postgresql/src/backend/optimizer/prep/prepqual.c

677 lines
19 KiB
C

/*-------------------------------------------------------------------------
*
* prepqual.c
* Routines for preprocessing qualification expressions
*
*
* While the parser will produce flattened (N-argument) AND/OR trees from
* simple sequences of AND'ed or OR'ed clauses, there might be an AND clause
* directly underneath another AND, or OR underneath OR, if the input was
* oddly parenthesized. Also, rule expansion and subquery flattening could
* produce such parsetrees. The planner wants to flatten all such cases
* to ensure consistent optimization behavior.
*
* Formerly, this module was responsible for doing the initial flattening,
* but now we leave it to eval_const_expressions to do that since it has to
* make a complete pass over the expression tree anyway. Instead, we just
* have to ensure that our manipulations preserve AND/OR flatness.
* pull_ands() and pull_ors() are used to maintain flatness of the AND/OR
* tree after local transformations that might introduce nested AND/ORs.
*
*
* Portions Copyright (c) 1996-2024, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/optimizer/prep/prepqual.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "nodes/makefuncs.h"
#include "nodes/nodeFuncs.h"
#include "optimizer/optimizer.h"
#include "utils/lsyscache.h"
static List *pull_ands(List *andlist);
static List *pull_ors(List *orlist);
static Expr *find_duplicate_ors(Expr *qual, bool is_check);
static Expr *process_duplicate_ors(List *orlist);
/*
* negate_clause
* Negate a Boolean expression.
*
* Input is a clause to be negated (e.g., the argument of a NOT clause).
* Returns a new clause equivalent to the negation of the given clause.
*
* Although this can be invoked on its own, it's mainly intended as a helper
* for eval_const_expressions(), and that context drives several design
* decisions. In particular, if the input is already AND/OR flat, we must
* preserve that property. We also don't bother to recurse in situations
* where we can assume that lower-level executions of eval_const_expressions
* would already have simplified sub-clauses of the input.
*
* The difference between this and a simple make_notclause() is that this
* tries to get rid of the NOT node by logical simplification. It's clearly
* always a win if the NOT node can be eliminated altogether. However, our
* use of DeMorgan's laws could result in having more NOT nodes rather than
* fewer. We do that unconditionally anyway, because in WHERE clauses it's
* important to expose as much top-level AND/OR structure as possible.
* Also, eliminating an intermediate NOT may allow us to flatten two levels
* of AND or OR together that we couldn't have otherwise. Finally, one of
* the motivations for doing this is to ensure that logically equivalent
* expressions will be seen as physically equal(), so we should always apply
* the same transformations.
*/
Node *
negate_clause(Node *node)
{
if (node == NULL) /* should not happen */
elog(ERROR, "can't negate an empty subexpression");
switch (nodeTag(node))
{
case T_Const:
{
Const *c = (Const *) node;
/* NOT NULL is still NULL */
if (c->constisnull)
return makeBoolConst(false, true);
/* otherwise pretty easy */
return makeBoolConst(!DatumGetBool(c->constvalue), false);
}
break;
case T_OpExpr:
{
/*
* Negate operator if possible: (NOT (< A B)) => (>= A B)
*/
OpExpr *opexpr = (OpExpr *) node;
Oid negator = get_negator(opexpr->opno);
if (negator)
{
OpExpr *newopexpr = makeNode(OpExpr);
newopexpr->opno = negator;
newopexpr->opfuncid = InvalidOid;
newopexpr->opresulttype = opexpr->opresulttype;
newopexpr->opretset = opexpr->opretset;
newopexpr->opcollid = opexpr->opcollid;
newopexpr->inputcollid = opexpr->inputcollid;
newopexpr->args = opexpr->args;
newopexpr->location = opexpr->location;
return (Node *) newopexpr;
}
}
break;
case T_ScalarArrayOpExpr:
{
/*
* Negate a ScalarArrayOpExpr if its operator has a negator;
* for example x = ANY (list) becomes x <> ALL (list)
*/
ScalarArrayOpExpr *saopexpr = (ScalarArrayOpExpr *) node;
Oid negator = get_negator(saopexpr->opno);
if (negator)
{
ScalarArrayOpExpr *newopexpr = makeNode(ScalarArrayOpExpr);
newopexpr->opno = negator;
newopexpr->opfuncid = InvalidOid;
newopexpr->hashfuncid = InvalidOid;
newopexpr->negfuncid = InvalidOid;
newopexpr->useOr = !saopexpr->useOr;
newopexpr->inputcollid = saopexpr->inputcollid;
newopexpr->args = saopexpr->args;
newopexpr->location = saopexpr->location;
return (Node *) newopexpr;
}
}
break;
case T_BoolExpr:
{
BoolExpr *expr = (BoolExpr *) node;
switch (expr->boolop)
{
/*--------------------
* Apply DeMorgan's Laws:
* (NOT (AND A B)) => (OR (NOT A) (NOT B))
* (NOT (OR A B)) => (AND (NOT A) (NOT B))
* i.e., swap AND for OR and negate each subclause.
*
* If the input is already AND/OR flat and has no NOT
* directly above AND or OR, this transformation preserves
* those properties. For example, if no direct child of
* the given AND clause is an AND or a NOT-above-OR, then
* the recursive calls of negate_clause() can't return any
* OR clauses. So we needn't call pull_ors() before
* building a new OR clause. Similarly for the OR case.
*--------------------
*/
case AND_EXPR:
{
List *nargs = NIL;
ListCell *lc;
foreach(lc, expr->args)
{
nargs = lappend(nargs,
negate_clause(lfirst(lc)));
}
return (Node *) make_orclause(nargs);
}
break;
case OR_EXPR:
{
List *nargs = NIL;
ListCell *lc;
foreach(lc, expr->args)
{
nargs = lappend(nargs,
negate_clause(lfirst(lc)));
}
return (Node *) make_andclause(nargs);
}
break;
case NOT_EXPR:
/*
* NOT underneath NOT: they cancel. We assume the
* input is already simplified, so no need to recurse.
*/
return (Node *) linitial(expr->args);
default:
elog(ERROR, "unrecognized boolop: %d",
(int) expr->boolop);
break;
}
}
break;
case T_NullTest:
{
NullTest *expr = (NullTest *) node;
/*
* In the rowtype case, the two flavors of NullTest are *not*
* logical inverses, so we can't simplify. But it does work
* for scalar datatypes.
*/
if (!expr->argisrow)
{
NullTest *newexpr = makeNode(NullTest);
newexpr->arg = expr->arg;
newexpr->nulltesttype = (expr->nulltesttype == IS_NULL ?
IS_NOT_NULL : IS_NULL);
newexpr->argisrow = expr->argisrow;
newexpr->location = expr->location;
return (Node *) newexpr;
}
}
break;
case T_BooleanTest:
{
BooleanTest *expr = (BooleanTest *) node;
BooleanTest *newexpr = makeNode(BooleanTest);
newexpr->arg = expr->arg;
switch (expr->booltesttype)
{
case IS_TRUE:
newexpr->booltesttype = IS_NOT_TRUE;
break;
case IS_NOT_TRUE:
newexpr->booltesttype = IS_TRUE;
break;
case IS_FALSE:
newexpr->booltesttype = IS_NOT_FALSE;
break;
case IS_NOT_FALSE:
newexpr->booltesttype = IS_FALSE;
break;
case IS_UNKNOWN:
newexpr->booltesttype = IS_NOT_UNKNOWN;
break;
case IS_NOT_UNKNOWN:
newexpr->booltesttype = IS_UNKNOWN;
break;
default:
elog(ERROR, "unrecognized booltesttype: %d",
(int) expr->booltesttype);
break;
}
newexpr->location = expr->location;
return (Node *) newexpr;
}
break;
default:
/* else fall through */
break;
}
/*
* Otherwise we don't know how to simplify this, so just tack on an
* explicit NOT node.
*/
return (Node *) make_notclause((Expr *) node);
}
/*
* canonicalize_qual
* Convert a qualification expression to the most useful form.
*
* This is primarily intended to be used on top-level WHERE (or JOIN/ON)
* clauses. It can also be used on top-level CHECK constraints, for which
* pass is_check = true. DO NOT call it on any expression that is not known
* to be one or the other, as it might apply inappropriate simplifications.
*
* The name of this routine is a holdover from a time when it would try to
* force the expression into canonical AND-of-ORs or OR-of-ANDs form.
* Eventually, we recognized that that had more theoretical purity than
* actual usefulness, and so now the transformation doesn't involve any
* notion of reaching a canonical form.
*
* NOTE: we assume the input has already been through eval_const_expressions
* and therefore possesses AND/OR flatness. Formerly this function included
* its own flattening logic, but that requires a useless extra pass over the
* tree.
*
* Returns the modified qualification.
*/
Expr *
canonicalize_qual(Expr *qual, bool is_check)
{
Expr *newqual;
/* Quick exit for empty qual */
if (qual == NULL)
return NULL;
/* This should not be invoked on quals in implicit-AND format */
Assert(!IsA(qual, List));
/*
* Pull up redundant subclauses in OR-of-AND trees. We do this only
* within the top-level AND/OR structure; there's no point in looking
* deeper. Also remove any NULL constants in the top-level structure.
*/
newqual = find_duplicate_ors(qual, is_check);
return newqual;
}
/*
* pull_ands
* Recursively flatten nested AND clauses into a single and-clause list.
*
* Input is the arglist of an AND clause.
* Returns the rebuilt arglist (note original list structure is not touched).
*/
static List *
pull_ands(List *andlist)
{
List *out_list = NIL;
ListCell *arg;
foreach(arg, andlist)
{
Node *subexpr = (Node *) lfirst(arg);
if (is_andclause(subexpr))
out_list = list_concat(out_list,
pull_ands(((BoolExpr *) subexpr)->args));
else
out_list = lappend(out_list, subexpr);
}
return out_list;
}
/*
* pull_ors
* Recursively flatten nested OR clauses into a single or-clause list.
*
* Input is the arglist of an OR clause.
* Returns the rebuilt arglist (note original list structure is not touched).
*/
static List *
pull_ors(List *orlist)
{
List *out_list = NIL;
ListCell *arg;
foreach(arg, orlist)
{
Node *subexpr = (Node *) lfirst(arg);
if (is_orclause(subexpr))
out_list = list_concat(out_list,
pull_ors(((BoolExpr *) subexpr)->args));
else
out_list = lappend(out_list, subexpr);
}
return out_list;
}
/*--------------------
* The following code attempts to apply the inverse OR distributive law:
* ((A AND B) OR (A AND C)) => (A AND (B OR C))
* That is, locate OR clauses in which every subclause contains an
* identical term, and pull out the duplicated terms.
*
* This may seem like a fairly useless activity, but it turns out to be
* applicable to many machine-generated queries, and there are also queries
* in some of the TPC benchmarks that need it. This was in fact almost the
* sole useful side-effect of the old prepqual code that tried to force
* the query into canonical AND-of-ORs form: the canonical equivalent of
* ((A AND B) OR (A AND C))
* is
* ((A OR A) AND (A OR C) AND (B OR A) AND (B OR C))
* which the code was able to simplify to
* (A AND (A OR C) AND (B OR A) AND (B OR C))
* thus successfully extracting the common condition A --- but at the cost
* of cluttering the qual with many redundant clauses.
*--------------------
*/
/*
* find_duplicate_ors
* Given a qualification tree with the NOTs pushed down, search for
* OR clauses to which the inverse OR distributive law might apply.
* Only the top-level AND/OR structure is searched.
*
* While at it, we remove any NULL constants within the top-level AND/OR
* structure, eg in a WHERE clause, "x OR NULL::boolean" is reduced to "x".
* In general that would change the result, so eval_const_expressions can't
* do it; but at top level of WHERE, we don't need to distinguish between
* FALSE and NULL results, so it's valid to treat NULL::boolean the same
* as FALSE and then simplify AND/OR accordingly. Conversely, in a top-level
* CHECK constraint, we may treat a NULL the same as TRUE.
*
* Returns the modified qualification. AND/OR flatness is preserved.
*/
static Expr *
find_duplicate_ors(Expr *qual, bool is_check)
{
if (is_orclause(qual))
{
List *orlist = NIL;
ListCell *temp;
/* Recurse */
foreach(temp, ((BoolExpr *) qual)->args)
{
Expr *arg = (Expr *) lfirst(temp);
arg = find_duplicate_ors(arg, is_check);
/* Get rid of any constant inputs */
if (arg && IsA(arg, Const))
{
Const *carg = (Const *) arg;
if (is_check)
{
/* Within OR in CHECK, drop constant FALSE */
if (!carg->constisnull && !DatumGetBool(carg->constvalue))
continue;
/* Constant TRUE or NULL, so OR reduces to TRUE */
return (Expr *) makeBoolConst(true, false);
}
else
{
/* Within OR in WHERE, drop constant FALSE or NULL */
if (carg->constisnull || !DatumGetBool(carg->constvalue))
continue;
/* Constant TRUE, so OR reduces to TRUE */
return arg;
}
}
orlist = lappend(orlist, arg);
}
/* Flatten any ORs pulled up to just below here */
orlist = pull_ors(orlist);
/* Now we can look for duplicate ORs */
return process_duplicate_ors(orlist);
}
else if (is_andclause(qual))
{
List *andlist = NIL;
ListCell *temp;
/* Recurse */
foreach(temp, ((BoolExpr *) qual)->args)
{
Expr *arg = (Expr *) lfirst(temp);
arg = find_duplicate_ors(arg, is_check);
/* Get rid of any constant inputs */
if (arg && IsA(arg, Const))
{
Const *carg = (Const *) arg;
if (is_check)
{
/* Within AND in CHECK, drop constant TRUE or NULL */
if (carg->constisnull || DatumGetBool(carg->constvalue))
continue;
/* Constant FALSE, so AND reduces to FALSE */
return arg;
}
else
{
/* Within AND in WHERE, drop constant TRUE */
if (!carg->constisnull && DatumGetBool(carg->constvalue))
continue;
/* Constant FALSE or NULL, so AND reduces to FALSE */
return (Expr *) makeBoolConst(false, false);
}
}
andlist = lappend(andlist, arg);
}
/* Flatten any ANDs introduced just below here */
andlist = pull_ands(andlist);
/* AND of no inputs reduces to TRUE */
if (andlist == NIL)
return (Expr *) makeBoolConst(true, false);
/* Single-expression AND just reduces to that expression */
if (list_length(andlist) == 1)
return (Expr *) linitial(andlist);
/* Else we still need an AND node */
return make_andclause(andlist);
}
else
return qual;
}
/*
* process_duplicate_ors
* Given a list of exprs which are ORed together, try to apply
* the inverse OR distributive law.
*
* Returns the resulting expression (could be an AND clause, an OR
* clause, or maybe even a single subexpression).
*/
static Expr *
process_duplicate_ors(List *orlist)
{
List *reference = NIL;
int num_subclauses = 0;
List *winners;
List *neworlist;
ListCell *temp;
/* OR of no inputs reduces to FALSE */
if (orlist == NIL)
return (Expr *) makeBoolConst(false, false);
/* Single-expression OR just reduces to that expression */
if (list_length(orlist) == 1)
return (Expr *) linitial(orlist);
/*
* Choose the shortest AND clause as the reference list --- obviously, any
* subclause not in this clause isn't in all the clauses. If we find a
* clause that's not an AND, we can treat it as a one-element AND clause,
* which necessarily wins as shortest.
*/
foreach(temp, orlist)
{
Expr *clause = (Expr *) lfirst(temp);
if (is_andclause(clause))
{
List *subclauses = ((BoolExpr *) clause)->args;
int nclauses = list_length(subclauses);
if (reference == NIL || nclauses < num_subclauses)
{
reference = subclauses;
num_subclauses = nclauses;
}
}
else
{
reference = list_make1(clause);
break;
}
}
/*
* Just in case, eliminate any duplicates in the reference list.
*/
reference = list_union(NIL, reference);
/*
* Check each element of the reference list to see if it's in all the OR
* clauses. Build a new list of winning clauses.
*/
winners = NIL;
foreach(temp, reference)
{
Expr *refclause = (Expr *) lfirst(temp);
bool win = true;
ListCell *temp2;
foreach(temp2, orlist)
{
Expr *clause = (Expr *) lfirst(temp2);
if (is_andclause(clause))
{
if (!list_member(((BoolExpr *) clause)->args, refclause))
{
win = false;
break;
}
}
else
{
if (!equal(refclause, clause))
{
win = false;
break;
}
}
}
if (win)
winners = lappend(winners, refclause);
}
/*
* If no winners, we can't transform the OR
*/
if (winners == NIL)
return make_orclause(orlist);
/*
* Generate new OR list consisting of the remaining sub-clauses.
*
* If any clause degenerates to empty, then we have a situation like (A
* AND B) OR (A), which can be reduced to just A --- that is, the
* additional conditions in other arms of the OR are irrelevant.
*
* Note that because we use list_difference, any multiple occurrences of a
* winning clause in an AND sub-clause will be removed automatically.
*/
neworlist = NIL;
foreach(temp, orlist)
{
Expr *clause = (Expr *) lfirst(temp);
if (is_andclause(clause))
{
List *subclauses = ((BoolExpr *) clause)->args;
subclauses = list_difference(subclauses, winners);
if (subclauses != NIL)
{
if (list_length(subclauses) == 1)
neworlist = lappend(neworlist, linitial(subclauses));
else
neworlist = lappend(neworlist, make_andclause(subclauses));
}
else
{
neworlist = NIL; /* degenerate case, see above */
break;
}
}
else
{
if (!list_member(winners, clause))
neworlist = lappend(neworlist, clause);
else
{
neworlist = NIL; /* degenerate case, see above */
break;
}
}
}
/*
* Append reduced OR to the winners list, if it's not degenerate, handling
* the special case of one element correctly (can that really happen?).
* Also be careful to maintain AND/OR flatness in case we pulled up a
* sub-sub-OR-clause.
*/
if (neworlist != NIL)
{
if (list_length(neworlist) == 1)
winners = lappend(winners, linitial(neworlist));
else
winners = lappend(winners, make_orclause(pull_ors(neworlist)));
}
/*
* And return the constructed AND clause, again being wary of a single
* element and AND/OR flatness.
*/
if (list_length(winners) == 1)
return (Expr *) linitial(winners);
else
return make_andclause(pull_ands(winners));
}