This could be improved if
* necessary.
*/
PathKeysComparison
compare_noncanonical_pathkeys(List *keys1, List *keys2)
{
List *key1,
*key2;
for (key1 = keys1, key2 = keys2;
key1 != NIL && key2 != NIL;
key1 = lnext(key1), key2 = lnext(key2))
{
List *subkey1 = lfirst(key1);
List *subkey2 = lfirst(key2);
Assert(length(subkey1) == 1);
Assert(length(subkey2) == 1);
if (!equal(subkey1, subkey2))
return PATHKEYS_DIFFERENT; /* no need to keep looking */
}
/*
* If we reached the end of only one list, the other is longer and
* therefore not a subset. (We assume the additional sublist(s) of
* the other list are not NIL --- no pathkey list should ever have a
* NIL sublist.)
*/
if (key1 == NIL && key2 == NIL)
return PATHKEYS_EQUAL;
if (key1 != NIL)
return PATHKEYS_BETTER1; /* key1 is longer */
return PATHKEYS_BETTER2; /* key2 is longer */
}
/*
* pathkeys_contained_in
* Common special case of compare_pathkeys: we just want to know
* if keys2 are at least as well sorted as keys1.
*/
bool
pathkeys_contained_in(List *keys1, List *keys2)
{
switch (compare_pathkeys(keys1, keys2))
{
case PATHKEYS_EQUAL:
case PATHKEYS_BETTER2:
return true;
default:
break;
}
return false;
}
/*
* noncanonical_pathkeys_contained_in
* The same, when we don't have canonical pathkeys.
*/
bool
noncanonical_pathkeys_contained_in(List *keys1, List *keys2)
{
switch (compare_noncanonical_pathkeys(keys1, keys2))
{
case PATHKEYS_EQUAL:
case PATHKEYS_BETTER2:
return true;
default:
break;
}
return false;
}
/*
* get_cheapest_path_for_pathkeys
* Find the cheapest path (according to the specified criterion) that
* satisfies the given pathkeys. Return NULL if no such path.
*
* 'paths' is a list of possible paths that all generate the same relation
* 'pathkeys' represents a required ordering (already canonicalized!)
* 'cost_criterion' is STARTUP_COST or TOTAL_COST
*/
Path *
get_cheapest_path_for_pathkeys(List *paths, List *pathkeys,
CostSelector cost_criterion)
{
Path *matched_path = NULL;
List *i;
foreach(i, paths)
{
Path *path = (Path *) lfirst(i);
/*
* Since cost comparison is a lot cheaper than pathkey comparison,
* do that first. (XXX is that still true?)
*/
if (matched_path != NULL &&
compare_path_costs(matched_path, path, cost_criterion) <= 0)
continue;
if (pathkeys_contained_in(pathkeys, path->pathkeys))
matched_path = path;
}
return matched_path;
}
/*
* get_cheapest_fractional_path_for_pathkeys
* Find the cheapest path (for retrieving a specified fraction of all
* the tuples) that satisfies the given pathkeys.
* Return NULL if no such path.
*
* See compare_fractional_path_costs() for the interpretation of the fraction
* parameter.
*
* 'paths' is a list of possible paths that all generate the same relation
* 'pathkeys' represents a required ordering (already canonicalized!)
* 'fraction' is the fraction of the total tuples expected to be retrieved
*/
Path *
get_cheapest_fractional_path_for_pathkeys(List *paths,
List *pathkeys,
double fraction)
{
Path *matched_path = NULL;
List *i;
foreach(i, paths)
{
Path *path = (Path *) lfirst(i);
/*
* Since cost comparison is a lot cheaper than pathkey comparison,
* do that first.
*/
if (matched_path != NULL &&
compare_fractional_path_costs(matched_path, path, fraction) <= 0)
continue;
if (pathkeys_contained_in(pathkeys, path->pathkeys))
matched_path = path;
}
return matched_path;
}
/****************************************************************************
* NEW PATHKEY FORMATION
****************************************************************************/
/*
* build_index_pathkeys
* Build a pathkeys list that describes the ordering induced by an index
* scan using the given index. (Note that an unordered index doesn't
* induce any ordering; such an index will have no sortop OIDS in
* its "ordering" field, and we will return NIL.)
*
* If 'scandir' is BackwardScanDirection, attempt to build pathkeys
* representing a backwards scan of the index. Return NIL if can't do it.
*/
List *
build_index_pathkeys(Query *root,
RelOptInfo *rel,
IndexOptInfo *index,
ScanDirection scandir)
{
List *retval = NIL;
int *indexkeys = index->indexkeys;
Oid *ordering = index->ordering;
PathKeyItem *item;
Oid sortop;
if (!indexkeys || indexkeys[0] == 0 ||
!ordering || ordering[0] == InvalidOid)
return NIL; /* unordered index? */
if (index->indproc)
{
/* Functional index: build a representation of the function call */
Func *funcnode = makeNode(Func);
List *funcargs = NIL;
funcnode->funcid = index->indproc;
funcnode->functype = get_func_rettype(index->indproc);
funcnode->func_fcache = NULL;
while (*indexkeys != 0)
{
funcargs = lappend(funcargs,
find_indexkey_var(root, rel, *indexkeys));
indexkeys++;
}
sortop = *ordering;
if (ScanDirectionIsBackward(scandir))
{
sortop = get_commutator(sortop);
if (sortop == InvalidOid)
return NIL; /* oops, no reverse sort operator? */
}
/* Make a one-sublist pathkeys list for the function expression */
item = makePathKeyItem((Node *) make_funcclause(funcnode, funcargs),
sortop);
retval = makeList1(make_canonical_pathkey(root, item));
}
else
{
/* Normal non-functional index */
while (*indexkeys != 0 && *ordering != InvalidOid)
{
Var *relvar = find_indexkey_var(root, rel, *indexkeys);
List *cpathkey;
sortop = *ordering;
if (ScanDirectionIsBackward(scandir))
{
sortop = get_commutator(sortop);
if (sortop == InvalidOid)
break; /* oops, no reverse sort operator? */
}
/* OK, make a sublist for this sort key */
item = makePathKeyItem((Node *) relvar, sortop);
cpathkey = make_canonical_pathkey(root, item);
/*
* Eliminate redundant ordering info; could happen if query is
* such that index keys are equijoined...
*/
if (!ptrMember(cpathkey, retval))
retval = lappend(retval, cpathkey);
indexkeys++;
ordering++;
}
}
return retval;
}
/*
* Find or make a Var node for the specified attribute of the rel.
*
* We first look for the var in the rel's target list, because that's
* easy and fast. But the var might not be there (this should normally
* only happen for vars that are used in WHERE restriction clauses,
* but not in join clauses or in the SELECT target list). In that case,
* gin up a Var node the hard way.
*/
static Var *
find_indexkey_var(Query *root, RelOptInfo *rel, AttrNumber varattno)
{
List *temp;
int relid;
Oid reloid,
vartypeid;
int32 type_mod;
foreach(temp, rel->targetlist)
{
Var *tle_var = get_expr(lfirst(temp));
if (IsA(tle_var, Var) &&tle_var->varattno == varattno)
return tle_var;
}
relid = lfirsti(rel->relids);
reloid = getrelid(relid, root->rtable);
vartypeid = get_atttype(reloid, varattno);
type_mod = get_atttypmod(reloid, varattno);
return makeVar(relid, varattno, vartypeid, type_mod, 0);
}
/*
* build_join_pathkeys
* Build the path keys for a join relation constructed by mergejoin or
* nestloop join. These keys should include all the path key vars of the
* outer path (since the join will retain the ordering of the outer path)
* plus any vars of the inner path that are equijoined to the outer vars.
*
* Per the discussion in backend/optimizer/README, equijoined inner vars
* can be considered path keys of the result, just the same as the outer
* vars they were joined with; furthermore, it doesn't matter what kind
* of join algorithm is actually used.
*
* 'joinrel' is the join relation that paths are being formed for
* 'outer_pathkeys' is the list of the current outer path's path keys
*
* Returns the list of new path keys.
*/
List *
build_join_pathkeys(Query *root,
RelOptInfo *joinrel,
List *outer_pathkeys)
{
/*
* This used to be quite a complex bit of code, but now that all
* pathkey sublists start out life canonicalized, we don't have to do
* a darn thing here! The inner-rel vars we used to need to add are
* *already* part of the outer pathkey!
*
* We do, however, need to truncate the pathkeys list, since it may
* contain pathkeys that were useful for forming this joinrel but are
* uninteresting to higher levels.
*/
return truncate_useless_pathkeys(root, joinrel, outer_pathkeys);
}
/****************************************************************************
* PATHKEYS AND SORT CLAUSES
****************************************************************************/
/*
* make_pathkeys_for_sortclauses
* Generate a pathkeys list that represents the sort order specified
* by a list of SortClauses (GroupClauses will work too!)
*
* NB: the result is NOT in canonical form, but must be passed through
* canonicalize_pathkeys() before it can be used for comparisons or
* labeling relation sort orders. (We do things this way because
* grouping_planner needs to be able to construct requested pathkeys
* before the pathkey equivalence sets have been created for the query.)
*
* 'sortclauses' is a list of SortClause or GroupClause nodes
* 'tlist' is the targetlist to find the referenced tlist entries in
*/
List *
make_pathkeys_for_sortclauses(List *sortclauses,
List *tlist)
{
List *pathkeys = NIL;
List *i;
foreach(i, sortclauses)
{
SortClause *sortcl = (SortClause *) lfirst(i);
Node *sortkey;
PathKeyItem *pathkey;
sortkey = get_sortgroupclause_expr(sortcl, tlist);
pathkey = makePathKeyItem(sortkey, sortcl->sortop);
/*
* The pathkey becomes a one-element sublist, for now;
* canonicalize_pathkeys() might replace it with a longer sublist
* later.
*/
pathkeys = lappend(pathkeys, makeList1(pathkey));
}
return pathkeys;
}
/****************************************************************************
* PATHKEYS AND MERGECLAUSES
****************************************************************************/
/*
* cache_mergeclause_pathkeys
* Make the cached pathkeys valid in a mergeclause restrictinfo.
*
* RestrictInfo contains fields in which we may cache the result
* of looking up the canonical pathkeys for the left and right sides
* of the mergeclause. (Note that in normal cases they will be the
* same, but not if the mergeclause appears above an OUTER JOIN.)
* This is a worthwhile savings because these routines will be invoked
* many times when dealing with a many-relation query.
*/
void
cache_mergeclause_pathkeys(Query *root, RestrictInfo *restrictinfo)
{
Node *key;
PathKeyItem *item;
Assert(restrictinfo->mergejoinoperator != InvalidOid);
if (restrictinfo->left_pathkey == NIL)
{
key = (Node *) get_leftop(restrictinfo->clause);
item = makePathKeyItem(key, restrictinfo->left_sortop);
restrictinfo->left_pathkey = make_canonical_pathkey(root, item);
}
if (restrictinfo->right_pathkey == NIL)
{
key = (Node *) get_rightop(restrictinfo->clause);
item = makePathKeyItem(key, restrictinfo->right_sortop);
restrictinfo->right_pathkey = make_canonical_pathkey(root, item);
}
}
/*
* find_mergeclauses_for_pathkeys
* This routine attempts to find a set of mergeclauses that can be
* used with a specified ordering for one of the input relations.
* If successful, it returns a list of mergeclauses.
*
* 'pathkeys' is a pathkeys list showing the ordering of an input path.
* It doesn't matter whether it is for the inner or outer path.
* 'restrictinfos' is a list of mergejoinable restriction clauses for the
* join relation being formed.
*
* The result is NIL if no merge can be done, else a maximal list of
* usable mergeclauses (represented as a list of their restrictinfo nodes).
*
* XXX Ideally we ought to be considering context, ie what path orderings
* are available on the other side of the join, rather than just making
* an arbitrary choice among the mergeclauses that will work for this side
* of the join.
*/
List *
find_mergeclauses_for_pathkeys(Query *root,
List *pathkeys,
List *restrictinfos)
{
List *mergeclauses = NIL;
List *i;
/* make sure we have pathkeys cached in the clauses */
foreach(i, restrictinfos)
{
RestrictInfo *restrictinfo = lfirst(i);
cache_mergeclause_pathkeys(root, restrictinfo);
}
foreach(i, pathkeys)
{
List *pathkey = lfirst(i);
List *matched_restrictinfos = NIL;
List *j;
/*
* We can match a pathkey against either left or right side of any
* mergejoin clause. (We examine both sides since we aren't told if
* the given pathkeys are for inner or outer input path; no confusion
* is possible.) Furthermore, if there are multiple matching
* clauses, take them all. In plain inner-join scenarios we expect
* only one match, because redundant-mergeclause elimination will
* have removed any redundant mergeclauses from the input list.
* However, in outer-join scenarios there might be multiple matches.
* An example is
*
* select * from a full join b on
* a.v1 = b.v1 and a.v2 = b.v2 and a.v1 = b.v2;
*
* Given the pathkeys ((a.v1), (a.v2)) it is okay to return all
* three clauses (in the order a.v1=b.v1, a.v1=b.v2, a.v2=b.v2)
* and indeed we *must* do so or we will be unable to form a
* valid plan.
*/
foreach(j, restrictinfos)
{
RestrictInfo *restrictinfo = lfirst(j);
/*
* We can compare canonical pathkey sublists by simple pointer
* equality; see compare_pathkeys.
*/
if ((pathkey == restrictinfo->left_pathkey ||
pathkey == restrictinfo->right_pathkey) &&
!ptrMember(restrictinfo, mergeclauses))
{
matched_restrictinfos = lappend(matched_restrictinfos,
restrictinfo);
}
}
/*
* If we didn't find a mergeclause, we're done --- any additional
* sort-key positions in the pathkeys are useless. (But we can
* still mergejoin if we found at least one mergeclause.)
*/
if (matched_restrictinfos == NIL)
break;
/*
* If we did find usable mergeclause(s) for this sort-key position,
* add them to result list.
*/
mergeclauses = nconc(mergeclauses, matched_restrictinfos);
}
return mergeclauses;
}
/*
* make_pathkeys_for_mergeclauses
* Builds a pathkey list representing the explicit sort order that
* must be applied to a path in order to make it usable for the
* given mergeclauses.
*
* 'mergeclauses' is a list of RestrictInfos for mergejoin clauses
* that will be used in a merge join.
* 'rel' is the relation the pathkeys will apply to (ie, either the inner
* or outer side of the proposed join rel).
*
* Returns a pathkeys list that can be applied to the indicated relation.
*
* Note that it is not this routine's job to decide whether sorting is
* actually needed for a particular input path. Assume a sort is necessary;
* just make the keys, eh?
*/
List *
make_pathkeys_for_mergeclauses(Query *root,
List *mergeclauses,
RelOptInfo *rel)
{
List *pathkeys = NIL;
List *i;
foreach(i, mergeclauses)
{
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(i);
Node *key;
List *pathkey;
cache_mergeclause_pathkeys(root, restrictinfo);
key = (Node *) get_leftop(restrictinfo->clause);
if (IsA(key, Var) &&intMember(((Var *) key)->varno, rel->relids))
{
/* Rel is left side of mergeclause */
pathkey = restrictinfo->left_pathkey;
}
else
{
key = (Node *) get_rightop(restrictinfo->clause);
if (IsA(key, Var) &&intMember(((Var *) key)->varno, rel->relids))
{
/* Rel is right side of mergeclause */
pathkey = restrictinfo->right_pathkey;
}
else
{
elog(ERROR, "make_pathkeys_for_mergeclauses: can't identify which side of mergeclause to use");
pathkey = NIL; /* keep compiler quiet */
}
}
/*
* When we are given multiple merge clauses, it's possible that
* some clauses refer to the same vars as earlier clauses. There's
* no reason for us to specify sort keys like (A,B,A) when (A,B)
* will do --- and adding redundant sort keys makes add_path think
* that this sort order is different from ones that are really the
* same, so don't do it. Since we now have a canonicalized
* pathkey, a simple ptrMember test is sufficient to detect
* redundant keys.
*/
if (!ptrMember(pathkey, pathkeys))
pathkeys = lappend(pathkeys, pathkey);
}
return pathkeys;
}
/****************************************************************************
* PATHKEY USEFULNESS CHECKS
*
* We only want to remember as many of the pathkeys of a path as have some
* potential use, either for subsequent mergejoins or for meeting the query's
* requested output ordering. This ensures that add_path() won't consider
* a path to have a usefully different ordering unless it really is useful.
* These routines check for usefulness of given pathkeys.
****************************************************************************/
/*
* pathkeys_useful_for_merging
* Count the number of pathkeys that may be useful for mergejoins
* above the given relation (by looking at its joininfo lists).
*
* We consider a pathkey potentially useful if it corresponds to the merge
* ordering of either side of any joinclause for the rel. This might be
* overoptimistic, since joinclauses that appear in different join lists
* might never be usable at the same time, but trying to be exact is likely
* to be more trouble than it's worth.
*/
int
pathkeys_useful_for_merging(Query *root, RelOptInfo *rel, List *pathkeys)
{
int useful = 0;
List *i;
foreach(i, pathkeys)
{
List *pathkey = lfirst(i);
bool matched = false;
List *j;
foreach(j, rel->joininfo)
{
JoinInfo *joininfo = (JoinInfo *) lfirst(j);
List *k;
foreach(k, joininfo->jinfo_restrictinfo)
{
RestrictInfo *restrictinfo = (RestrictInfo *) lfirst(k);
if (restrictinfo->mergejoinoperator == InvalidOid)
continue;
cache_mergeclause_pathkeys(root, restrictinfo);
/*
* We can compare canonical pathkey sublists by simple
* pointer equality; see compare_pathkeys.
*/
if (pathkey == restrictinfo->left_pathkey ||
pathkey == restrictinfo->right_pathkey)
{
matched = true;
break;
}
}
if (matched)
break;
}
/*
* If we didn't find a mergeclause, we're done --- any additional
* sort-key positions in the pathkeys are useless. (But we can
* still mergejoin if we found at least one mergeclause.)
*/
if (matched)
useful++;
else
break;
}
return useful;
}
/*
* pathkeys_useful_for_ordering
* Count the number of pathkeys that are useful for meeting the
* query's requested output ordering.
*
* Unlike merge pathkeys, this is an all-or-nothing affair: it does us
* no good to order by just the first key(s) of the requested ordering.
* So the result is always either 0 or length(root->query_pathkeys).
*/
int
pathkeys_useful_for_ordering(Query *root, List *pathkeys)
{
if (root->query_pathkeys == NIL)
return 0; /* no special ordering requested */
if (pathkeys == NIL)
return 0; /* unordered path */
if (pathkeys_contained_in(root->query_pathkeys, pathkeys))
{
/* It's useful ... or at least the first N keys are */
return length(root->query_pathkeys);
}
return 0; /* path ordering not useful */
}
/*
* truncate_useless_pathkeys
* Shorten the given pathkey list to just the useful pathkeys.
*/
List *
truncate_useless_pathkeys(Query *root,
RelOptInfo *rel,
List *pathkeys)
{
int nuseful;
int nuseful2;
nuseful = pathkeys_useful_for_merging(root, rel, pathkeys);
nuseful2 = pathkeys_useful_for_ordering(root, pathkeys);
if (nuseful2 > nuseful)
nuseful = nuseful2;
/*
* Note: not safe to modify input list destructively, but we can avoid
* copying the list if we're not actually going to change it
*/
if (nuseful == length(pathkeys))
return pathkeys;
else
return ltruncate(nuseful, listCopy(pathkeys));
}