yuzu/src/common/wall_clock.cpp

91 lines
2.9 KiB
C++
Raw Normal View History

// Copyright 2020 yuzu Emulator Project
// Licensed under GPLv2 or any later version
// Refer to the license.txt file included.
#include "common/uint128.h"
#include "common/wall_clock.h"
#ifdef ARCHITECTURE_x86_64
#include "common/x64/cpu_detect.h"
#include "common/x64/native_clock.h"
#endif
namespace Common {
using base_timer = std::chrono::steady_clock;
using base_time_point = std::chrono::time_point<base_timer>;
class StandardWallClock : public WallClock {
public:
StandardWallClock(u64 emulated_cpu_frequency, u64 emulated_clock_frequency)
: WallClock(emulated_cpu_frequency, emulated_clock_frequency, false) {
start_time = base_timer::now();
}
std::chrono::nanoseconds GetTimeNS() override {
base_time_point current = base_timer::now();
auto elapsed = current - start_time;
return std::chrono::duration_cast<std::chrono::nanoseconds>(elapsed);
}
std::chrono::microseconds GetTimeUS() override {
base_time_point current = base_timer::now();
auto elapsed = current - start_time;
return std::chrono::duration_cast<std::chrono::microseconds>(elapsed);
}
std::chrono::milliseconds GetTimeMS() override {
base_time_point current = base_timer::now();
auto elapsed = current - start_time;
return std::chrono::duration_cast<std::chrono::milliseconds>(elapsed);
}
u64 GetClockCycles() override {
std::chrono::nanoseconds time_now = GetTimeNS();
const u128 temporal = Common::Multiply64Into128(time_now.count(), emulated_clock_frequency);
return Common::Divide128On32(temporal, 1000000000).first;
}
u64 GetCPUCycles() override {
std::chrono::nanoseconds time_now = GetTimeNS();
const u128 temporal = Common::Multiply64Into128(time_now.count(), emulated_cpu_frequency);
return Common::Divide128On32(temporal, 1000000000).first;
}
private:
base_time_point start_time;
};
#ifdef ARCHITECTURE_x86_64
WallClock* CreateBestMatchingClock(u32 emulated_cpu_frequency, u32 emulated_clock_frequency) {
const auto& caps = GetCPUCaps();
u64 rtsc_frequency = 0;
if (caps.invariant_tsc) {
if (caps.base_frequency != 0) {
rtsc_frequency = static_cast<u64>(caps.base_frequency) * 1000000U;
}
if (rtsc_frequency == 0) {
rtsc_frequency = EstimateRDTSCFrequency();
}
}
if (rtsc_frequency == 0) {
return static_cast<WallClock*>(
new StandardWallClock(emulated_cpu_frequency, emulated_clock_frequency));
} else {
return static_cast<WallClock*>(
new X64::NativeClock(emulated_cpu_frequency, emulated_clock_frequency, rtsc_frequency));
}
}
#else
WallClock* CreateBestMatchingClock(u32 emulated_cpu_frequency, u32 emulated_clock_frequency) {
return static_cast<WallClock*>(
new StandardWallClock(emulated_cpu_frequency, emulated_clock_frequency));
}
#endif
} // namespace Common